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1 Introduction

1.1 Motivating problem

Regression is arguably the most familiar topic in econometrics and statistics and has mo-

tivated a vast amount of literature. Many scientific phenomena can be modeled using a

general regression model where a univariate response Y is related to covariates X ∈ Rk and

Z ∈ Rs through

Y = m(X,Z; β) + ε. (1)

Here, m is known up to the parameter β ∈ Rp, and the model error ε is only required to

satisfy E(ε|X,Z) = 0. With the conditional distribution of ε unspecified, this model is also

known as a restricted moment model (RMM). A typical challenge with RMMs is that some

covariates, say Z, are precisely measured, whereas others, say X, are mismeasured. In place

of Xi, i = 1, . . . , n, one instead observes ` surrogate replicates

Wij = Xi + Uij, j = 1, . . . , `, (2)

where Uij’s are independent, mean zero random variables with unknown variance-covariance

ΩU ∈ Rk×k. The surrogacy assumption implies that Yi and Wij’s are conditionally indepen-

dent given (Xi, Zi). Lastly, we suppose the measurement error is classical so that Xi and Uij

are independent.

An example of this model is in the nutrition study of Flagg et al. (2000). There, a

key interest is properly modeling the relationship between percent calories from fat (Y ),

race (Z), and saturated fat intake (X). Saturated fat intake is not known exactly and

only an approximate version via two repeated measurements, W·1,W·2, is available from

food frequency questionnaires. To handle the measurement error in this example and in

any model characterized by (1) and (2), the goal of this paper is to estimate the model

parameters β and ΩU under the following general assumptions:

Assumption (i): the mean model m(X,Z; β) is any linear or nonlinear function;
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Assumption (ii): the model error ε may depend on (X,Z) (i.e., heteroskedasticity), and

its conditional distribution pε|X,Z(ε|x, z) is unspecified;

Assumption (iii): the conditional distribution of X given Z, pX|Z(x|z), and the dis-

tribution of Z, pZ(z), exist but are completely unspecified. Thus we have a modern

functional measurement error model (Carroll et al., 2006, chap. 7.2);

Assumption (iv): the measurement error is classical and Uij, i = 1, . . . , n; j = 1, . . . , `,

has a general parametric distribution pUij(u; ΩU) with ΩU unknown. This contrasts

from the usual normality assumption for measurement error (Carroll et al., 1999, 2004).

1.2 Estimation challenges

Allowing pε|X,Z , pX|Z , and pZ to be unspecified provides more modeling flexibility and re-

duces the chance of model misspecification. However, it also raises serious challenges. The

unknown distributions cannot be ignored, and arbitrarily adopting models for pε|X,Z or pX|Z

may cause bias. Estimating these distributions is also potentially difficult. For example,

pX|Z is a model of unobserved variables. Its estimation would involve an inverse opera-

tion such as deconvolution (Stefanski and Carroll, 1990), which results in a very slow rate

(Carroll and Hall, 1988; Fan, 1991). The estimation of pε|X,Z(ε|x, z) is equally challenging

because residuals are unobtainable in measurement error models even if model parameters

were known. The unavailability of the residuals makes correctly estimating the model er-

ror’s variance-covariance difficult. This is especially problematic when the model error is

heteroskedastic, and a proper variance-covariance is needed to yield consistent model pa-

rameter estimates. Although methods exist to estimate the unknown variance-covariance,

they are either approximate (Carroll and Wang, 2008) or complex (Delaigle and Hall, 2011).

1.3 Competing methods and features of our approach

A nonlinear, classical measurement error model with replicates has been treated by sev-

eral authors. Extensive research has focused on measurement error problems with specific

forms of m(X,Z; β), ranging from polynomial regression (Chan and Mak, 1985; Cheng and
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Schneeweiss, 1998; Cheng et al., 2000; Huang and Huwang, 2001) to generalized linear mixed

models (Liang, 2009; Li and Liqun, 2012). For our purposes, we consider m(X,Z; β) to be

any linear or nonlinear form, which is a general assumption of many existing works. For

example, Li (2002) used Kotlarski’s identification (Rao, 1992, p. 21) to identify and con-

sistently estimate model parameters for a general m(X,Z; β) with two replicates Wi1,Wi2.

Tsiatis and Ma (2004) developed a consistent, asymptotically normal estimator when pε|X,Z

is known and parametric. Schennach (2004a) used properties of Fourier transforms, where

the crux of her work lies in constructing moments of the unobserved X, and then forming

estimators that can be written in terms of these moments. Schennach (2004b) developed

an unbiased, Nadaraya-Watson based estimator to nonparametrically estimate m(X,Z) in

(1). Lastly, Hu and Schennach (2008) and Schennach and Hu (2013) used a sieve maximum

likelihood estimator (MLE) which yields consistency and the former successfully handles

heteroskedastic measurement error (i.e., U in (2) depends on X). For an overview on mea-

surement error models, see Fuller (1987) for earlier results in linear models and Carroll et al.

(2006) for modern approaches in linear and nonlinear models. The developed methodologies

have all positively impacted the literature of regression with classical measurement error.

Still, some limitations linger and it is these limitations that motivated this work.

In this paper, we propose to overcome two key limitations of existing methods: the direct

estimation or knowledge of pε|X,Z , and the inability to handle model error heteroskedasticity.

In this regard, we develop a semiparametric estimator which avoids estimating pX|Z and

pε|X,Z . This is possible through deriving the semiparametric efficient score (Bickel et al., 1993;

Tsiatis, 2006) which we reveal is robust to misspecification of the unknown distributions. Our

approach involves adopting working parametric models for the unknown distributions. We

show that if the working models are correct, then the estimator is semiparametric efficient;

otherwise, the estimator is still root-n consistent and asymptotically normal. Lastly, our

method does not require correctly estimating the model error’s variance-covariance.

Not having to directly estimate pε|X,Z differs from the semiparametric Tsiatis and Ma

(2004) method and the sieve MLE (Shen, 1997; Schennach and Hu, 2013). Tsiatis and Ma

(2004) assume pε|X,Z is a known, parametric form. Unfortunately, in our own numerical

studies (Section 4), we found that such an assumption is sensitive to misspecification of the
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model error variance. With the sieve MLE, pε|X,Z and pX|Z are represented by increasingly

rich parametric representations such as a truncated series of basis functions. The param-

eters in the truncated series and regression are then jointly estimated via MLE subject to

constraints that ensure the estimated pε|X,Z , pX|Z are valid densities and that E(ε|X,Z) = 0.

Sieve methods yield consistent estimators and are fairly straight-forward to implement, mak-

ing the approach widely appreciated in the literature. However, compared to the sieve MLE,

our approach bypasses the consistent estimation of pε|X,Z , pX|Z . In doing so, our method

eliminates a step in the aim of constructing a consistent estimator and, as described next,

flexibly handles potential heteroskedasticity in the model error.

Model error heteroskedasticity is a challenging problem, especially in a measurement

error setting where residuals are unavailable to aid the appropriate modeling of variance-

covariance structures. In bypassing the correct estimation of pε|X,Z , our method implicitly

handles misspecifications of the model error’s variance structure. That is, knowledge of the

model error being heteroskedastic or homoskedastic is not needed. In our own explorations

of existing estimators to handle model error heteroskedasticity, we found some shortcomings.

The estimators of Li (2002) and Schennach and Hu (2013) both assume ε and (X,Z) are

independent (i.e., homoskedastic model error). Consequently, ignoring the homoskedastic

assumption naturally results in bias when the model error is truly heteroskedastic; see nu-

merical studies in Section 4 for bias of the sieve estimator from Schennach and Hu (2013).

The bias persists even when the number of terms in the sieve representations increases.

As improvement, Hu and Schennach (2008) developed a different sieve estimator that suc-

cessfully handles heteroskedastic measurement error (i.e., U in (2) depends on X). Unfor-

tunately, when we extended their methodology to handle heteroskedastic model error, we

encountered two difficulties. First, for the heteroskedastic sieve of pε|X,Z to be a valid den-

sity and have conditional mean zero, we require imposing twelve constraints (see Section S.8,

Supplementary Material). Second, from our numerical studies (Section 4), we found that

the heteroskedastic sieve estimator yielded biased estimates for the RMM models considered

here. Given that the sieve approach has been widely successful in various regressions with

errors-in-covariates, we were initially surprised by these results. However, we now believe

the biasedness is a consequence of the complex computation that attempts a constrained
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optimization subject to too many constraints.

Lastly, for a nonparametric regression with classical measurement error, Schennach

(2004b) developed an unbiased, Nadaraya-Watson based estimator that can handle het-

eroskedastic model error. However, our situation is completely different in that we consider a

semiparametric regression model (i.e., m(X,Z; β)), not a nonparametric one (i.e., m(X,Z)).

Thus, as far as we are aware, we believe our semiparametric approach provides advantages

over existing methods in that it bypasses estimating pε|X,Z and pX|Z , and simultaneously han-

dles unspecified heteroskedastic model error and mismeasured covariates. It is important to

note that our method is developed under specific assumptions in Section 1.1, among which

require multiple proxy variables and classical measurement error (Assumption (iv)). Under

Assumption (iv), we may easily estimate ΩU in the measurement error distribution (Section

2.1) and thus, more easily identify estimating equations for β (Theorem 1). When this as-

sumption no longer holds, the estimation procedure is more difficult: a more general method

is needed to simultaneously estimate ΩU and β. Work in this area has been explored; see Hu

and Schennach (2008) and Chen et al. (2009) for developments in non-classical measurement

error and estimation without available replicates (Chen et al., 2009).

The rest of the paper is as follows. Section 2 establishes identifiability results for the

model parameters. Section 3 describes the main results for the semiparametric estimator,

including theoretical properties, robustness to misspecifications of working distributions and

its numerical implementation. We show the satisfying performance of the estimator through

a simulation study in Section 4 and a data example in Section 5. Section 6 concludes the

paper with a brief discussion. Technical proofs and additional simulation results are provided

in the Supplementary Material. All computer codes are available upon request.

2 Identification

2.1 Identification of ΩU

The identification of ΩU is facilitated by the observed replicates. If replicates are unavailable,

then validation data (Lee and Sepanski, 1995) or instrumental variables (Carroll et al., 2004)
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can be used.

To identify ΩU , we use the usual components of variance analysis (Carroll et al., 2006,

chap. 4). Define Wi =
∑`

j=1Wij/` and Vi =
∑`

j=1 (Wij −Wi) (Wij −Wi)
T . Then ΩU =

E(Vi)/(l − 1), hence it is identifiable. In practice, we solve

n∑
i=1

(
Vi
`− 1

− ΩU

)
= 0 (3)

to obtain Ω̂U .

2.2 Identification of β

We demonstrate identifiability of β by casting the RMM with measurement error into a

semiparametric framework. Let η1(x, z) ≡ pX|Z(x|z), η2(ε, x, z) ≡ pε|X,Z(ε|x, z), and η3(z) ≡

pZ(z) denote infinite-dimensional nuisance parameters corresponding to the unknown distri-

butions. Let W denote the average of the observed replicates and pW |X,Z(w|x, z;α) denote

its conditional distribution given (X,Z), with α = vech(ΩU) (i.e., the vectorized version of

the upper block of ΩU including its diagonal). Then, the probability density function of

(Y,W,Z) is

pY,W,Z(y, w, z; β, α, η1, η2, η3)

=

∫
η2{y −m(x, z; β), x, z}pW |X,Z(w|x, z;α)η1(x, z)η3(z)dµ(x), (4)

where dµ(·) denotes the dominating measure, which is the Lebesgue measure for continuous

variables and the counting measure for discrete variables. The density of (Y,W,Z) contains

both finite and infinite-dimensional parameters, hence the RMM with measurement error is

a semiparametric model.

The identifiability of β in the RMM with measurement error is closely linked to the

identifiability of β in the RMM without measurement error. To see this, assume to the

contrary that the RMM without measurement error is identifiable, but that β in the RMM

with measurement error is not. Then, there exist β0, η1, η2, η3 and β†, η†1, η
†
2, η
†
3 where β0 6= β†,

6



but β0, η1, η2, η3 and β†, η†1, η
†
2, η
†
3 yield the same data generation procedure:

pY,W,Z(y, w, z; β, α, η1, η2, η3) =

∫
η2{y −m(x, z; β0), x, z}η1(x, z)η3(z)pU(w − x;α)dx

=

∫
η†2{y −m(x, z; β†), x, z}η†1(x, z)η†3(z)pU(w − x;α)dx.

Here, pU(u;α) denotes the measurement error distribution. Deconvolution then implies that

for all (Y,X,Z), η2{y−m(x, z; β0), x, z}η1(x, z)η3(z) = η†2{y−m(x, z; β†), x, z}η†1(x, z)η†3(z).

A similar argument to

pW,Z(w, z;α, η1, η3) =

∫
pU(w − x;α)η1(x, z)η3(z)dx =

∫
pU(w − x;α)η†1(x, z)η†3(z)dx,

yields η1(x, z)η3(z) = η†1(x, z)η†3(z) for all (x, z). Together, these results imply that on the

support of the probability density of (x, z),

η2{y −m(x, z; β0), x, z} = η†2{y −m(x, z; β†), x, z} (5)

for all (Y,X,Z). Hence, (5) implies that the conditional model error distributions under β0

and under β† are identical which makes the RMM without measurement error not identifiable.

This contradicts our original assumption. Therefore, we have identifiability as long as we

begin with an identifiable RMM without measurement error. Identifiability of the RMM

without measurement error depends on the specific form of the mean model and is generally

straight-forward to establish.

3 Methodology

3.1 Estimation of ΩU and β

Estimation of ΩU , equivalently α = vech(ΩU), follows directly from the solution to (3).

Estimation of β builds upon the semiparametric results for an RMM without measurement

error. For this latter case, Tsiatis (2006) demonstrated that consistent estimators are the
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solutions to the linear estimating equation

∑n
i=1A(Xi, Zi){Yi −m(Xi, Zi; β)} = 0.

Here, A(X,Z) ∈ Rp is an arbitrary function that does not cause the above estimating equa-

tion to degenerate. If A(X,Z) = ∂m(X,Z; β)/∂βE(ε2|X,Z)−1, then the equation is named

the optimal generalized estimating equation (optimal GEE; Liang and Zeger, 1986), and it

yields the efficient estimator. See Section S.1 (Supplementary Material) for a brief overview

of the semiparametric procedure and its application to the RMM without measurement error.

Applying the semiparametric procedure to the RMM with measurement error, we estab-

lish in Theorem 1 the condition that any consistent estimator for β must satisfy. A detailed

derivation is given in Section S.2 (Supplementary Material).

Theorem 1 For the RMM with measurement error, a consistent estimator for β is the

solution to
∑n

i=1 f(Yi,Wi, Zi; β) = 0 where f is a p-dimensional function in

Λ⊥ = [f(Y,W,Z) : E{f(Y,W,Z)|Y,X,Z} = g(X,Z)ε].

Here, g is an arbitrary function of (X,Z) with finite variance, and

E{f(Y,W,Z)|Y,X,Z} =

∫
f(y, w, z)pW |X,Z(w|x, z;α)dµ(w). (6)

Theorem 1 states that to determine if a function f(Y,W,Z; β) yields a consistent estimator

for β, one must verify that f belongs to Λ⊥. The verification involves computing the integral

in (6) and checking that the result is of the form g(X,Z)ε for some function g(X,Z). Note

that the integration in (6) does not involve the unknown distributions η1 or η2. Instead, it

only involves the distribution pW |X,Z(w|x, z;α) which is completely known once α is estimated

from (3). This observation means that even without knowing η1 and η2, one can verify if a

function f belongs to Λ⊥, and thus use it to form a consistent estimator for β.

Unfortunately, finding f that belongs to Λ⊥ is not a trivial task. It is equivalent to the

challenge of finding a corrected score which is only resolved for generalized linear models
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(Nakamura, 1990). An approximate corrected score is possible using complex-variable com-

putations and Monte Carlo averaging (Novick and Stefanski, 2002). In this work, we use a

careful analytic derivation to construct f in Λ⊥.

Let η∗1(x, z) and η∗2(ε, x, z) be working models of η1 and η2, respectively. The working

models may be completely different from the true models, denoted as η10, η20, but we assume

the support is the same. Throughout, let E∗(·) denote the expectation computed under

η∗1, η∗2, and E(·) denote the expectation computed under η10, η20. Define conjugate linear

operators

K1{h(Y,X,Z)} = E∗{h(Y,X,Z)|Y,W,Z}, K2{f(Y,W,Z)} = E{f(Y,W,Z)|Y,X,Z}.

It is important to note thatK2 is independent of η∗1, η
∗
2 as evident from (6); hence its definition

is asterisk-free.

Using the projection theorem (Rudin, 1987), we demonstrate in Section S.3 (Supplemen-

tary Material) that a function in Λ⊥ is K1{d∗(Y,X,Z)} where d∗(Y,X,Z) is a p-dimensional

function that satisfies

εE∗(d
∗ε|X,Z) +K2 ◦ K1(d∗)E∗(ε

2|X,Z)− εE∗{K2 ◦ K1(d∗)ε|X,Z} = m′β(X,Z; β)ε. (7)

Here, ◦ denotes the composite operation and m′β(X,Z; β) is ∂m(X,Z; β)/∂β. To see

that K1{d∗(Y,X,Z)} indeed belongs to Λ⊥, we can easily re-arrange (7) to show that

E[K1{d∗(Y,X,Z)}|Y,X,Z] = g(X,Z)ε with g(X,Z) = (m′β(X,Z; β) − E∗[{d∗ − K2 ◦

K1(d∗)}ε|X,Z])E∗(ε
2|X,Z)−1. It is worth noting that in the terminology of semiparametric

theory, K1{d∗(Y,X,Z)} is known as the locally efficient score vector

S∗eff(Y,W,Z; β, α, η∗1, η
∗
2) ≡ K1{d∗(Y,X,Z)}.

A few remarks are in order. First, equation (7) may admit more than one solu-

tion d∗. However, by the projection theorem (Rudin, 1987), even if d∗ is not unique,

K1{d∗(Y,X,Z)} is unique; see Section S.3 (Supplementary Material). Hence differences

in numerical procedures for obtaining d∗ will not affect the final estimating equation which

9



is formed using S∗eff(Y,W,Z; β, α, η∗1, η
∗
2) ≡ K1{d∗(Y,X,Z)}. Second, to ensure that the

parameter values are identified from the ensuing estimating equation, we require that

E{S∗eff(Yi,Wi, Zi; β, α, η
∗
1, η
∗
2)} = 0 has unique root. Third, even if the unique root prop-

erty holds at the population level, the estimating equation may still have multiple roots at

the sample level. As far as we are aware, selecting among the multiple roots in estimat-

ing equations is a thorny issue; empirical knowledge for root selection is usually needed in

practice. Lastly, because K1{d∗(Y,X,Z)} is constructed to be an element of Λ⊥ and all

elements of Λ⊥ yield consistent estimators for β (Theorem 1), the choice of η∗1, η
∗
2 in forming

K1{d∗(Y,X,Z)} does not affect consistency. See Section 3.3 for a discussion of choosing

η∗1, η
∗
2 in practice. To the best of our knowledge, this is the only existing root-n consistent es-

timator for the RMM with measurement error that does not require estimating the unknown

η1, η2.

3.2 Algorithm for estimating ΩU and β

The algorithm for estimating ΩU and β in model (1) and (2) is as follows.

1. Recall that Wi =
∑`

j=1Wij/` and Vi =
∑`

j=1(Wij −Wi)(Wij −Wi)
T . Solve for Ω̂U as

the root of (3) and form α̂n = vech(Ω̂U).

2. Propose a working density model η∗1 for η1.

3. Propose a working density model η∗2 for η2 that satisfies E∗(ε|X,Z) = 0.

4. Perform K1,K2, E∗(·|X,Z) under pW |X,Z(w|x, z; α̂n), η∗1, and η∗2. Solve for d∗(Y,X,Z)

from (7). When (7) admits more than one solution, pick one arbitrarily.

5. Form the score vector S∗eff(Y,W,Z; β, α̂n, η
∗
1, η
∗
2) = K1(d∗) by calculating K1 under η∗1

and pW |X,Z(w|x, z; α̂n). Even if (7) has multiple solutions, they will yield the same

K1(d∗) (Rudin, 1987).

6. Solve the estimating equation
∑n

i=1 S
∗
eff(Yi,Wi, Zi; β, α̂n, η

∗
1, η
∗
2) = 0 for the estimator

β̂n.
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In estimating β, we have treated α via a plug-in estimator obtained from Step 1. Alterna-

tively, we can also augment α to β and simultaneously estimate both using the procedure

from Step 2 on. That is, we may solve for θ̂n = (α̂Tn , β̂
T
n )T as the root of

n∑
i=1

S(Yi,Wi, Vi, Zi; θ, η1, η2) = 0. (8)

Here, S = (φT , fT )T with φ denoting the estimating equations in (3) corresponding to the α

elements, and f ∈ Λ⊥. In our algorithm, we set f = S∗eff , and η1 = η∗1, η2 = η∗2. Solving for

α̂n and β̂n simultaneously does not change the analysis.

The numerical implementation of the algorithm is given in Section 3.5. We now give

some remarks regarding the algorithm.

3.3 Selection and impact of working models η∗1, η
∗
2

One flexibility of our algorithm is the ability to choose possibly incorrect, working models

η∗1, η
∗
2 for η1, η2 (Steps 2 and 3 of the algorithm). We now discuss a practical approach for

selecting these working models and its impact on the consistency and efficiency of β̂n.

Remark 1 When either or both η∗1, η
∗
2 are misspecified and the measurement error distribu-

tion is estimated as pW |X,Z(w|x, z; α̂n), the algorithm still provides a consistent estimator.

To prove the consistency claim in Remark 1, we make the following regularity conditions,

stated using the general S = (φT , fT )T and θ = (αT , βT )T notation. We assume θ belongs

to a domain of interest Θ which is a compact set.

(R1 ) The estimating equation in (8) and its expectation E{S(Y,W, V, Z; θ, η1, η2)} are suffi-

ciently smooth in (θ, η1, η2) in a neighborhood of (θ0, η10, η20). This condition is needed

so that the weak law of large numbers is valid.

(R2 ) The matrix E{∂S(Y,W, V, Z; θ, η1, η2)/∂θT} is invertible, bounded and smooth in

(θ, η1, η2) in a neighborhood of (θ0, η10, η20). This assumption permits the re-arrangement

of a Taylor expansion and hence, the applicability of the central limit theorem.
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(R3 ) For η1 = η∗1, η2 = η∗2, the equation E{S(Yi,Wi, Vi, Zi; θ, η1, η2)} = 0 has a unique solu-

tion and E{supθ∈Θ|S(Yi,Wi, Vi, Zi; θ, η1, η2)|} <∞ component wise. The unique solu-

tion requirement is commonly needed in semiparametric estimation and in parametric

estimation, except when the objective function guarantees the unique root property

such as when it is convex. While a globally unique root property is somewhat re-

strictive, one can instead require a unique root in a region of interest, so long as it is

justifiable to consider parameters only in that region.

We show in Section S.4 (Supplementary Material) that under these regularity conditions, θ̂n

is a consistent estimator even when η1 = η∗1, η2 = η∗2 are misspecified.

From Remark 1, in terms of obtaining a consistent estimator, we are free to choose

any working model η∗1 and η∗2. Thus, for computational ease, we suggest using Gaussian

models due to their simplicity. We also recommend choosing the support of η∗1, η
∗
2 to be

as large as that of the true distributions so as to maintain numerical stability. Of course,

the true distributions are unknown, so the latter requirement may be achieved by choosing

the support based on the observed data. For example, after centering the observed data

(Y,W,Z), one may choose η∗1 to be a normal distribution with mean zero and variance equal

to the sample variance of W . Likewise, one may choose η∗2 to be a normal distribution with

mean zero and variance as estimated from the residual sum of squares after regressing Y on

m(W,Z; β).

Although any working models η∗1, η
∗
2 maintain consistency, they affect efficiency in theory

as we now describe.

Remark 2 The choice of η∗1, η
∗
2 only affects β, so we characterize the efficiency for β

only with α fixed at the truth. When the working models are correct, i.e., η∗1 = η10

and η∗2 = η20, the algorithm gives the optimal estimator in that its estimation variance

achieves the semiparametric efficiency bound (Tsiatis, 2006, chap. 4). Such results follow

because, in this case, the resulting estimator solves the true efficient score estimating equation∑n
i=1 Seff(Yi,Wi, Zi; β̂n, α0, η10, η20) = 0.

Justification of Remark 2 follows from the principles of semiparametric theory (Tsiatis, 2006,

chap. 4). From Remark 2, if the working models η∗1, η
∗
2 are exactly the true models η10, η20,
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then the resulting estimator β̂n is most efficient. Of course knowing the true models η10, η20 is

rarely an option. Hence, some efficiency loss is expected since the working models will most

likely differ from the truth. The incurring loss depends on the proposed working models,

and can be theoretically characterized as follows.

Let S∗eff be as in Step 5 of the algorithm which is constructed under the possibly

misspecified working models η∗1, η
∗
2. Let A∗ = E{∂S∗eff(Y,W,Z; β0, α0, η

∗
1, η
∗
2)/∂β} and

B∗ = var{S∗eff(Y,W,Z; β0, α0, η
∗
1, η
∗
2)}, where β0, α0 denote the true parameter values. The

asterisks in A∗ and B∗ are used to emphasize that S∗eff depends on the working models. Fi-

nally, let A,B and Seff be defined analogously to A∗, B∗, and S∗eff , respectively, except with

η∗1 = η10 and η∗2 = η20.

In Theorem 2 (see Section 3.4), we demonstrate that under working models η∗1, η
∗
2, the esti-

mator β̂n is asymptotically normal with mean zero and variance-covariance A−1
∗ B∗(A

−1
∗ )T . In

comparison, under the true η10, η20, the asymptotic variance-covariance of β̂n is A−1B(A−1)T .

Therefore, the theoretical efficiency loss of the estimator computed under misspecified work-

ing models and the truth is the difference A−1
∗ B∗(A

−1
∗ )T − A−1B(A−1)T . This difference is

identical to E{(A−1
∗ S

∗
eff − A−1Seff)(A−1

∗ S
∗
eff − A−1Seff)T} (see Section S.5 in Supplementary

Material), which means that the efficiency loss is positive definite. The precise efficiency

loss can thus be evaluated in each case. In our limited empirical studies (see Section 4.3.2),

it has been observed that the loss is generally small, and the estimation variance is quite

insensitive to the choice of the working models.

In summary, our procedure allows flexible working models η∗1, η
∗
2 to construct consistent

estimators and achieves local efficiency. This contrasts from existing methods in the litera-

ture, including that from Tsiatis and Ma (2004), which are highly sensitive to the variance

misspecification of the model error. Moreover, in bypassing the estimation of η1, η2, our

algorithm minimizes the unnecessary work in the process of estimating α and β.

3.4 Theoretical properties

We describe the theoretical properties of θ̂n = (α̂Tn , β̂
T
n )T under working models η∗1(x, z; γ1)

and η∗2(ε, x, z; γ2) where γ1, γ2 are finite-dimensional parameters. The parameters γ1, γ2 re-

13



flect the common practice of using parametric forms for the working models η∗1, η
∗
2. The true

forms η10, η20 may or may not belong to these working model families.

Let γ = (γT1 , γ
T
2 )T belong to a compact set G and γ̂n be an estimator of γ. We assume γ̂n is

root-n consistent in the proposed working models, so n1/2(γ̂n−γ∗) is bounded in probability

for some constant γ∗. We now demonstrate that under η∗1(x, z; γ1) and η∗2(ε, x, z; γ2), the

estimator θ̂n is asymptotically normal, and its efficiency does not depend on how efficiently

we estimate γ.

To establish these results, we further make the following assumptions:

(R4 ) The equation E{S(Yi,Wi, Zi, Vi; θ, γ
∗)} = 0 has a unique solution. In addition,

E{supθ∈Θ,γ∗∈G|S(Yi,Wi, Zi, Vi; θ, γ
∗)|} < ∞ component wise, and the expectation of

the squared l2 norm of S, i.e. E{‖S(Yi,Wi, Zi, Vi; θ0, γ
∗)‖2}, is bounded. This condition

is similar to condition (R3 ).

(R5 ) n−1
∑n

i=1 ∂S(Yi,Wi, Vi, Zi; θ, γ)/∂θ converges in probability toE{∂S(Yi,Wi, Vi, Zi; θ, γ)/∂θ}

uniformly in (θ, γ) in a neighborhood of (θ0, γ
∗).

(R6 ) n−1
∑n

i=1 ∂S(Yi,Wi, Vi, Zi; θ, γ)/∂γ converges in probability toE{∂S(Yi,Wi, Vi, Zi; θ, γ)/∂γ}

uniformly in (θ, γ) in a neighborhood of (θ0, γ
∗).

The last two conditions are very mild and are generally satisfied following the law of

large lumbers and equicontinuity conditions.

Our first theoretical result shows that θ̂n is asymptotically normal whether η∗1(x, z; γ1)

and η∗2(ε, x, z; γ2) contain the true η10, η20 or not.

Theorem 2 Let f be an arbitrary p-dimensional function belonging to Λ⊥ in Theorem 1.

Let η∗1(x, z; γ1) and η∗2(ε, x, z; γ2) be working parametric models for η1, η2. Let γ = (γT1 , γ
T
2 )T

and γ̂n be its estimate such that for some constant γ∗, n1/2(γ̂n−γ∗) is bounded in probability.

Finally, let θ̂n = (α̂Tn , β̂
T
n )T and θ0 = (αT0 , β

T
0 )T denote the truth. Under regularity conditions

( R1)-( R6), the root θ̂n of
∑n

i=1 S(Yi,Wi, Vi, Zi; θ, γ̂n) = 0 is consistent and

√
n(θ̂n − θ0)→ Normal(0,V∗)

14



in distribution as n→∞. Here, V∗ = A−1
∗ B∗(A−1

∗ )T with A∗ = E{∂S(Y,W, V, Z; θ0, γ
∗)/∂θT}

and B∗ = diag[var{φ(V ;α0)}, var{f(Y,W,Z; θ0, γ
∗)}], a block diagonal matrix.

In Theorem 2, the arguments in
∑n

i=1 S(Yi,Wi, Vi, Zi; θ, γ̂n) = 0 differ from those in (8) in

that we have replaced η∗1, η
∗
2 with γ̂n = (γ̂Tn1, γ̂

T
n2)T to emphasize our use of parametric working

models for η∗1, η
∗
2. The results in Theorem 2 hold because we can express

√
n(θ̂n − θ0) as

a summand of normalized, zero-mean random vectors based on Taylor expansion and the

properties of Λ⊥. Consequently, by our regularity assumptions and the central limit theorem,

this normalized sum will converge in distribution to a multivariate normal with zero mean

and variance-covariance V∗; see Section S.6 (Supplementary Material) for complete details.

In addition, the result in Theorem 2 is useful for performing inference on θ where V∗ in

practice is estimated by the sandwich estimator Â−1
∗ B̂∗(Â−1

∗ )T . Here,

Â∗ = n−1

n∑
i=1

∂S(Yi,Wi, Vi, Zi; θ̂n, γ̂n)/∂θT ,

B̂∗ = n−1

n∑
i=1

S(Yi,Wi, Vi, Zi; θ̂n, γ̂n)ST (Yi,Wi, Vi, Zi; θ̂n, γ̂n).

Remark 3 The result in Theorem 2 applies to any function f ∈ Λ⊥. In Section 3.1, we

argued that a particular function in Λ⊥ is S∗eff = K1(d∗). Thus, by Remark 1 and Theorem 2,

when S = (φT , S∗
T

eff )T , the resulting estimator θ̂n from our proposed algorithm is consistent

and asymptotically normal.

Our second theoretical result demonstrates that the asymptotic efficiency of θ̂n does not

depend on how efficiently we estimate γ in the working parametric models. Specifically,

consider the case when θ̂n solves the estimating equation
∑n

i=1 S(Yi,Wi, Vi, Zi; θ, γ̂n) = 0,

and θ̌n solves the estimating equation
∑n

i=1 S(Yi,Wi, Vi, Zi; θ, γ
∗) = 0, where S = (φ, fT )T

and f belongs to Λ⊥ in Theorem 1. Our previous results from Theorem 2 warrant that θ̂n

and θ̌n are root-n consistent estimators and asymptotically normal. A stronger result, shown

below, is that θ̂n and θ̌n also have the same asymptotic efficiency even though the former

involves the estimated γ̂n, and the latter only involves the constant γ∗. Thus, as long as we

consistently estimate γ̂n, then using either γ̂n or γ∗ in the working parametric models yields
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the same efficiency for θ̂n.

Theorem 3 Let the p-dimensional function f belong to Λ⊥ in Theorem 1. Assume γ̂n is

such that n1/2(γ̂n − γ∗) is bounded in probability. Then, under regularity conditions ( R1)-

( R6), the efficiency of the estimator θ̂n obtained as the root of
∑n

i=1 S(Yi,Wi, Vi, Zi; θ, γ̂n) = 0

is asymptotically equivalent to the efficiency of the estimator θ̌n obtained as the root of∑n
i=1 S(Yi,Wi, Vi, Zi; θ, γ

∗) = 0. Namely, both n1/2(θ̂n − θ0) and n1/2(θ̌n − θ0) are asymptot-

ically normal with mean zero and variance-covariance V∗ as in Theorem 2.

The proof of Theorem 3 follows analogously to that of Theorem 2 in that
√
n(θ̂n − θ0)

and
√
n(θ̌n − θ0) can be expressed as the same summand of normalized, zero-mean random

vectors via Taylor expansion; see Section S.7 (Supplementary Material). Thus, because the

first order expansions of θ̂n and θ̌n are the same, it immediately follows from the regularity

conditions and central limit theorem that both estimators are asymptotically normal with

identical variance-covariance V∗.

The results in Theorems 2 and 3 hold whether or not η∗1(x, z; γ1) and η∗2(ε, x, z; γ2) contain

the true distributions η10, η20. However, when the working parametric models do contain the

true distributions, the resulting estimator θ̂n is actually semiparametric efficient as noted

below.

Remark 4 A particularly interesting case is when f is the efficient score S∗eff as in our algo-

rithm. Since S∗eff ∈ Λ⊥, Theorem 3 tells us that if correct parametric models with parameters

γ are used for η1(x, z), η2(ε, x, z), and root-n estimators can be found for the parameters γ,

then it is as if η1(x, z), η2(ε, x, z) were known precisely. In this case, we achieve optimal

semiparametric efficiency. This is a stronger statement than Remark 2.

In practice, a correct parametric model is certainly not easy to obtain. It requires good

knowledge of η1(x, z) and η2(ε, x, z), both of which are “invisible” due to the unobservable

X’s. Thus, if reducing estimation variability is important, one can propose a relatively large

model for η1 and η2, and proceed with the locally efficient estimator. With richer models of

η1, η2, the chance of achieving efficiency is increased.
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3.5 Implementation of the algorithm

Steps 1-3 in our algorithm are easily handled by following the guidance in Section 3.3 for

selecting η∗1, η
∗
2. We thus focus on the details for executing Steps 4-6.

Step 4 requires solving for d∗(Y,XZ) from the ill-posed problem in (7). Although this

ill-posed problem may at first appear challenging, we benefit from two aspects. First, solving

for d∗ is a “good” ill-posed problem in the sense that the ill-posedness is only because more

than one solution may satisfy (7). This is beneficial since our objective is to find any one

of these solutions. Second, what we really need for estimation and inference is not d∗ itself,

but a smoothed version of d∗, namely K1(d∗) = E(d∗|Y,W,Z) which is unique and hence

no longer an ill-posed problem. We now demonstrate how (7) can be solved analytically in

some cases and numerically otherwise.

3.5.1 Analytic d∗

For some mean models, d∗ may be computed analytically such as for the simple, linear RMM

with two replicates:

Yi = β1 + β2Xi + εi, Wij = Xi + Uij, E(εi|Xi) = 0,

for i = 1, . . . , n, j = 1, 2. Here, Uij is normally distributed with mean zero and unknown

variance 2σ2
U .

Following our algorithm, solve for σ̂2
U from (3) and let Wi = (Wi1 + Wi2)/2. With

η1 ≡ pX(x) and η2 ≡ pε|X(ε|x), we suppose that (Yi,Wi) are standardized so that it is

reasonable to posit η∗1, η∗2 as standard normals. Then, under η∗1, η
∗
2, an analytic solution to

(7) is d∗ = (d∗1, d
∗
2)T with

d∗1(Y,X) = Y − β1 − β2X(1 + c−1
1 σ̂2

U),

d∗2(Y,X) = c−1
2 β2σ̂

2
U

{
c1(1− β2

1) + σ̂2
U + 1− c1(Y − 2β1)Y

}
+

c−1
2 (c1 + σ̂2

U)X
{

(2c1 − 1)(Y − β1)− β2(c1 + σ̂2
U)X

}
,

and c1 = 1 + β2
2 σ̂

2
U , c2 = c1(1 + 2σ̂2

U)− σ̂2
U .
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Using the analytic d∗ to form the score vector S∗eff(Y,W ; β, σ̂2
U , η

∗
1, η
∗
2) = K1(d∗) then

yields that β̂n solves

0 = Cn−1

n∑
i=1


 1 Wi

Wi W 2
i − σ̂2

U

 β1

β2

−
 Yi

YiWi

 ,

where C = diag(c−1
1 ,−c−1

2 ). Because C is non-singular, the above estimating equation is

exactly the same explicit form previously given in Hall and Ma (2007). In other words, the

estimator in Hall and Ma (2007) is a special case of our solution family corresponding to a

natural choice of standard normals for the working models η∗1, η
∗
2.

3.5.2 Numerical d∗

For general mean models, d∗ is computed numerically. The implementation below is provided

in software available on the first-author’s website. We propose solving for d∗ by approximat-

ing it with a linear combination of basis functions. For ease of presentation, we demonstrate

the procedure when X and Z are univariate; however, the method extends to the multivariate

case.

In our approach, we approximate d∗ by

d∗(Y,X,Z) =

q∑
j,k=1

cjk(Z)gk(Y )hj(X),

where cjk(Z), j, k = 1, . . . , q, is a p-dimensional vector of unknown coefficients, and gk(·),

hj(·) are sets of real-valued basis functions (e.g., Hermite polynomials, Chebychev polynomi-

als, Fourier series, B-splines, Legendre polynomials). The number of bases q is chosen to give

accurate approximation and permit fast computation. The number of basis functions q is

dependent on the true d∗(Y,X,Z) function and on the type of basis functions. Empirically,

we suggest to start from q = 4 and increase it until the result stabilizes.

With d∗ as above, the goal then is to form (7) and solve for the coefficients cjk(Z),
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j, k = 1, . . . , q. To this end, (7) becomes

q∑
j,k=1

cjk(Z)εhj(X)E∗{gk(Y )ε|X,Z} (9)

+

q∑
j,k=1

cjk(Z)gk(Y )K2 ◦ K1{hj(X)}E∗(ε2|X,Z)

−
q∑

j,k=1

cjk(Z)εE∗[gk(Y )K2 ◦ K1{hj(X)}ε|X,Z] = m′β(X,Z; β)ε.

Under the working models η∗1 and η∗2, we evaluate the expectations in (9) using discretization

and quadrature integration (e.g., Hermite quadrature). Specifically, we discretize η∗1(x, z) at r

points x1, . . . , xr across the support of X with weights given by η∗1(x, z)=
∑r

s=1 ps(z)I(x = xs)

such that
∑r

s=1 ps(z) = 1 for all z in the support of Z. Under this discretization, the terms

in (9) are computed using the formulas

K1{f1(Y,X,Z)} =

∑r
s=1 f1(Y, xs, Z)pW |X,Z(W |xs, Z; α̂n)η∗2{Y −m(xs, Z; β), xs, Z}ps(Z)∑r

s=1 pW |X,Z(W |xs, Z; α̂n)η∗2{Y −m(xs, Z; β), xs, Z}ps(Z)
,

K2{f2(Y,W,Z)} =

∫
f2(Y,w, Z)p(w|X,Z; α̂n)dµ(w),

E∗{f1(Y,X,Z)|X,Z} =

∫
f1(y,X, Z)η∗2{y −m(X,Z; β), X, Z}dµ(y),

for appropriate functions f1(Y,X,Z), f2(Y,W,Z). Finally, the integrals in K2 and E∗(·|X,Z)

are evaluated using quadrature integration (Kress, 1999, chap. 12). It is important to note

that our way of discretizing η∗1(x, z) simplifies the computation of K1 into a simple summation

of functions evaluated at x1, . . . , xr. Doing so avoids the complex task of estimating the

unknown distribution pX|Y,W,Z(x|y, w, z). The number of discretization points r controls the

integral approximation accuracy. Empirically, we suggest to use r = 20 and increase it until

the results stabilize.

In the last step of solving for the coefficients of d∗, each term in (9) is evaluated at q2

grid-points (ym, x`, Z) for m, ` = 1, . . . , q, typically chosen as quadrature points. Doing so

leads to p linear systems of size q2× q2, from which we may evaluate cjk(Z) at each observed

Z. After obtaining the coefficients, we then verify that (7) is really solved by plugging in
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the coefficients to d∗. The verification needs to be done only at the grid points (ym, x`, Z)

because d∗ was only solved for at these grid points. By having to verify d∗ only at these grid

points rather than at all (Y,X,Z), we essentially bypass the functional nature of solving for

d∗, which means solving for d∗ is actually simpler than it appears.

After the coefficients of d∗ are verified, we then do Step 5 and form

S∗eff(Y,W,Z; β, α̂n, η
∗
1, η
∗
2) = K1(d∗) =

q∑
j,k=1

cjk(Z)gk(Y )K1{hj(X)}

to construct
∑n

i=1 S
∗
eff(Yi,Wi, Zi; β, α̂n, η

∗
1, η
∗
2) = 0. In Step 6, the estimator for β is then the

root of the constructed estimating equation.

One possible concern about our proposed implementation is that the different numerical

approximations may ultimately affect the efficiency of the proposed estimator. However,

this is not the case. If d∗ is constructed so that (7) is indeed satisfied, then S∗eff = K1(d∗)

belongs to Λ⊥ as stated in Section 3.1. Elements in Λ⊥ lead to consistent estimators for β

(see Theorem 1 and Remark 1) with efficiency affected only by the choice of η∗1, η
∗
2, not the

approximation of d∗ (see Remark 2 and the ensuing discussion). Therefore, a critical step is

ensuring that the obtained d∗ does indeed satisfy (7), which is exactly what we do. Therefore,

solving for d∗ is genuinely and completely a computational issue since no data is involved in

the solution process. To ensure that (7) is properly solved, one may need to choose a rich

class of basis functions, for example, combinations of polynomial bases, B-splines, or Fourier

series. A full discussion of various methods to solve (7) is a well studied topic in numerical

analysis and can be found in Kress (1999) and references therein.

4 Empirical Studies

We now demonstrate the performance of our method and compare its results to five com-

peting methods.
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4.1 Simulation design

We consider the RMM with measurement error

Yi = β2 exp(−β1X
2
i ) + β3Zi + εi, Wij = Xi + Uij, Uij ∼ Normal(0, 2σ2

U),

for i = 1, . . . , n and j = 1, 2. The true model parameters are (σTU , β1, β2, β3)T =

(0.05, 0.25, 0.7, 0.5)T . Results for other mean models are reported in the Supplementary

Material (Section S.9).

The true distribution η10 of X is uniform on [1.1 −
√

0.9, 1.1 +
√

0.9], and the true

distribution η30 of Z is Bernoulli with parameter 0.5. To evaluate the robustness of our

method, we set the model error distribution η20 to be either a uniform or t-distribution

with 5 degrees of freedom (i.e., t5 distribution), and its variance either homoskedastic or

heteroskedastic. Specifically, we consider

Setting 1 : Uniform distribution.

– Homoskedastic: η20 is uniform on [−1, 1];

– Heteroskedastic: η20 is (|X|+ 1)U where U is a uniform distribution on [−1, 1].

Setting 2 : t5-distribution.

– Homoskedastic: η20 is 0.4t5;

– Heteroskedastic: η20 is (0.4|X|+ 0.5)t5.

4.2 Methods evaluated

For all settings, we generated 1000 data sets with sample size n = 500. Parameters

σ2
U , β1, β2, β3 were estimated using six different methods.

4.2.1 Proposed method

We used our proposed method where we set working models η∗1, η
∗
2 different from the true

η10, η20 both in terms of distributional form and variance structure. The differences are

intended to demonstrate the robustness of our method when η∗1, η
∗
2 differ from the truth.
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In Settings 1 and 2, we let the working model η∗1 be Normal(1.1, 0.9/3.52). In Setting 1,

the working model η∗2 was Normal(0, 0.92), and in Setting 2, η∗2 was Normal(0, 1.72). While

the working models have supports as large as the true distributions, the proposed η∗2 in no way

accounts for the possible heteroskedasticity in η20. Our approach was implemented following

the procedure in Section 3.5 where d∗ was computed numerically with q = 7 Hermite bases

and r = 20 discretization points; all integrals were computed using Hermite quadrature.

4.2.2 Homoskedastic and heteroskedastic sieve estimator

The second and third method is a sieve MLE which either assumes homoskedastic or het-

eroskedastic model error. Specifically, the sieve MLE is the solution to

arg maxβsup(f1,f2)

1

n

n∑
i=1

ln

∫
f1{yi −m(x, zi; β)|x, zi}pU(wi − x; α̂n)f2(x)dµ(x), (10)

where f1, f2 are truncated series used to estimate the unknown distributions of pε|X,Z(ε|x, z)

and pX|Z(x|z), respectively. For our simulations, we have that pX|Z(x|z) = pX(x) since X

and Z are generated independently of each other; thus, f2 is set to represent pX(x). Lastly,

pU corresponds to the normal distribution for Wi = (Wi1 +Wi2)/2 and α̂n is the vectorized

solution to (3).

We consider two different sieves for f1. The first is a homoskedastic sieve where f1

will estimate pε(ε) and thus ignore any dependence between ε and (X,Z). The second

is a heteroskedastic sieve where f1 will estimate pε|X,Z(ε|x, z) and thus account for any

dependence between ε and (X,Z).

For the homoskedastic sieve, we use the work of Schennach and Hu (2013), and use

√
f1(ε) =

κε∑
j=0

ξεjtj(ε),

where κε is a smoothing parameter, tj(x) = (
√√

πj!2j)−1Hj(x) exp(−x2/2) and Hj are

Hermite polynomials. To ensure that f1(ε) is a valid density and that E(ε) = 0, we require

that
∑κε

j=0(ξεj)
2 = 1 and

∑κε−1
j=1

√
2(j + 1)ξεjξ

ε
j+1 = 0. We expect that this homoskedastic f1

will perform well when ε is in fact homoskedastic, but we do expect bias when ε is in fact
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heteroskedastic.

For the heteroskedastic sieve, we extended the work of Hu and Schennach (2008), and

use

√
f1(ε|x, z) =

[
a00 + a01 cos

{
π

`x
m(x, z; β)

}
+ a02 cos

{
2π

`x
m(x, z; β)

}]
+

3∑
k=1

[
ak0 + ak1 cos

{
π

`x
m(x, z; β)

}
+ ak2 cos

{
2π

`x
m(x, z; β)

}]
cos

(
kπ

`e
ε

)

+
3∑

k=1

[
bk0 + bk1 cos

{
π

`x
m(x, z; β)

}
+ bk2 cos

{
2π

`x
m(x, z; β)

}]
sin

(
kπ

`e
ε

)
.

By construction m(x, z; β) ∈ [0, `x] and we simulated data such that ε ∈ [−`e, `e] for an

appropriate choice of `e, so as to align with the assumptions of Hu and Schennach (2008).

Finally, to ensure that f1(ε|x, z) is a valid density and that E(ε|X,Z) = 0, we impose twelve

constraints given in Section S.8 (Supplementary Material). It is important to note that our

heteroskedastic sieve above differs from that in Hu and Schennach (2008) in two ways. First,

we use a sieve to estimate pε|X,Z rather than pU |X,Z as in Hu and Schennach (2008) who

considered heteroskedastic measurement error, not heteroskedastic model error. Second, we

further require that f1 is always non-negative while Hu and Schennach (2008) did not impose

that in their numerical studies. In terms of performance, we expect that the heteroskedastic

f1 will perform well whether ε is homoskedastic or heteroskedastic, since homoskedasticity

is a special case of heteroskedascity (i.e., σε(x) ≡ σε).

Lastly, regardless of the form for f1, we let

√
f2(x) =

κx∑
j=0

ξxj tj(x),

where κx is a smoothing parameter, and tj(x) is the Hermite representation as defined for

the homoskedastic f1. To ensure that f2 is a valid density we require that
∑κx

j=0(ξxj )2 = 1.

The homoskedastic and heteroskedastic sieve MLE is then the solution to the optimization

problem in (10) subject to all constraints stated above: three for the homoskedastic sieve

MLE and thirteen for the heteroskedastic sieve MLE. The integral in (10) is evaluated using
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Hermite quadrature. We set the smoothing parameters κε = 6 and κx = 6 as in Schennach

and Hu (2013), but other values were considered and yielded similar results (not reported).

4.2.3 Homoskedastic and heteroskedastic Tsiatis-Ma estimator

The fourth and fifth methods are based on the work of Tsiatis and Ma (2004). The Tsiatis-

Ma (TM) estimator also uses a working model η∗1, but requires η∗2 to yield a correctly specified

variance structure. To demonstrate this sensitivity, we applied the TM estimator assuming

homoskedastic model errors (TM-Homoskedastic) and assuming heteroskedastic model errors

(TM-Heteroskedastic).

For both TM-Homoskedastic and TM-Heteroskedastic estimators, we set the working

model η∗1 as Normal(1.1, 0.9/3.52). For the TM-Homoskedastic estimator, we let η∗2 be

Normal(0, 1/3) in Setting 1 and Normal(0, 4/15) in Setting 2. The variances for η∗2 cor-

respond to the true variances of η20 when η20 is homoskedastic. For the TM-Heteroskedastic

estimator, we let η∗2 be Normal{0, (|x|+1)2/3} in Setting 1 and Normal{0, 5(0.4|x|+0.5)2/3}

in Setting 2. The variances for η∗2 correspond to the true variances of η20 when η20 is het-

eroskedastic.

4.2.4 Naive estimator

The last method is the naive least squares estimator which is the solution to

arg maxβ

n∑
i=1

{yi −m(wi, zi; β)}2.

The naive estimator ignores measurement error and falsely assumes Xi and Wi = (Wi1 +

Wi2)/2 are the same.

4.3 Simulation results

4.3.1 Performance of methods compared

Results in Tables 1 and 2 show the bias, estimated variance, and estimated 95% coverage

probabilities for the model parameter estimates based on all six methods. Overall, all esti-
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mators consistently estimated the measurement error variance σ2
U and β3 associated with the

non-mismeasured covariate Z. Performances differed, however, for parameters β1, β2 which

were affected by the mismeasured covariate X.

In general, compared to the other estimators, our estimator had smaller bias, estimated

variances better matching the sample variances, and estimated coverage probabilities closer

to the nominal 95% level. This performance was similar regardless of the true model error

distribution and its variance structure, thus reflecting the proposed estimator’s flexibility.

The proposed estimator can yield valid estimates for an RMM with measurement error

regardless of whether the true model error is homoskedastic or heteroskedastic. This is

especially beneficial in practice since knowing the correct model error variance structure is

almost impossible as residuals are not obtainable in measurement error models.

In comparison, the homoskedastic and heteroskedastic sieve MLE were, in some cases,

sensitive to the model error’s variance structure. When the model error was homoskedastic,

the homoskedastic sieve MLE performed well and yielded unbiased estimates. Unfortu-

nately, when applied to the heteroskedastic model error, this same estimator yielded biased

estimates with bias up to 19 times larger than our proposed estimator. Increasing the number

of smoothing parameters did not change the numerical results (a similar phenomenon was

observed in Schennach and Hu (2013)), and it breaks the constrained optimization solver

when the number becomes too large. The observed bias was expected, however, because

the homoskedastic sieve MLE is not designed to handle heteroskedasticity. Instead, a more

flexible sieve such as the heteroskedastic sieve estimator should actually be employed. Un-

fortunately, in our numerical studies, the heteroskedastic sieve MLE yielded biased estimates

both when the model error was homoskedastic and heteroskedastic. We suspect the observed

bias could be a result of the difficulty in solving a constrained optimization subject to too

many constraints. When the model error is truly heteroskedastic, we further suspect that

more specialized bases may be needed to properly account for the heteroskedasticity. Doing

so, however, may be difficult as it would require estimating the model error’s heteroskedastic-

ity and defining a truncated series that can capture its form. For an RMM with measurement

error, correctly determining the model error’s variance-covariance is challenging, and is a step

surpassed by our proposed estimator.
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The TM-Homoskedastic and TM-Heteroskedastic estimators also heavily relied on the

correctness of the model error variance. When the model error variance structure was cor-

rectly specified, the TM estimators had little bias and nearly perfect nominal 95% coverage

probabilities. In this case, the TM estimator has one less nonparametric term than our

proposed method, and thus performed well. In contrast, when the variance structure was in-

correct, the TM estimators performed poorly compared to our proposed estimator. The poor

performance was most notable when the data was generated with heteroskedastic model er-

rors, and we applied the TM-Homoskedastic estimator. In this case, the TM-Homoskedastic

estimator yielded estimates with bias up to 40 times larger than our proposed estimator.

Finally, the naive estimator had large bias and coverage probabilities less than the nom-

inal 95%, indicating that the measurement error was significant enough and could not be

ignored.

These results demonstrate that measurement error cannot be ignored and that methods

that rely on knowing the model error variance structure will, unfortunately, yield biased

estimates. Because our proposed estimator makes no assumptions about the model error’s

variance structure, our method does indicate more flexibility than existing methods, includ-

ing the sieve MLE and Tsiatis-Ma method. Specifically, our proposed estimator provides

consistent estimates even when the model error and covariate distributions are both mis-

specified. Similar results were observed for other mean models; see Supplementary Material

(Section S.9).

4.3.2 Empirical impact of working models in proposed method

In Section 3.3, we discussed the theoretical impact of working models in our proposed

method. We now evaluate the numerical impact. Specifically, we generated data as in Sec-

tion 4.1, except with η10 as Normal(0, 0.52) and η20 as Normal(0, 0.42). We then evaluated

our proposed method for four different cases of working models η∗1, η
∗
2:

Case 1: η∗1 = η10, η
∗
2 = η20.

Case 2: η∗1 6= η10, η
∗
2 = η20 with η∗1 a t-distribution with 4 degrees of freedom.

Case 3: η∗1 = η10, η
∗
2 6= η20 with η∗2 as Normal{0, (1 + |X|)2/32}.
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Case 4: η∗1 6= η10, η
∗
2 6= η20 with η∗1 a t-distribution with 4 degrees of freedom, and η∗2

as Normal{0, (1 + |X|)2/32}.

Results in Table 3 show that in all cases, the proposed estimator yields consistent estimates.

As we progress from Case 2 to Case 4, the efficiency loss only slightly increases; for example,

the estimated variance for β̂1 is 0.0065 in Case 4 compared to an estimated variance of 0.0044

in Case 1. Similar results were observed for other regression models; see Supplementary

Material (Section S.9). This small loss in efficiency and insensitivity to the choice of the

working models was similarly observed in simpler models (see Tsiatis and Ma, 2004, Ma

and Carroll, 2006 and Wang et al., 2009). Hence, for flexible choices of working models, our

method yields consistent estimates and small efficiency loss when using incorrect working

models.

5 A case study

Flagg et al. (2000) performed a study to evaluate the validity of a Nutrition Survey conducted

by the American Cancer Society in 1992-1993. In the study, n = 317 male participants

completed four 24 hour dietary recall interviews given over a one-year period. Interest lies

in understanding the impact of saturated fat intake on percent calories from fat for different

races (white vs. non-white). Saturated fat intake, however, is not known exactly and only a

mismeasured version via two repeated measurements is available.

Let Y denote the percent calories from fat, X denote the log transformation of the true

(unobserved) saturated fat intake, and Z denote race (Z = 1 refers to white). We let W1

and W2 be the centered, log-transformed saturated fat measurements. Through a QQ-plot

in Figure 1, we find that V = (W1 −W2)/2 is acceptably normally distributed with some

unknown variance σ2
U . Normality was formally evaluated through a Pearson Chi-squared test

where we used 10 to 20 bins for testing and obtained a p-value at least 0.63, thus assuring

the normality assumption.

Because nutrition models usually assume percent calories from fat is related to saturated
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fat intake through a linear regression, we use the model

Yi = β1 exp(Xi) + β2 + β3Zi + ε, Wij = Xi + Uij, Uij ∼ Normal(0, 2σ2
U)

for i = 1, . . . , n; j = 1, 2 and E(ε|X,Z) = 0.

To estimate the model parameters, we used five methods: (i) The proposed method with

working models η∗1 as Normal(0, 0.562) and η∗2 as Normal(0, 0.912). The variance for η∗1 is the

sample variance of W , and the variance of η∗2 is the residual sum of squares after regressing

Y on exp(W ) and Z. (ii) The homoskedastic sieve MLE with smoothing parameters κε =

κx = 6. (iii) The heteroskedastic sieve MLE with `x = `e = maxi |Yi|. (iv) The Tsiatis-

Ma Homoskedastic estimator with η∗1, η∗2 as in our proposed method. Unlike our method,

the TM-Homoskedastic estimator assumes the specified η∗2 is correct. We did not use the

TM-Heteroskedastic estimator because it is difficult to specify a heteroskedastic variance

structure for an RMM with measurement error. (v) The naive estimator.

Parameter estimates for all methods are in Table 4. All methods yielded similar inference

conclusions: among the male population, saturated fat intake is statistically significant in

relation to percent calories from fat (e.g., proposed method yielded β̂1 = 1.59, 95% CI: (1.23,

1.95)), whereas race is not (e.g., proposed method yielded β̂3 = −0.14, 95% CI: (-0.35, 0.08)).

Though inference conclusions were similar, the methods yielded different magnitudes of the

parameter effects. For example, the proposed method indicated that a one unit increase in

saturated fat is associated with an estimated increase of 1.59 units in the mean of percent

calories. This is nearly twice as large as the naive estimates would conclude and at least

1.4 times as large as the homoskedastic sieve, heteroskedastic sieve or TM-Homoskedastic

estimator would conclude. The contrast in these results indicate that measurement error

cannot be ignored. Moreover, given that the Tsiatis-Ma and sieve MLE estimator exhibited

sensitivity to misspecification of the model error variance, we would prefer to rely on the

results from the proposed method which is insensitive to such misspecification. Therefore,

our method indicates that saturated fat intake affects a male’s percent calories from fat more

than existing methods would indicate.
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6 Discussion

We have developed root-n consistent estimators and provided inference tools for an RMM

with errors in covariates where both the mean model and the measurement error model are in

their general form. We showed that our method’s consistency does not require independence

between the covariates and the model error, nor require estimating the unobservable covari-

ate distribution and model error distribution. This is advantageous over existing methods

including the Tsiatis and Ma (2004) estimator and the sieve MLE which have shown numer-

ical sensitivity to model error heteroskedasticity. The proposed estimator is derived via a

semiparametric procedure different from that in Tsiatis and Ma (2004), and, to the best of

our knowledge, the resulting root-n consistent estimator is the first known in its generality

that is robust to various distribution misspecifications.

To identify and estimate ΩU in Section 2.1, we used the average of repeated measures.

An alternative is to directly use the repeated measures to perform estimation and inference.

Based on our experience (Ma and Yin, 2008), there is generally not a definitive efficiency

gain or loss with this approach relative to the average approach. However, more careful

analysis will be needed to determine when one or the other is more efficient.

We assumed throughout that the measurement error distribution pUij(u; ΩU) is paramet-

ric with ΩU unknown. We can relax this assumption to have a nonparametric measurement

error distribution. In this case, still assuming Xi and Uij are independent, Kotlarski’s The-

orem (Kotlarski, 1967) implies that the measurement error density is identifiable. From

the repeated measures, a nonparametric kernel estimation of the measurement error density

function p̂Uij can be obtained, and operationally our estimation procedure can proceed with

pUij replaced by p̂Uij . For such a plug-in procedure, we provide the following summary. (i)

The identifiability of β (Section 2.2) still holds; (ii) Theorem 1 and the estimation procedure

for β (Section 3.2) remain valid since they only required a consistent estimator for the mea-

surement error density. (iii) The root-n consistency and asymptotic normality in Theorems

2 and 3 still hold, although the asymptotic variance will change and the proofs will need to

be redone to take into account the additional nonparametric estimation. See Hall and Ma

(2007) for details on how to incorporate a nonparametrically estimated error distribution in
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a different model. (iv) The optimal efficiency bound in estimating β will decrease due to the

the nonparametric estimation of pUij .

Lastly, another extension of our method is to a conditional moment model where

E{m(Y,X,Z; β)|X,Z} = 0. (11)

In this case, the proof of identification of β (Section 2.2) still holds since it does not require

a particular form of the conditional density of Y conditional on X,Z. Our remaining esti-

mation procedure, asymptotic properties, and implementation (Section 3) also remain intact

except with ε replaced everywhere by m(Y,X,Z; β) and m′β(X,Z; β) in the right hand side

of equation (7) changed to −E{∂m(Y,X,Z; β)/∂β|X,Z}. To this end, even for general

nonlinear and nonseparable regression models of the form Y = f(X,Z, ε, β0), where the

distribution of ε is unknown and may be subject to various restrictions, as long as we can

construct moment conditions, i.e. finding m(Y,X,Z; β0) such that (11) holds, our general

procedure is applicable. This extension is particularly useful in empirical economics where

models can take a conditional or nonseparable forms.
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Table 1: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) =
β2 exp(−β1X

2) + β3Z, and true parameter values (σ2
U,0, β

T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: Setting 2:
η20 ∼Uniform η20 ∼ t5

β̂1 β̂2 β̂3 σ̂2
U β̂1 β̂2 β̂3 σ̂2

U

η20: Homoskedastic
Semipar

bias -0.0065 -0.0080 0.0011 5.1664×10−5 -0.0056 -0.0059 0.0008 -9.2372×10−5

var 0.0030 0.0031 0.0026 1.0255×10−5 0.0024 0.0025 0.0022 1.0823×10−5

v̂ar 0.0030 0.0030 0.0027 1.0255×10−5 0.0024 0.0024 0.0021 9.9839×10−6

CI 0.9500 0.9390 0.9520 0.9490 0.9440 0.9370 0.9520 0.9320

Sieve-Hom∗

bias 0.0066 0.0008 0.0021 5.1664×10−5 0.0371 0.0235 0.0056 -9.2372×10−5

var 0.0033 0.0030 0.0022 1.0255×10−5 0.0046 0.0035 0.0023 1.0823×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias 0.5022 0.8177 0.6900 9.6823×10−6 0.7261 -0.1768 0.3083 -5.0634×10−5

var 0.0450 0.0458 0.0795 1.0916×10−5 0.0521 0.0581 0.0497 1.0109×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias 0.0019 0.0019 -0.0000 -0.0002 0.0012 0.0004 -0.0013 -7.9103×10−5

var 0.0035 0.0033 0.0027 1.0396×10−5 0.0028 0.0026 0.0021 9.6008×10−6

v̂ar 0.0035 0.0032 0.0027 9.8539×10−6 0.0028 0.0026 0.0022 9.941×10−6

CI 0.9460 0.9440 0.9470 0.9490 0.9450 0.9540 0.9610 0.9470

TM-Het
bias -0.0144 -0.0185 0.0001 -0.0002 -0.0203 -0.0234 -0.0013 -7.9103×10−5

var 0.0038 0.0034 0.0032 1.0396×10−5 0.0026 0.0024 0.0023 9.6008×10−6

v̂ar 0.0037 0.0032 0.0031 9.8539×10−6 0.0026 0.0023 0.0023 9.941×10−6

CI 0.9210 0.9300 0.9480 0.9490 0.9080 0.9160 0.9530 0.9470

Naive
bias -0.0269 -0.0230 0.0027 5.1664×10−5 -0.0255 -0.0206 0.0023 -9.2372×10−5

var 0.0029 0.0030 0.0026 1.0255×10−5 0.0023 0.0024 0.0022 1.0823×10−5

v̂ar 0.0030 0.0028 0.0027 1.0255×10−5 0.0024 0.0023 0.0022 9.9839×10−6

CI 0.8930 0.9130 0.9570 0.9490 0.8830 0.9190 0.9530 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6, except for the uniform heteroskedastic setting which uses κε = 5, κx = 6. For the
uniform heteroskedastic setting, the constrained optimization could not be solved for larger κε
values.
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Table 2: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) =
β2 exp(−β1X

2) + β3Z, and true parameter values (σ2
U,0, β

T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: Setting 2:
η20 ∼Uniform η20 ∼ t5

β̂1 β̂2 β̂3 σ̂2
U β̂1 β̂2 β̂3 σ̂2

U

η20: Heteroskedastic
Semipar

bias 0.0098 -0.0055 0.0013 2.9761×10−5 0.0122 -0.0009 0.0008 -0.0001
var 0.0188 0.0101 0.0119 1.0161×10−5 0.0160 0.0103 0.0124 1.0843×10−5

v̂ar 0.0206 0.0100 0.0125 1.0022×10−5 0.0195 0.0102 0.0124 9.9708×10−5

CI 0.9610 0.9480 0.9550 0.9510 0.9510 0.9570 0.9520 0.9320

Sieve-Hom∗

bias 0.1683 0.1008 -0.0757 -2.4913×10−5 0.2437 0.1595 -0.0139 -0.0001
var 0.1686 0.2500 0.0518 9.9631×10−6 0.0601 0.0410 0.0247 1.0492×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias 0.7334 0.6731 0.6527 9.6823×10−6 0.7868 -0.2997 0.5669 -5.0634×10−5

var 0.0423 0.0385 0.0589 1.0916×10−5 0.0443 0.0844 0.0256 1.0109×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias 0.2931 0.2677 -0.0227 -0.0002 0.5032 0.5174 -0.0349 -0.0005
var 0.2640 0.1392 0.0123 1.037×10−5 1.3260 1.6331 0.0119 8.9453×10−6

v̂ar 0.1065 0.0692 0.0131 9.8513×10−6 0.3768 0.2236 0.0135 9.7925×10−6

CI 0.8110 0.6800 0.9580 0.9480 0.8950 0.7890 0.9600 0.9550

TM-Het
bias 0.0225 0.0100 0.0005 -0.0002 0.0134 0.0011 -0.0027 -9.3324×10−5

var 0.0218 0.0096 0.0103 1.0409×10−5 0.0195 0.0088 0.0096 9.5564×10−6

v̂ar 0.0258 0.0098 0.0104 9.8583×10−6 0.0215 0.0089 0.0099 9.9345×10−6

CI 0.9500 0.9500 0.9540 0.9490 0.9520 0.9500 0.9590 0.9470

Naive
bias 0.0692 -0.0185 0.0033 2.9761×10−5 0.0149 -0.0123 0.0028 -0.0001
var 3.0261 0.0102 0.0125 1.0161×10−5 0.3106 0.0100 0.0127 1.0843×10−5

v̂ar 1.5445 0.0102 0.0177 1.0022×10−5 0.9245 0.0387 0.0792 9.9708×10−5

CI 0.9390 0.9480 0.9550 0.9510 0.9310 0.9550 0.9550 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6, except for the uniform heteroskedastic setting which uses κε = 5, κx = 6. For the
uniform heteroskedastic setting, the constrained optimization could not be solved for larger κε
values.
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Table 3: Evaluation of efficiency loss from proposed method when working models η∗1, η
∗
2

may differ from the true η10, η20. Bias, empirical sample variances (var), averaged estimated

variances (v̂ar), and estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T with true pa-
rameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T and m(X,Z; β) = β2 exp(−β1X

2) + β3Z.
Results based on 1000 simulations.

Setting β̂1 β̂2 β̂3 σ̂2
U

η∗1 = η10, η
∗
2 = η20 bias -0.0013 0.0009 -0.0017 -3.9892×10−5

var 0.0043 0.0010 0.0013 1.0103×10−5

v̂ar 0.0044 0.0010 0.0013 9.9257×10−6

CI 0.9500 0.9500 0.9430 0.9430

η∗1 6= η10, η
∗
2 = η20 bias -0.0001 0.0012 -0.0017 -3.9892×10−5

var 0.0046 0.0010 0.0013 1.0103×10−5

v̂ar 0.0047 0.0010 0.0013 9.9257×10−6

CI 0.9480 0.9500 0.9430 0.9430

η∗1 = η10, η
∗
2 6= η20 bias -0.0104 0.0007 -0.0063 -3.9892×10−5

var 0.0051 0.0012 0.0020 1.0103×10−5

v̂ar 0.0052 0.0012 0.0018 9.9257×10−6

CI 0.9380 0.9490 0.9410 0.9430

η∗1 6= η10, η
∗
2 6= η20 bias -0.0081 0.0011 -0.0064 -3.9892×10−5

var 0.0064 0.0013 0.0021 1.0103×10−5

v̂ar 0.0065 0.0013 0.0019 9.9257×10−6

CI 0.9410 0.9470 0.9430 0.9430
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Figure 1: Nutrition study: quantile-quantile plots of the measurement error for the original
first and third readings of the 24 hour recall surveys (top) and after the logarithm transform
(bottom).

34



Table 4: Results from nutrition study when estimation is based on proposed method (Semi-
par), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het), Tsiatis-
Ma homoskedastic estimator (TM-Hom), and naive estimator. Parameter estimate (est), its
estimated variance (v̂ar), and 95% confidence interval (CI).

β̂1 β̂2 β̂3 σ̂2
U

Semipar
est 1.5926 -1.6611 -0.1364 0.1097
v̂ar 0.0338 0.0544 0.0117 0.0001
CI (1.2322,1.9530) (-2.1182, -1.2040) (-0.3480, 0.0752) (0.0923, 0.1271)

Sieve-Hom∗

est 1.1397 -1.2449 -0.0401 0.1097
v̂ar NA NA NA NA
CI NA NA NA NA

Sieve-Het∗

est 1.1407 1.1628 0.2398 0.1097
v̂ar NA NA NA NA
CI NA NA NA NA

TM-Hom†

est 1.2745 -1.3604 -0.0734 0.1097
v̂ar 0.0190 0.0242 0.0116 0.0001
CI (1.0046, 1.5445) (-1.6655, -1.0553) (-0.2841, 0.1373) (0.0923, 0.1271)

Naive
est 0.7110 -0.8044 -0.0351 0.1097
v̂ar 0.0065 0.0129 0.0104 0.0001
CI (0.3506, 1.0714) (-1.2615, -0.3473) (-0.2467, 0.1766) (0.0923, 0.1271)
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing pa-
rameters κε = κx = 6. †We did not use the TM-Heteroskedastic estimator because it is
difficult to specify a heteroskedastic variance structure for an RMM with measurement
error.
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Supplement: Sketch of technical arguments and addi-

tional simulation results

S.1 Overview of semiparametric theory

For independent, identically distributed (i.i.d.) data Oi, an estimator β̂n for β ∈ Rp is

regular, asymptotically linear (RAL) with influence function ϕ if

n1/2(β̂n − β0) = n−1/2

n∑
i=1

ϕ(Oi; β0) + oP (1).

Here, β0 denotes the truth; ϕ(Oi; β0) are i.i.d., mean zero random vectors of length p; and

oP (1) converges in probability to zero as n tends to infinity. The asymptotic variance of

n1/2β̂n equals that of ϕ, so determining the most efficient RAL estimator is equivalent to

identifying the influence function with smallest variance (i.e., efficient influence function

denoted as ϕeff).

To identify the efficient influence function, a geometric approach is taken. First, we

consider a Hilbert space H composed of mean zero, finite variance, p-dimensional functions.

For our purposes, there are two subspaces of H that are of key interest. The first is the

so-called nuisance tangent space Λ. This subspace is the mean-squared closure of elements

of the form BS, where S is an arbitrary nuisance score vector and B is a conformable matrix

with p rows. The second key subspace is the orthogonal complement of Λ, denoted as Λ⊥.

All the influence functions lie in Λ⊥, including the efficient one ϕeff . To calculate ϕeff , one

first computes the efficient score vector, Seff(O). The efficient score vector is defined as the

orthogonal projection of the score vector Sβ(O) onto Λ⊥, or, equivalently, is the residual

of Sβ(O) after projecting it onto Λ. That is, Seff = Π(Sβ|Λ⊥) = Sβ − Π(Sβ|Λ), where

Π(·|·) denotes orthogonal projection. Then, the efficient influence function is the normalized

version of Seff : ϕeff = [E{Seff(O)STeff(O)}]−1Seff(O) where the normalization ensures that

E(ϕeffS
T
β ) = Ip, the p× p identity matrix.

Thus, the general approach involves (1) specifying the Hilbert space H based on the

probability distribution that generates the data; (2) characterizing the nuisance tangent
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space Λ and its orthogonal complement Λ⊥; and (3) orthogonally projecting the score vector

Sβ onto Λ⊥ and normalizing the result. The efficient influence function can then be used to

construct an estimating equation from which consistent estimators for β can be obtained.

S.1.1 Semiparametric results for the RMM without measurement error

For the RMM without measurement error, we observe data (Y,X,Z) which has probability

density pY,X,Z(Y,X,Z) = η1(x, z)η2{y −m(x, z; β), x, z}η3(z) such that
∫
εη2(ε, x, z)dε = 0

for all x, z. Interest lies in estimating the p-dimensional parameter β in the presence of

the unknown distributions η1, η2, and η3. Applying semiparametric theory, the nuisance

tangent space, its orthogonal complement and the efficient influence function are given in

the proposition below. For a detailed derivation, see Tsiatis (2006, chap. 4).

Proposition 1 For the RMM, the Hilbert space is HF = {h(Y,X,Z) : E(h) = 0, var(h) <

∞}. The nuisance tangent space is given by ΛF = ΛF
1 ⊕ ΛF

2 ⊕ ΛF
3 , where ΛF

1 = [h1(X,Z) :

E{h1(X,Z)|Z} = 0], ΛF
2 = [h2(Y,X,Z) : E{h2(Y,X,Z)|X,Z} = 0, E{εh2(Y,X,Z)|X,Z} =

0], and ΛF
3 = [h3(Z) : E{h3(Z)} = 0] (Newey, 1990; Tsiatis, 2006). Equivalently, the

nuisance space can be written as

ΛF = {h(Y,X,Z) : E(hε|X,Z) = 0, E(h) = 0, var(h) <∞}.

Consequently, the orthogonal complement to the nuisance tangent space is

Λ⊥F = {g(X,Z)ε} = [g(X,Z){Y −m(X,Z; β)}].

Here, g(X,Z) is an arbitrary function such that E(gTg) <∞. The score vector with respect

to β is SFβ = −m′β(X,Z; β0)∂logη2(ε,X, Z)/∂ε where m′β(X,Z; β0) denotes ∂m(X,Z; β0)/∂β

and β0 denotes the truth. The efficient score vector is SFeff = m′β(X,Z; β0)E(ε2|X,Z)−1ε and

after normalization, the efficient influence function is ϕFeff = E{E(ε2|X,Z)−1m′βm
′T
β }m′βE(ε2|X,Z)−1ε.
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S.2 Proof of Theorem 1

We use the semiparametric approach of Section S.1 (Supplementary Material) to construct

the set Λ⊥. In the terminology of semiparametric theory, Λ⊥ is the orthogonal complement

to the nuisance tangent space and contains all consistent, semiparametric estimators for β.

Following the steps in Section S.1 (Supplementary Material), the Hilbert space is H =

{f(Y,W,Z) : E(f) = 0, var(f) <∞}. To derive the nuisance tangent space, we first observe

that the the nuisance score vectors for the RMM with measurement error and without

are closely intertwined. Let SFηi(Y,X,Z) denote the nuisance score vectors for the RMM

without measurement error, and let Sηi(Y,W,Z) denote the nuisance score vectors for the

RMM with measurement error, i = 1, 2, 3. Then, based on the model in (4), we have that

Sηi(Y,W,Z) = E{SFηi(Y,X,Z)|Y,W,Z}. Given this relationship between the nuisance score

vectors for the RMM with and without measurement error, we have, by a result in Rao

(1973, p. 330), that the nuisance tangent space for the RMM with measurement error is

Λ = E(ΛF |Y,W,Z)

= [E{h(Y,X,Z)|Y,W,Z} : E(hε|X,Z) = 0, E(h) = 0, var(h) <∞].

To verify that Λ⊥ in Theorem 1 is indeed the orthogonal complement to Λ, consider any

function f(Y,W,Z) such that E{f(Y,W,Z)|Y,X,Z} = g(X,Z)ε for some g(X,Z). Then,

the inner product of f and an arbitrary element E{h(Y,X,Z)|Y,W,Z} ∈ Λ is:

E[E{hT (Y,X,Z)|Y,W,Z}f(Y,W,Z)] = E{hT (Y,X,Z)f(Y,W,Z)}

= E[hT (Y,X,Z)E{f(Y,W,Z)|Y,X,Z}] = E{hT (Y,X,Z)g(X,Z)ε} = 0.

The last equality holds because E{h(Y,X,Z)ε|X,Z} = 0 by properties of Λ. Therefore,

since f is orthogonal to an arbitrary element in Λ, f must belong to Λ⊥.

Conversely, we now show that any mean zero function f(Y,W,Z) ∈ Λ⊥ must sat-

isfy E{f(Y,W,Z)|Y,X,Z} = g(X,Z)ε. To see this, let k(Y,X,Z) = E(f |Y,X,Z) and

r(Y,X,Z) = k(Y,X,Z) − g(X,Z)ε where the function g(X,Z) = E(kε|X,Z)/E(ε2|X,Z).

It suffices to show that r = 0 since from such a result, we immediately have that
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E{f(Y,W,Z)|Y,X,Z} = g(X,Z)ε.

Observe that E(r|Y,W,Z) is in Λ because E(rε|X,Z) = 0 and E(r) = 0 which holds since

E(f) = 0 and E(ε|X,Z) = 0. Therefore, the inner product of f ∈ Λ⊥ and E(r|Y,W,Z) ∈ Λ

is zero, implying that

0 = E[fT (Y,W,Z)E{r(Y,X,Z)|Y,W,Z}] = E{fT (Y,W,Z)r(Y,X,Z)}

= E[E{fT (Y,W,Z)|Y,X,Z}r(Y,X,Z)] = E{kT (Y,X,Z)r(Y,X,Z)}

= E(rT r) + E[gT (X,Z)E{εr(Y,X,Z)|X,Z}] = E(rT r).

The last equality holds because E(rε|X,Z) = 0. Thus, by properties of Hilbert spaces,

whenever E(rT r) = 0, we must have r = 0. Therefore, from having r = 0, we have shown

that any element f ∈ Λ⊥ satisfies E(f |Y,X,Z) = g(X,Z)ε for any g(X,Z). Hence, Λ⊥ is as

claimed.

S.3 Construction of an element in Λ⊥

From semiparametric theory (see Section S.1 in Supplementary Material), an element of Λ⊥

is the p-dimensional efficient score vector, S∗eff(Y,W,Z; β0, α0, η
∗
1, η
∗
2, η3). The efficient score

vector is the result of projecting the score vector S∗β onto Λ⊥. In the justification below, we

will show that S∗eff in fact equals K1(d∗). Thus, because K1(d∗) is the result of projecting S∗β

onto Λ⊥, we have that although d∗ is not unique, K1(d∗) is unique by the projection theorem

(Rudin, 1987).

We first establish some preliminary results. First, K1 and K2 are conjugate of each other

because

< K2{f(Y,W,Z)}, g(Y,X,Z) >= E∗[E{fT (Y,W,Z)|Y,X,Z}g(Y,X,Z)]

= E∗{fT (Y,W,Z)g(Y,X,Z)} = E∗[f
T (Y,W,Z)E∗{g(Y,X,Z)|Y,W,Z}]

=< f,K1{g(Y,X,Z)} > .

Second, by the results in Proposition 1 (Section S.1.1, Supplementary Material) and the
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results in Section S.2 (Supplementary Material), we have

Λ∗ = K1(ΛF,∗), K2(Λ⊥) ⊂ Λ⊥F . (S.1)

Throughout, spaces and elements superscripted with F,∗ are from the RMM without mea-

surement error when we use working models η∗1, η
∗
2 for η1, η2, respectively.

We now demonstrate that K1(d∗) = S∗eff where S∗eff is the result of projecting the score

vector S∗β onto Λ⊥. By Theorem 3.5 in Tsiatis (2006),

SF,∗eff (Y,X,Z) = SF,∗β (Y,X,Z)− Π{S∗β(Y,X,Z)|ΛF,∗}, (S.2)

S∗eff(Y,W,Z) = S∗β(Y,W,Z)− Π{S∗β(Y,W,Z)|Λ∗}

where Π(·|·) denotes projection. Using (S.2), we now proceed to write S∗eff(Y,W,Z) in a more

explicit form.

First, the score vector S∗β = ∂logpY,W,Z(y, w, z; β0, α0, η
∗
1, η
∗
2, η3)/∂β is easily shown to

satisfy S∗β = K1{SF,∗β (Y,X,Z)}. However, by (S.2), K1{SF,∗β (Y,X,Z)} = K1{SF,∗eff +

Π(SF,∗β |ΛF,∗)}. Second, since Λ∗ = K1(ΛF,∗) by (S.1), we have that Π(S∗β|Λ∗) = K1(aF,∗)

for some aF,∗(Y,X,Z) in ΛF,∗. Together, these results imply that the efficient score vector

satisfies

S∗eff(Y,W,Z) = S∗β(Y,W,Z)− Π{S∗β(Y,W,Z)|Λ∗}

= K1{SF,∗eff + Π(SF,∗β |Λ
F,∗)} − K1(aF,∗) = K1{d∗(Y,X,Z)},

where d∗(Y,X,Z) = SF,∗eff (Y,X,Z) − bF,∗(Y,X,Z) and bF,∗ = aF,∗ − Π(SF,∗β |ΛF,∗). Having

expressed S∗eff = K1(d∗), we derive the properties of d∗ so that it may be solved explicitly.

Projecting d∗ onto Λ⊥F gives

Π(d∗|Λ⊥F ) = Π(SF,∗eff − b
F,∗|Λ⊥F ) = SF,∗eff (Y,X,Z). (S.3)

This is because bF,∗ ∈ ΛF,∗, and ΛF,∗ and Λ⊥F are orthogonal, so that Π(bF,∗|Λ⊥F ) = 0.

Second, K2 ◦ K1(d∗) = K2(S∗eff) is an element of Λ⊥F since S∗eff ∈ Λ⊥ and K2(Λ⊥) ⊂ Λ⊥F by

5



(S.1). Hence, because K2 ◦ K1(d∗) ∈ Λ⊥F , it follows that

Π{K2 ◦ K1(d∗)|ΛF,∗} = 0.

Combining (S.3) and the above display demonstrates that there exists a function d∗ such

that S∗eff = K1(d∗) and

Π(d∗|Λ⊥F ) + Π{K2 ◦ K1(d∗)|ΛF,∗} = SF,∗eff (Y,X,Z),

which simplifies into expression (7).

To complete the demonstration, we show that any d∗ satisfying (7) yields S∗eff . To this

end, if d∗ satisfies (7), then Π(d∗|Λ⊥F ) = SF,∗eff and Π{K2 ◦ K1(d∗)|ΛF,∗} = 0. Hence,

d∗(Y,X,Z) = SF,∗eff (Y,X,Z) + aF,∗(Y,X,Z) = SF,∗β (Y,X,Z) + bF,∗(Y,X,Z)

for some aF,∗, bF,∗ ∈ ΛF,∗. Therefore,

K1(d∗) = K1(SF,∗β + bF,∗) = S∗β + b∗(Y,W,Z) = S∗eff + a∗(Y,W,Z), (S.4)

for some a∗, b∗ ∈ Λ∗. The second equality above holds because K1(SF,∗β ) = S∗β and K1(ΛF,∗) =

Λ∗. The third equality holds by (S.2). Up to now, we have shown that K1(d∗) = S∗eff +

a∗(Y,W,Z). The argument will be complete once a∗(Y,W,Z) is shown to be exactly zero.

Having d∗ satisfy (7) means Π{K2 ◦ K1(d∗)|ΛF,∗} = 0, and so K2 ◦ K1(d∗) ∈ Λ⊥F . From

(S.4), this implies that K2 ◦ K1(d∗) = K2(S∗eff) +K2{a∗(Y,W,Z)} ∈ Λ⊥F . The inner product

of K2{a∗(Y,W,Z)} ∈ Λ⊥F and any bF,∗ ∈ ΛF,∗ must be zero. Hence,

0 =< K2{a∗(Y,W,Z)}, bF,∗(Y,X,Z) >=< a∗(Y,W,Z),K1{bF,∗(Y,X,Z)} >,

where the latter equality holds from the conjugacy of K1 and K2. But the inner product

above implies that a∗ ∈ Λ⊥ since K1(bF,∗) ∈ Λ∗. Having a∗ in Λ∗ and in Λ⊥ implies that

a∗ = 0. Thus, d∗ satisfying (7) requires K1(d∗) = S∗eff .
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Our argument thus shows that an element of Λ⊥ is K1(d∗) = S∗eff where S∗eff is the result

of projecting the score vector S∗β onto Λ⊥.

S.4 Consistency of (α̂Tn , β̂
T
n )T even with possibly misspecified η∗1,η

∗
2

Let S(Y,W, V, Z;α, β, η∗1, η
∗
2, η3) = {φT (V ;α), S∗

T

eff (Y,W,Z;α, β, η∗1, η
∗
2, η3)}T , where φ is the

estimating equation given (3) and α = vech(ΩU), the vectorized form of ΩU . We prove

consistency by first showing that E(S) = 0 (i.e., E(φ) = 0 and E(S∗eff) = 0) where the

expectation is computed under the true distribution.

First, the usual components of variance analysis (Carroll et al., 2006) establishes that

E(φ) = 0.

Second, we constructed S∗eff = K1(d∗) with d∗ satisfying (7). A simple rearrangement of

(7) shows that K2◦K1(d∗) = E{K1(d∗)|Y,X,Z} = g(X,Z)ε where g(X,Z) = (m′β(X,Z; β)−

E∗[{d∗ −K2 ◦ K1(d∗)}ε|X,Z])E∗(ε
2|X,Z)−1. Hence, because E(ε|X,Z) = 0 by assumption,

we have that

E(S∗eff) = E{K1(d∗)} = E[E{K1(d∗)|Y,X,Z}] = E{g(X,Z)ε}

= E{g(X,Z)E(ε|X,Z)} = 0.

We have shown that E{S(Y,W, V, Z, α, β, η∗1, η
∗
2, η3)} = 0 at the true parameter value

α0, β0. Under the smoothness condition (R1 ) and unique root condition (R3 ), we have

that for any (αn, βn) such that E{S(Y,W, V, Z, αn, βn, η
∗
1, η
∗
2, η3)} → 0 in probability, it

implies αn → α0 and βn → β0 in probability. On the other hand, since α̂n, β̂n solves

the estimating equation, we thus have that n−1
∑n

i=1 S(Yi,Wi, Vi, Zi, α̂n, β̂n, η
∗
1, η
∗
2, η3) =

0. Condition (R3 ) and the uniform law of large numbers (Jennrich, 1969) then imply

E{S(Yi,Wi, Vi, Zi, α̂n, β̂n, η
∗
1, η
∗
2, η3)} = op(1). This leads to α̂n → α and β̂n → β in proba-

bility, i.e. our estimator is indeed consistent.
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S.5 Theoretical Efficiency Loss under Misspecified η∗1, η
∗
2

Using properties of score vectors and semiparametric theory, we show that the theoretical

efficiency loss under misspecified η∗1, η
∗
2 satisfies

A−1
∗ B∗(A

−1
∗ )T − A−1B(A−1)T = E{(A−1

∗ S
∗
eff − A−1Seff)(A−1

∗ S
∗
eff − A−1Seff)T}.

Because

E{(A−1
∗ S

∗
eff − A−1Seff)(A−1

∗ S
∗
eff − A−1Seff)T} = A−1

∗ B∗(A
−1
∗ )T

−A−1
∗ E(S∗effS

T
eff)(A−1)T − A−1E(SeffS

∗T
eff )(A−1

∗ )T + A−1B(A−1)T ,

it suffices to show that A = −B and E(S∗effS
T
eff) = −A∗.

We have that A = −B because Seff is a score vector. This simplification further implies

that A−1B(A−1)T = B−1.

To show E(S∗effS
T
eff) = −A∗, we use the fact that Seff = Sβ + a, where Sβ is the score

vector with respect to β, and a is an element of Λ, the space orthogonal to Λ⊥ in Theorem 1

(Tsiatis, 2006, Thm. 3.5). Because we constructed S∗eff to be an element of Λ⊥, this means,

E(S∗effS
T
eff) = E(S∗effS

T
β ) + E(S∗effa

T ) = E(S∗effS
T
β ).

The last equality holds because S∗eff ∈ Λ⊥ and a ∈ Λ. Also, in Section S.4 (Supplementary

Material), we showed that E(S∗eff) = 0 which means

0 =

∫
S∗eff(Y,W,Z; β, α0, η

∗
1, η
∗
2)pY,W,Z(Y,W,Z; β, α0, η10, η20)dµ(Y,W,Z).

Taking derivative with respect to β, we obtain

0 =

∫
∂S∗eff

∂βT
pY,W,Z(Y,W,Z; β, α0, η10, η20)dµ(Y,W,Z)

+

∫
S∗effS

T
β pY,W,Z(Y,W,Z; β, α0, η10, η20)dµ(Y,W,Z)

= A∗ + E(S∗effS
T
β ) = A∗ + E(S∗effS

T
eff).
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The last equality holds by the definition of A∗ and our earlier argument that E(S∗effS
T
eff) =

E(S∗effS
T
β ). Hence, we have shown that E(S∗effS

T
eff) = −A∗.

Therefore, using the above results, we have

E{(A−1
∗ S

∗
eff − A−1Seff)(A−1

∗ S
∗
eff − A−1Seff)T}

= A−1
∗ B∗(A

−1
∗ )T − A−1

∗ E(S∗effS
T
eff)(A−1)T − A−1E(SeffS

∗T
eff )(A−1

∗ )T

+A−1B(A−1)T

= A−1
∗ B∗(A

−1
∗ )T + A−1

∗ A∗(A
−1)T + A−1AT∗ (A−1

∗ )T − A−1A(A−1)T

= A−1
∗ B∗(A

−1
∗ )T + (A−1)T + A−1 − (A−1)T = A−1

∗ B∗(A
−1
∗ )T + A−1

= A−1
∗ B∗(A

−1
∗ )T −B−1 = A−1

∗ B∗(A
−1
∗ )T − A−1B(A−1)T .

S.6 Proof of Theorem 2

We first demonstrate thatE{∂S(Yi,Wi, Vi, Zi; θ0, γ
∗)/∂γT} = 0. First, E{∂φ(V1;α0)/∂γT} =

0 trivially. Second, our construction of f ensures that f(Y,W,Z; θ0, γ) ∈ Λ⊥ for all γ. There-

fore, at any γ,

∫
f(Y,W,Z; θ0, γ)pY,W,Z(Y,W,Z; θ0)dµ(Y,W,Z) = 0. (S.5)

Taking derivative of (S.5) with respect to γ, we further obtain

∫
∂f(Y,W,Z; θ0, γ)

∂γT
pY,W,Z(Y,W,Z; θ0)dµ(Y,W,Z) = 0

for all γ. Evaluating the above equation at γ∗ gives E
{
∂f(Y,W,Z; θ0, γ

∗)/∂γT
}

= 0. We

have thus shown that E{∂S(Yi,Wi, Vi, Zi; θ0, γ
∗)/∂γT} = 0.

Since θ̂n solves the estimating equation, we have that n−1
∑n

i=1 S(Yi,Wi, Vi, Zi, θ̂n, γ̂n) =

0. Condition (R4 ) and the uniform law of large numbers (Jennrich, 1969) imply that

E{S(Yi,Wi, Vi, Zi, θ̂n, γ̂n)} = op(1), and so E{S(Yi,Wi, Vi, Zi, θ̂n, γ
∗)} = op(1) since γ̂n is

defined as the root-n consistent estimator γ∗. On the other hand, assuming a unique

root (R3 ), assuming that S(Y,W, V, Z, θn, γ
∗) is a smooth function of θn and because
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E{S(Y,W, V, Z, θ0, γ
∗)} = 0, we have that for any θn such that E{S(Y,W, V, Z, θn, γ

∗)} → 0,

it implies θn → θ0 in probability. This leads to θ̂n → θ0 in probability; i.e. the estimator θ̂n

is indeed consistent.

Now, consider the Taylor expansion

0 = n−1/2

n∑
i=1

S(Yi,Wi, ViZi; θ̂n, γ̂n)

= n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ0, γ
∗)

+n−1

n∑
i=1

∂S(Yi,Wi, Vi, Zi; θ
†
n, γ

†
n)

∂θT
√
n(θ̂n − θ0)

+n−1

n∑
i=1

∂S(Yi,Wi, Vi, Zi; θ
†
n, γ

†
n)

∂γT
√
n(γ̂n − γ∗),

where θ†n lies on the line connecting θ̂n and θ0, and γ†n lies on the line connecting γ̂n and γ∗.

Condition (R4 ) and the central limit theorem ensure that the first term after the second

equality converges in distribution to a zero mean finite variance normal random variable,

hence it is of order at most Op(1). The root-n consistency of γ̂n ensures that the third term

after the second equality is also of order Op(1). Thus, the second term after the second

equality is also of order Op(1). Since E{∂S(Yi,Wi, Vi, Zi; θ
†
n, γ

†
n)/∂θT} is nonsingular and

bounded, we obtain that θ̂n − θ is of order Op(n
−1/2).

Therefore, our Taylor expansion above becomes

0 = n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ0, γ
∗)

+n1/2

[
E

{
∂S(Y1,W1, V1, Z1; θ0, γ

∗)

∂θT

}
+ op(1)

]
(θ̂n − θ0)

+n1/2

[
E

{
∂S(Y1,W1, V1, Z1; θ0, γ

∗)

∂γT

}
+ op(1)

]
(γ̂n − γ∗)

= n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ0, γ
∗)

+n1/2

[
E

{
∂S(Y1,W1, V1, Z1; θ0, γ

∗)

∂θT

}
+ op(1)

]
(θ̂n − θ0) + op(1) (S.6)
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The second equality holds because we showed that E{∂S(Y1,W1, V1, Z1; θ0; γ∗)/∂γT} = 0.

From re-arranging (S.6) and given that E{∂S(Y,W, V, Z; θ0, γ
∗)/∂θT} is invertible

n1/2(θ̂n − θ0) = n−1/2

n∑
i=1

[
−E{∂S(Y,W, V, Z; θ0, γ

∗)/∂θT}
]−1 S(Yi,Wi, Vi, Zi; θ0, γ

∗) + op(1).

Using the central limit theorem, the above display implies that as n→∞,

n1/2(θ̂n − θ0)→ Normal{0,A−1
∗ B∗(A−1

∗ )T}

in distribution.

S.7 Proof of Theorem 3

The result holds since

0 = n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ̌n, γ
∗)

= n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ0, γ
∗)

+n−1/2

n∑
i=1

∂S(Yi,Wi, Vi, Zi; θ
†
n, γ

∗)

∂θT
(θ̌n − θ0)

= n−1/2

n∑
i=1

S(Yi,Wi, Vi, Zi; θ0, γ
∗)

+n1/2

[
E

{
∂S(Y1,W1, V1, Z1; θ0, γ

∗)

∂θT

}
+ op(1)

]
(θ̌n − θ0),

where θ†n lies on the line connecting θ̌n and θ0. The above is the same first-order expansion

for θ̂n as in Section S.6 (Supplementary Material). Hence, from this first-order expansion

and the asymptotic results of Theorem 2, Theorem 3 holds.
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S.8 Constraints for heteroskedastic sieve estimator

Let cj(x, z) = cos
{
jπ
`x
m(x, z; β)

}
, and ck(ε) = cos

(
kπ
`e
ε
)

, and sk(ε) = sin
(
kπ
`e
ε
)

. Then, using

standard integration techniques, we have that

∫
f1(ε|x, z)dε = 2`e{a00 + a01c1(x, z) + a02c2(x, z)}2 + `e

3∑
k=1

{ak0 + ak1c1(x, z) + ak2c2(x, z)}2

+`e

3∑
k=1

{bk0 + bk1c1(x, z) + bk2c2(x, z)}2

and

∫
εf1(ε|x)dε =

−4
`2
e

π
{a00 + a01c1(x, z) + a02c2(x, z)}

3∑
k=1

{bk0 + bk1c1(x, z) + bk2c2(x, z)}(−1)k

kπ

− 2
`2
e

π

3∑
k=1

∑
j 6=k

[
{ak0 + ak1c1(x, z) + ak2c2(x, z)}

×{bj0 + bj1c1(x, z) + bj2c2(x, z)}
{

(−1)|j−k|

(j − k)
+

(−1)|j+k|

(j + k)

}]

− `2
e

π

3∑
k=1

{ak0 + ak1c1(x, z) + ak2c2(x, z)}{bk0 + bk1c1(x, z) + bk2c2(x, z)}1

k
.

To ensure
∫
f1(ε|x, z) = 1 and

∫
εf1(ε|x, z) = 0, we thus require

2a2
00 +

3∑
k=1

(a2
k0 + b2

k0) = 1/`e; 2a01a02 +
3∑

k=1

(ak1ak2 + bk1bk2) = 0;

3∑
k=1

[
4

(−1)ka00bk0 + ak0bk0

k
+ 2

∑
j 6=k

{
(−1)|j−k|

(j − k)
+

(−1)|j+k|

(j + k)

}
ak0bj0

]
= 0;

3∑
k=1

[
4

(−1)k(a01bk2 + a02bk1) + ak1bk2 + ak2bk1

k

+2
∑
j 6=k

{
(−1)|j−k|

(j − k)
+

(−1)|j+k|

(j + k)

}
(ak1bj2 + ak2bj1)

]
= 0;
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and for ` = 1, 2,

2a00a0` +
3∑

k=1

(ak0ak` + bk0bk`) = 0; 2a2
0` +

3∑
k=1

(a2
k` + b2

k`) = 0;

3∑
k=1

[
4

(−1)k(a00bk` + a0`bk0) + ak0bk` + ak`bk0

k

+2
∑
j 6=k

{
(−1)|j−k|

(j − k)
+

(−1)|j+k|

(j + k)

}
(ak0bj` + ak`bj0)

]
= 0;

3∑
k=1

[
4

(−1)ka0`bk` + ak`bk`
k

+ 2
∑
j 6=k

{
(−1)|j−k|

(j − k)
+

(−1)|j+k|

(j + k)

}
ak`bj`

]
= 0.

S.9 Additional simulation results

We considered two additional mean models:

m(X,Z; β) = β1 + β2X + β3Z; (S.7)

m(X,Z; β) = β2 exp(−β1X) + β3Z.

The simulation design was similar to that described in Section 4.1. Results in Tables S.1-S.4

demonstrate that the proposed estimator results in the least amount of bias compared to the

competing methods regardless of the true model error variance structure. In comparison,

the homoskedastic sieve MLE was biased when the model error was heteroskedastic, the

heteroskedastic sieve MLE was biased regardless of the model error variance structure, and

the Tsiatis-Ma estimators were biased when the assumption of the model error variance was

incorrect.

As in the main text, the proposed method was minimally affected by misspecification

of the working models. Under the same four cases described in Section 4.3.2, we report in

Tables S.5 and S.6 the results from our proposed method when the working models differed

from the truth. Interestingly, in Case 2, when only η∗1 was misspecified, the estimation results

were similar to Case 1 when η∗1 was the truth. This was observed for both mean models in

(S.7). Otherwise, even when η∗1, η
∗
2 were different from the true η10, η20, the efficiency of the

estimates was only slightly less than when the working models were the truth.
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Table S.1: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) = β1 +
β2X + β3Z, and true parameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: Setting 2:
η20 ∼Uniform η20 ∼ t5

β̂1 β̂2 β̂3 σ̂2
U β̂1 β̂2 β̂3 σ̂2

U

η20: Homoskedastic
Semipar

bias -0.0047 0.0021 0.0024 5.1664×10−5 0.0011 -0.0012 0.0010 -9.2372×10−5

var 0.0049 0.0028 0.0028 1.0255×10−5 0.0041 0.0024 0.0022 1.0823×10−5

v̂ar 0.0048 0.0028 0.0029 1.0255×10−5 0.0039 0.0023 0.0023 9.9839×10−6

CI 0.9530 0.9480 0.9550 0.9490 0.9460 0.9460 0.9620 0.9320

Sieve-Hom∗

bias 0.0080 -0.0091 0.0022 5.1664×10−5 -0.0093 0.0086 0.0015 -9.2372×10−5

var 0.0044 0.0025 0.0024 1.0255×10−5 0.0041 0.0024 0.0021 1.0823×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias 0.0835 0.7104 0.6000 9.6823×10−6 -0.2467 0.0278 -0.0373 -5.0634×10−5

var 0.1159 0.0383 0.0550 1.0916×10−5 0.0547 0.0239 0.0127 1.0109e×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias -0.0007 0.0006 0.0008 -0.0002 -0.0018 0.0019 -0.0015 -7.9103×10−5

var 0.0050 0.0029 0.0027 1.0396×10−5 0.0043 0.0024 0.0023 9.6008×10−6

v̂ar 0.0047 0.0027 0.0029 9.8539×10−6 0.0040 0.0023 0.0023 9.941×10−6

CI 0.9410 0.9430 0.9590 0.9490 0.9380 0.9390 0.9510 0.9470

TM-Het
bias 0.0729 -0.0560 0.0006 -0.0002 0.0851 -0.0673 -0.0015 -7.9103×10−5

var 0.0050 0.0029 0.0032 1.0396×10−5 0.0037 0.0020 0.0025 9.6008×10−6

v̂ar 0.0047 0.0028 0.0032 9.8539×10−6 0.0034 0.0019 0.0025 9.941×10−6

CI 0.8000 0.8120 0.9500 0.9490 0.6730 0.6590 0.9470 0.9470

Naive
bias 0.1067 -0.0991 0.0021 5.1664×10−5 0.1111 -0.1013 0.0010 -9.2372×10−5

var 0.0038 0.0020 0.0027 1.0255×10−5 0.0032 0.0017 0.0022 1.0823×10−5

v̂ar 0.0038 0.0020 0.0028 1.0255×10−5 0.0031 0.0016 0.0023 9.9839×10−6

CI 0.5860 0.4030 0.9520 0.9490 0.4780 0.2910 0.9590 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6.
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Table S.2: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) = β1 +
β2X + β3Z, and true parameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: Setting 2:
η20 ∼Uniform η20 ∼ t5

β̂1 β̂2 β̂3 σ̂2
U β̂1 β̂2 β̂3 σ̂2

U

η20: Heteroskedastic
Semipar

bias -0.0061 0.0011 0.0049 5.1664×10−5 0.0032 -0.0046 0.0036 -9.2372×10−5

var 0.0164 0.0131 0.0121 1.0255×10−5 0.0173 0.0133 0.0123 1.0823×10−5

v̂ar 0.0160 0.0129 0.0127 1.0255×10−5 0.0163 0.0127 0.0126 9.9839×10−6

CI 0.9430 0.9510 0.9520 0.9490 0.9520 0.9490 0.9510 0.9320

Sieve-Hom∗

bias 0.2443 -0.2347 0.0035 4.6779×10−5 -0.2980 0.2476 0.0003 -9.413×10−5

var 0.1356 0.1202 0.0105 1.0231×10−5 0.0784 0.0635 0.0230 1.0818×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias -0.1375 0.7656 0.5292 9.6823×10−6 -0.2762 0.2761 0.0594 -5.0634×10−5

var 0.0703 0.0634 0.0528 1.0916×10−5 0.0876 0.1461 0.1086 1.0109×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias -0.8754 0.7947 0.0027 -0.0002 -1.3688 1.2453 -0.0051 -8.4908×10−5

var 0.0740 0.0601 0.0142 1.0396×10−5 0.5476 0.4367 0.0200 9.5992×10−6

v̂ar 0.0594 0.0491 0.0151 9.8539×10−6 0.4999 0.4047 0.0205 9.939×10−6

CI 0.0560 0.0710 0.9560 0.9490 0.0620 0.0660 0.9690 0.9470

TM-Het
bias -0.0116 0.0114 0.0008 -0.0002 0.0112 -0.0091 -0.0029 -7.9103×10−5

var 0.0144 0.0115 0.0104 1.0396×10−5 0.0134 0.0111 0.0099 9.6008×10−6

v̂ar 0.0138 0.0112 0.0106 9.8539×10−6 0.0129 0.0110 0.0101 9.941×10−6

CI 0.9410 0.9460 0.9570 0.9490 0.9430 0.9420 0.9530 0.9470

Naive
bias 0.1052 -0.1000 0.0046 5.1664×10−5 0.1126 -0.1042 0.0036 -9.2372×10−5

var 0.0128 0.0096 0.0120 1.0255×10−5 0.0138 0.0097 0.0124 1.0823×10−5

v̂ar 0.0126 0.0094 0.0127 1.0255×10−5 0.0128 0.0093 0.0126 9.9839×10−6

CI 0.8470 0.8180 0.9550 0.9490 0.8190 0.8060 0.9540 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6.
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Table S.3: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) =
β2 exp(−β1X) + β3Z, and true parameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: η20 ∼Uniform Setting 2: η20 ∼ t5
β̂1 β̂2 β̂3 σ̂2

U β̂1 β̂2 β̂3 σ̂2
U

η20: Homoskedastic
Semipar

bias 0.0009 0.0000 0.0018 5.1664×10−5 0.0036 0.0028 0.0014 -9.2372×10−5

var 0.0097 0.0062 0.0026 1.0255×10−5 0.0078 0.0050 0.0022 1.0823×10−5

v̂ar 0.0098 0.0061 0.0027 1.0255×10−5 0.0078 0.0048 0.0021 9.9839×10−6

CI 0.9560 0.9420 0.9550 0.9490 0.9550 0.9490 0.9510 0.9320

Sieve-Hom∗

bias -0.0055 -0.0048 0.0016 5.1664×10−5 0.0366 0.0214 0.0098 -9.2372×10−5

var 0.0076 0.0050 0.0022 1.0255×10−5 0.0113 0.0068 0.0025 1.0823×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias 0.5870 0.7665 0.5211 9.6823×10−6 0.7287 -0.1489 0.3844 -5.0634×10−5

var 0.0466 0.0839 0.0695 1.0916×10−5 0.0486 0.0574 0.0285 1.0109×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias 0.0053 0.0113 -0.0018 -0.0002 0.0113 0.0139 -0.0019 -0.0001
var 0.0095 0.0056 0.0025 1.0422×10−5 0.0390 0.0248 0.0024 9.6642×10−6

v̂ar 0.0094 0.0060 0.0027 9.8246×10−6 0.0122 0.0114 0.0021 9.9276×10−6

CI 0.9530 0.9590 0.9550 0.9450 0.9490 0.9540 0.9580 0.9470

TM-Het
bias -0.0097 -0.0033 -0.0015 -0.0002 -0.0216 -0.0146 -0.0016 -0.0001
var 0.0094 0.0053 0.0031 1.0521×10−5 0.0068 0.0039 0.0023 9.3885×10−6

v̂ar 0.0100 0.0060 0.0031 9.8237×10−6 0.0067 0.0040 0.0023 9.9091×10−6

CI 0.9490 0.9610 0.9530 0.9450 0.9400 0.9420 0.9530 0.9500

Naive
bias -0.0370 -0.0283 0.0018 5.1664×10−5 -0.0346 -0.0256 0.0014 -9.2372×10−5

var 0.0068 0.0045 0.0026 1.0255×10−5 0.0054 0.0036 0.0021 1.0823×10−5

v̂ar 0.0069 0.0044 0.0027 1.0255×10−5 0.0055 0.0035 0.0021 9.9839×10−6

CI 0.9290 0.9240 0.9520 0.9490 0.9150 0.9120 0.9520 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6.
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Table S.4: Bias, empirical sample variances (var), averaged estimated variances (v̂ar), and

estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T based on our proposed method
(Semipar), homoskedastic sieve MLE (Sieve-Hom), heteroskedastic sieve MLE (Sieve-Het),
Tsiatis-Ma homoskedastic estimator (TM-Hom), Tsiatis-Ma heteroskedastic estimator (TM-
Het), and the naive estimator. Results based on 1000 simulations when m(X,Z; β) =
β2 exp(−β1X) + β3Z, and true parameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T .

Setting 1: η20 ∼Uniform Setting 2: η20 ∼ t5
β̂1 β̂2 β̂3 σ̂2

U β̂1 β̂2 β̂3 σ̂2
U

η20: Heteroskedastic
Semipar

bias 0.0061 0.0036 0.0029 2.1036×10−5 0.0212 0.0150 0.0034 -8.0252×10−5

var 0.0521 0.0214 0.0117 1.0162×10−5 0.0525 0.0224 0.0125 1.082×10−5

v̂ar 0.0512 0.0203 0.0126 1.0013×10−5 0.0549 0.0221 0.0125 9.9871×10−6

CI 0.9190 0.9280 0.9590 0.9500 0.9370 0.9420 0.9510 0.9320

Sieve-Hom∗

bias 0.0810 0.0887 -0.0056 3.9759×10−5 0.3347 0.1942 0.0117 -9.0088×10−5

var 0.3353 0.1259 0.0123 1.0232×10−5 0.1545 0.0891 0.0263 1.0827×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

Sieve-Het∗

bias 0.6686 0.6244 0.5111 9.6823×10−6 0.7224 -0.2329 0.5513 -5.0634×10−5

var 0.0470 0.0973 0.0591 1.0916×10−5 0.0409 0.0494 0.0447 1.0109×10−5

v̂ar NA NA NA NA NA NA NA NA
CI NA NA NA NA NA NA NA NA

TM-Hom
bias 0.3116 0.2645 -0.0003 -0.0002 0.4474 0.4003 -0.0016 -0.0004
var 0.3049 0.1760 0.0136 1.0185×10−5 0.3095 0.3174 0.0143 9.1678×10−6

v̂ar 0.2551 0.1282 0.0129 9.8516×10−6 0.6010 0.5999 0.0137 9.8078×10−6

CI 0.8890 0.9250 0.9500 0.9470 0.9240 0.9370 0.9500 0.9500

TM-Het
bias 0.0344 0.0366 -0.0041 -0.0002 0.0218 0.0272 -0.0068 -0.0001
var 0.0541 0.0164 0.0100 1.049×10−5 0.0684 0.0296 0.0094 9.4827×10−6

v̂ar 0.0496 0.0211 0.0104 9.8435×10−6 0.0440 0.0188 0.0099 9.9245×10−6

CI 0.9660 0.9670 0.9590 0.9440 0.9590 0.9560 0.9600 0.9500

Naive
bias -0.0234 -0.0304 0.0035 2.1036×10−5 -0.0273 -0.0219 0.0027 -8.0252×10−5

var 0.2092 0.0150 0.0122 1.0162×10−5 0.0335 0.0150 0.0124 1.082×10−5

v̂ar 0.0615 0.0142 0.0132 1.0013×10−5 0.0358 0.0146 0.0124 9.9871×10−6

CI 0.9560 0.9470 0.9590 0.9500 0.9480 0.9450 0.9520 0.9320
∗Estimated variances not available. The homoskedastic sieve MLE uses smoothing parameters
κε = κx = 6.
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Table S.5: Evaluation of efficiency loss from proposed method when working models η∗1, η
∗
2

may differ from the true η10, η20. Bias, empirical sample variances (var), averaged estimated

variances (v̂ar), and estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T with true pa-
rameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T and m(X,Z; β) = β1 +β2X+β3Z. Results

based on 1000 simulations.
Setting β̂1 β̂2 β̂3 σ̂2

U

η∗1 = η10, η
∗
2 = η20 bias 0.0012 -0.0008 -0.0014 -3.9892×10−5

var 0.0008 0.0008 0.0016 1.0103×10−5

v̂ar 0.0007 0.0008 0.0015 9.9257×10−6

CI 0.9390 0.9430 0.9330 0.9430

η∗1 6= η10, η
∗
2 = η20 bias 0.0012 -0.0008 -0.0014 -3.9892×10−5

var 0.0008 0.0008 0.0016 1.0103×10−5

v̂ar 0.0007 0.0008 0.0015 9.9257×10−6

CI 0.9390 0.9430 0.9330 0.9430

η∗1 = η10, η
∗
2 6= η20 bias -0.0003 0.0029 -0.0031 -3.9892×10−5

var 0.0018 0.0010 0.0036 1.0103×10−5

v̂ar 0.0017 0.0010 0.0033 9.9257×10−6

CI 0.9460 0.9440 0.9510 0.9430

η∗1 6= η10, η
∗
2 6= η20 bias -0.0007 0.0036 -0.0027 -3.9892×10−5

var 0.0025 0.0011 0.0048 1.0103×10−5

v̂ar 0.0023 0.0010 0.0044 9.9257×10−6

CI 0.9510 0.9470 0.9490 0.9430
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Table S.6: Evaluation of efficiency loss from proposed method when working models η∗1, η
∗
2

may differ from the true η10, η20. Bias, empirical sample variances (var), averaged estimated

variances (v̂ar), and estimated 95% coverage probabilities (CI) for (σ̂2
U , β̂

T )T with true pa-
rameter values (σ2

U,0, β
T
0 )T = (0.05, 0.25, 0.7, 0.5)T and m(X,Z; β) = β2 exp(−β1X) + β3Z.

Results based on 1000 simulations.
Setting β̂1 β̂2 β̂3 σ̂2

U

η∗1 = η10, η
∗
2 = η20 bias 0.0015 0.0012 -0.0017 -3.9892×10−5

var 0.0015 0.0007 0.0013 1.0103×10−5

v̂ar 0.0014 0.0007 0.0013 9.9257×10−6

CI 0.9460 0.9420 0.9490 0.9430

η∗1 6= η10, η
∗
2 = η20 bias 0.0015 0.0012 -0.0017 -3.9892×10−5

var 0.0015 0.0007 0.0013 1.0103×10−5

v̂ar 0.0014 0.0007 0.0013 9.9257×10−6

CI 0.9480 0.9420 0.9490 0.9430

η∗1 = η10, η
∗
2 6= η20 bias -0.0020 0.0025 -0.0064 -3.9892×10−5

var 0.0016 0.0010 0.0019 1.0103×10−5

v̂ar 0.0016 0.0009 0.0018 9.9257×10−6

CI 0.9440 0.9430 0.9440 0.9430

η∗1 6= η10, η
∗
2 6= η20 bias -0.0017 0.0025 -0.0066 -3.9892×10−5

var 0.0017 0.0010 0.0021 1.0103×10−5

v̂ar 0.0017 0.0010 0.0019 9.9257×10−6

CI 0.9470 0.9470 0.9420 0.9430
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