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Abstract

In this paper, we derive the in
uence function of dispersion estimators, based on a scale approach. The relation between
the gross-error sensitivity of dispersion estimators and the one of the underlying scale estimator is described. We show that
for the bivariate Gaussian distributions, the asymptotic variance of covariance estimators is minimal in the independent
case, and is strictly increasing with the absolute value of the underlying covariance. The behavior of the asymptotic
variance of correlation estimators seems to be the opposite, i.e. maximal for independent data, and strictly decreasing
with the absolute value of the underlying correlation. In particular, dispersion estimators based on M-estimators of scale
are studied closely. The one based on the median absolute deviation is the most B-robust in the class of symmetric
estimators. Some other examples are analyzed, based on the maximum likelihood and the Welsch estimator of scale.
c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

The dispersion between two random variables, i.e. the covariance or the correlation, is a quantity of great
interest in statistics, since it provides a measure of association or interdependence between two characteristics.
Regression is a typical example where such quantities are used. In particular for several random variables,
dispersion matrices are the cornerstones of many multivariate techniques (e.g. Mardia et al., 1979). Therefore,
reliable dispersion estimators are of prime importance. Unfortunately, classical sample dispersion estimators
are known to be very sensitive to outlying values in the data, due to gross errors, measurement mistakes,
faulty recording. In this paper, we address the issue of the robustness of dispersion estimators, by means of
the in
uence function.
Traditionally, estimation of the covariance � between two random variables X and Y is based on a location

approach, since

Cov(X; Y ) = E[(X − E(X ))(Y − E(Y ))]; (1)
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yielding for example the unbiased sample estimator:

�̂=
1

n− 1
n∑
i=1

(Xi − X )(Yi − Y ); (2)

where {X1; Y1}; : : : ; {Xn; Yn} is a sample of size n, X = (1=n)
∑n

i=1 Xi, and Y = (1=n)
∑n

i=1 Yi. However, co-
variance estimation can also be based on a scale approach, by means of the following identity (Huber, 1981;
Gnanadesikan, 1997):

Cov(X; Y ) =
1
4��

[Var(�X + �Y )− Var(�X − �Y )]; ∀�; �∈R: (3)

The choice of a robust estimator of the variance in (3) produces a robust estimator of the covariance � between
X and Y . Similarly, estimation of the correlation � between X and Y can be based on a scale approach, by
means of

Corr(X; Y ) =
1

4���X �Y
[Var(�X + �Y )− Var(�X − �Y )]; ∀�; �∈R; (4)

where �X =
√
Var(X ) and �Y =

√
Var(Y ). Here again, the choice of a robust estimator of the variance in (4)

produces a robust estimator of the correlation � between X and Y . In general, X and Y may be measured
in di�erent units, and the choice � = 1=�X and � = 1=�Y is recommended (Gnanadesikan and Kettenring,
1972) in Eqs. (3) and (4). The main advantage of the scale approach is that the in
uence functions of both
covariance and correlation estimators will depend on the in
uence function of the scale estimator only. On the
contrary, with a location approach, it would depend on the in
uence function of scale and location estimators.
Moreover, the distribution of linear combinations of random variables as in (3) and (4) is much easier to
handle than the distribution of products of random variables as in (1).

2. The in
uence function of dispersion estimators

Consider a sample Z1; : : : ; Zn and a scale estimator Sn(Z1; : : : ; Zn), i.e. such that Sn(aZ1 + b; : : : ; aZn + b) =
|a|Sn(Z1; : : : ; Zn), ∀a; b∈R. We write Sn(Z1; : : : ; Zn)=Sn(Fn), where Fn(z)=(1=n)

∑n
i=1 �Zi(z) is the empirical

distribution, and �Zi is the Dirac function with jump at Zi. Let S(F) be the corresponding statistical func-
tional of scale such that S(Fn) = Sn(Fn). The in
uence function (Hampel, 1974) of S at a distribution F is
de�ned by

IF(u; S; F) = lim
�→0+

S((1− �)F + ��u)− S(F)
�

; (5)

in those u where this limit exists. The importance of the in
uence function lies in its heuristic interpretation: it
describes the e�ect of an in�nitesimal contamination at the point u on the estimate, standardized by the mass
of the contamination, i.e., it measures the asymptotic bias caused by the contamination in the observations.
The gross-error sensitivity (Hampel et al., 1986) de�ned by 
∗(S; F) = supu |IF(u; S; F)|, measures the worst
asymptotic bias due to the contamination. If 
∗(S; F)¡∞, the estimator is said to be B-robust, i.e., robust
with respect to the bias.
Let � be a statistical functional of covariance corresponding to a covariance estimator �̂ based on Eq. (3):

�(F) =
1
4��

[S2(F+)− S2(F−)]; (6)

where F is a bivariate distribution with marginal distributions FX and FY , and F+ and F− denote the dis-
tributions of �X + �Y and �X − �Y , respectively. For simplicity, we assume that FX and FY , both have a
mean zero. A natural way to de�ne the in
uence function of � is through the in
uence function of S. Note
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that the in
uence function describes the �rst-order sensitivity of the estimator to contamination, and thus has
similar properties as the usual �rst derivative. In the following derivations, we frequently use the properties
that IF(u; S; F) = �IF(u=�; S; F̃) and IF(u; h(S); F) = h′(S(F))IF(u; S; F) (Hampel et al., 1986, p. 232 and 259;
Ma and Genton, 1998), where F̃ is the standardized distribution of F , i.e. F̃(z) = F(�Zz), and h is a real
di�erentiable function. From Eq. (6), we get the following in
uence function for �:

IF((u; v);�;F) =
1
4��

[IF(�u+ �v; S2; F+)− IF(�u− �v; S2; F−)]

=
1
4��

2S(F+)IF(�u+ �v; S; F+)− 1
4��

2S(F−)IF(�u− �v; S; F−): (7)

De�ning the in
uence function of a bivariate estimator through the in
uence function of a univariate estimator,
as in Eq. (7), provides a way to generalize the unidimensional Dirac function �u to a bidimensional Dirac
function. Note that in this de�nition, the perturbations we consider depend on the choice of the covariance
estimator: they are, respectively, perturbations along �u+ �v and �u− �v directions. In fact, this is a typical
method to reduce a higher dimensional problem to a lower dimensional one. Using � = 1=�X and � = 1=�Y ,
Eq. (7) becomes

IF((u; v);�;F) =
�X �Y
2

[
IF
((

u
�X
+
v
�Y

)/
�+; S; F̃+

)
�2+ − IF

((
u
�X

− v
�Y

)/
�−; S; F̃−

)
�2−

]
; (8)

where �+ = S(F+) and �− = S(F−).
Let R be a statistical functional of correlation corresponding to a correlation estimator �̂ based on Eq. (4):

R(F) =
1

4��S(FX )S(FY )
[S2(F+)− S2(F−)]: (9)

Similar to the covariance case, the in
uence function of R is

IF((u; v);R;F)

=IF((u; v);�;F)
1

S(FX )S(FY )
− �(F)
S2(FX )S2(FY )

(IF(u; S; FX )S(FY ) + IF(v; S; FY )S(FX )): (10)

Using Eqs. (6) and (7), as well as �= 1=�X and � = 1=�Y , Eq. (10) becomes

IF((u; v);R;F) =
1

�X �Y
IF((u; v);�;F)− �(IF(u=�X ; S; F̃X ) + IF(v=�Y ; S; F̃Y )): (11)

The links between the gross-error sensitivities for scale and for dispersion estimators are given in the
next two propositions. Let us de�ne 
∗+(S; F) = supu IF(u; S; F); 


∗
−(S; F) = −inf uIF(u; S; F); 
∗(�;F) =

supu;v|IF((u; v);�;F)|; 
∗(R;F) = supu;v|IF((u; v);R;F)|:

Proposition 1. Let � be the covariance between two random variables X and Y; and � be a statistical
functional of covariance based on a statistical functional S of scale. The gross-error sensitivity of � is


∗(�;F) =
�X �Y
2
max(�2+


∗
+(S; F̃+) + �

2
−


∗
−(S; F̃−); �2+


∗
−(S; F̃+) + �

2
−


∗
+(S; F̃−)):

In particular; when 
∗+(S; F̃±) = 
∗−(S; F̃±) = 
∗(S; F̃±),


∗(�;F) = (�X �Y + �)
∗(S; F̃+) + (�X �Y − �)
∗(S; F̃−):

Proof. From Eq. (8), the in
uence function IF((u; v);�;F) must be bounded between −(�X �Y =2) (�2+
∗−
(S; F̃+) + �2−


∗
+(S; F̃−)) and (�X �Y =2) (�2+


∗
+(S; F̃+) + �

2
−


∗
−(S; F̃−)). Because the supremum and in�mum

of the in
uence function of S can be reached simultaneously, i.e., at the same (u; v), the two bounds are
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tight. In particular, when 
∗+(S; F̃±) = 
∗−(S; F̃±) = 
∗(S; F̃±), the two bounds have the same absolute value
(�X �Y =2) (�2+


∗(S; F̃+) + �2−

∗(S; F̃−)) = (�X �Y + �)
∗(S; F̃+) + (�X �Y − �)
∗(S; F̃−):

Proposition 2. Let � be the correlation between two random variables X and Y; and R be a statistical
functional of correlation based on a statistical functional S of scale. The gross-error sensitivity of R is


∗(R;F) = max (12�
2
+


∗
+(S; F̃+) +

1
2�
2
−


∗
−(S; F̃−) + �(
∗−(S; F̃X ) + 


∗
−(S; F̃Y ));

( 12�
2
+


∗
−(S; F̃+) +

1
2�
2
−


∗
+(S; F̃−) + �(
∗+(S; F̃X ) + 


∗
+(S; F̃Y ))) for �¿0;


∗(R;F) = max (12�
2
+


∗
+(S; F̃+) +

1
2�
2
−


∗
−(S; F̃−)− �(
∗+(S; F̃X ) + 
∗+(S; F̃Y ));

( 12�
2
+


∗
−(S; F̃+) +

1
2�
2
−


∗
+(S; F̃−)− �(
∗−(S; F̃X ) + 
∗−(S; F̃Y ))) for �¡ 0:

In particular; when 
∗+(S; F̃±) = 
∗−(S; F̃±) = 
∗(S; F̃±):


∗(R;F) =
�2+
2

∗(S; F̃+) +

�2−
2

∗(S; F̃−) + |�|(
∗(S; F̃X ) + 
∗(S; F̃Y )):

Proof. Similar to Proposition 1.

Propositions 1 and 2 tell us that the dispersion estimators are B-robust if the underlying scale estimators
are B-robust. The most interesting M-estimators of scale satisfy 
∗+(S; F̃±)¿
∗−(S; F̃±), with equality when
they have 50% breakdown point (Huber, 1981; Genton and Rousseeuw, 1995). The opposite situation leads
to implosion of the scale estimator, as well as to lower e�ciency. Observe that often F̃+ = F̃− = F̃X =
F̃Y in Propositions 1 and 2, yielding further simpli�cations. For instance, this is the case for multivariate
Gaussian distributions, and even for some speci�c members of the more general class of elliptically contoured
distributions (Fang and Zhang, 1990), like multivariate t or multivariate Cauchy distributions. Conditions for
this property to hold can be found in Kano (1994). Note that in order to compare the gross-errors sensitivities
of two dispersion estimators, one should standardize them (Hampel et al., 1986, pp. 228–229), for example
with respect to their variances (self-standardized), or to the Fisher information (information-standardized).

3. Comparison of asymptotic variances of some dispersion estimators

The in
uence function allows to compute the asymptotic variance (Hampel et al., 1986) of dispersion
estimators. The next proposition shows that for the bivariate Gaussian distributions, the asymptotic variance
of covariance estimators is minimal in the independent case, and increases strictly with the absolute value of
the underlying covariance. This result is similar to the one derived by Genton (1998) for scale estimators.
The asymptotic variance of covariance estimators is shown to be the same, up to a multiplicative constant
equal to the asymptotic variance of the underlying scale estimator in the independent case. This suggests the
use of a robust estimator of scale with asymptotic variance as close as possible to the one of the MLE of
scale. Consider the bivariate Gaussian distribution ��, −1¡�¡ 1, with mean zero and covariance matrix:

�=
(
1 �
� 1

)
; (12)

and denote by � the standard Gaussian distribution, with density �.
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Proposition 3. Let � be a statistical functional of covariance based on a statistical functional S of scale.
The asymptotic variance of � at the bivariate Gaussian distribution �� is

V (�;��) = 2(1 + �2)V (S; �);

where V (S; �) is the asymptotic variance of S at �.

Proof. The asymptotic variance of � at �� is

V (�;��) =
∫ ∫

IF2((u; v);�;��) d��(u; v)

=
1
4

∫ ∫ [
(2 + 2�) IF

(
u+ v√
2 + 2�

; S; �̃+

)
− (2− 2�) IF

(
u− v√
2− 2� ; S; �̃−

)]2
d��(u; v):

The change of variables x = (u+ v)=
√
2 + 2� and y = (u− v)=√2− 2� yields

V (�;��) =
1
4

[
(2 + 2�)2

∫ ∫
IF2(x; S; �) d�(x)d�(y) + 0

+ (2− 2�)2
∫ ∫

IF2(y; S; �)d�(x) d�(y)
]

= 2(1 + �2)V (S; �):

We observe that the behavior of the asymptotic variance of correlation estimators at bivariate Gaussian dis-
tributions is opposite to the one for covariance estimators. It seems that it is maximal in the independent
case, and decreases strictly with the absolute value of the underlying correlation. However, no simple proof
is available, due to the much more complicated form of the in
uence function of correlation estimators.
We focus now on dispersion estimators based on the family of M -estimators of scale, i.e., on statistical

functional S(F) de�ned by∫
�(z=S(F)) dF(z) = 0; (13)

where � is a real and su�ciently regular even function. The in
uence function of an M-estimator of scale S
at F is given by (Hampel et al., 1986)

IF(u; S; F) =
�(u=S(F))S(F)

B(�; F)
(14)

where B(�; F)=
∫
�′(z=S(F))(z=S(F)) dF(z). The in
uence function (8) of the statistical functional of covari-

ance � at F , based on M-estimators of scale becomes

IF((u; v);�;F) =
�X �Y
2

[
� ((u=�X + v=�Y )=�+) �2+

B(�; F̃+)
− � ((u=�X − v=�Y )=�−) �2−

B(�; F̃−)

]
: (15)

Similarly, the in
uence function (11) of the statistical functional of correlation R at F , based on M-estimators
of scale becomes

IF((u; v);R;F) =
1

�X �Y
IF((u; v);�;F)− �

(
�(u=�X )

B(�; F̃X )
+
�(v=�Y )

B(�; F̃Y )

)
: (16)
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We now analyze the behavior of dispersion estimators based on some typical M-estimators of scale: MLE,
MAD, and Welsch (Hampel et al., 1986). We focus on the bivariate Gaussian distribution ��, −1¡�¡ 1.
The maximum likelihood estimator (MLE) of scale at F = � is de�ned by the function �(z) = z2 − 1,

and yields the classical standard deviation. The covariance estimator based on the MLE corresponds to the
estimator given in Eq. (2). From Eqs. (15) and (16), we get the following in
uence functions:

IF((u; v);�;��) = uv− �;

IF((u; v);R;��) = uv− �
2
(u2 + v2):

Both in
uence functions are unbounded, which means that the dispersion estimators are not B-robust. Note
that the in
uence function IF((u; v);R;��) is the same as the one derived by C.L. Mallows in an unpublished
manuscript cited by Devlin et al. (1975, 1976). The asymptotic variance of the dispersion estimators can be
computed by integrating the square of the in
uence functions (Hampel et al., 1986):

V (�;��) =
∫
IF((u; v);�;��)2 d��(u; v) = 1 + �2;

V (R;��) =
∫
IF((u; v);R;��)2 d��(u; v) = (1− �2)2:

Note that the asymptotic variance of � is minimal in the independent case (� = 0), and must necessarily
increase for the dependent data, as stated in Proposition 3. On the contrary, the asymptotic variance of R is
maximal in the independent case, and decreases for dependent data.
The median absolute deviation (MAD) estimator at F is de�ned by the function �(z)= sign(|z|−q), where

q=F−1( 34 ). Note that since MAD is the most B-robust estimator of scale (Hampel et al., 1986), it follows from
Propositions 1 and 2 that the corresponding dispersion estimators are the most B-robust dispersion estimators
among those with 
∗+(S; F̃±) = 
∗−(S; F̃±) = 
∗(S; F̃±). When F̃+ = F̃−, the gross errors of the dispersion
estimators are


∗(�;F) = 2�X �Y 
∗(MAD; F̃+);


∗(R;F) = 2(1 + �)
∗(MAD; F̃+):

Note that 
∗(�;F) does not depend on the underlying covariance �. When F =��, the dispersion estimators
have the following in
uence functions:

IF((u; v);�;��) =
1

8q�(q)
[�2+ sign(|u+ v|=�+ − q)− �2− sign(|u− v|=�− − q)];

IF((u; v);R;��) = IF((u; v);�;��)− �
4q�(q)

(sign(|u| − q) + sign(|v| − q)):

Both in
uence functions are bounded, which means that the dispersion estimators are B-robust. Fig. 1 depicts
the in
uence functions IF((u; v);�;��) and IF((u; v);R;��) for �= 0:3.
Welsch’s estimator of scale at F =� is de�ned by the function �(z)= 1

2 − exp(−3z2=2). The corresponding
dispersion estimators have the following in
uence functions

IF((u; v);�;��) = 4
3 [2�− �2+ exp(− 3

2 (u+ v)
2=�2+) + �

2
− exp(− 3

2 (u− v)2=�2−)];
IF((u; v);R;��) = IF((u; v);�;��)− 8�

3
(1− exp(−3u2=2)− exp(−3v2=2)):

Both in
uence functions are bounded, which means that the dispersion estimators are B-robust. Fig. 2 depicts
the in
uence functions IF((u; v);�;��) and IF((u; v);R;��) for �= 0:5.
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Fig. 1. The in
uence functions IF((u; v);�;�0:3) and IF((u; v);R; �0:3) for the dispersion estimators based on the MAD, at the bivariate
Gaussian distribution with � = 0:3.

Fig. 2. The in
uence functions − IF((u; v);�;�0:5) and IF((u; v);R; �0:5) for the dispersion estimators based on Welsch’s scale estimator,
at the bivariate Gaussian distribution with � = 0:5.

Fig. 3. The asymptotic variance of covariance estimators (top) and correlation estimators (bottom) at the bivariate Gaussian distribution
��, as a function of �. The dispersion estimators are based on MLE, MAD, and Welsch’s scale estimator. In the independent case (�=0),
the variance is minimal for covariance estimators, whereas it is maximal for correlation estimators.

The asymptotic variances V (�;��) and V (R;��) of covariance and correlation estimators, as a function of
�, are depicted in Fig. 3. The dispersion estimators are based on the MLE, the MAD, and Welsch’s scale
estimator. As shown in Proposition 3, the variance of covariance estimators is minimal in the independent case
(�=0), and must necessarily increase for the dependent data. The opposite happens for correlation estimators,
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where the asymptotic variance is maximal in the independent case, and decreases for dependent data. As
a consequence, correlation estimation is easier than covariance estimation, in the sense that it has smaller
variability. However, the asymptotic variance of correlation estimators depends in a complicated way on the
underlying correlation �. For instance, consider the asymptotic variance of the correlation estimator based on
Welsch’s scale estimator. Straight-forward but tedious computations show that

V (R;��) =
32

9
√
7
(4−

√
7 + (8 +

√
7)�2) +

128�2

9
√
16− 9�2 +

256
√
2�

9

[
1− �√
23 + 9�

− 1 + �√
23− 9�

]
;

which is quite di�erent from the asymptotic variance (1− �2)2 of the correlation estimator based on the MLE
of scale. Note also that dispersion estimators based on MLE have the smallest asymptotic variance.
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