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Abstract

Gene selection has become a common task in most gene expression
studies. The objective of such research is often to identify the smallest
possible set of genes that can still achieve good predictive performance. To
do so, many of the recently proposed classification methods require some
form of dimension-reduction of the problem which finally provide a single
model as an output and, in most cases, rely on the likelihood function in
order to achieve variable selection. We propose a new prediction-based
objective function that can be tailored to the requirements of practitioners
and can be used to assess and interpret a given problem. Based on cross-
validation techniques and the idea of importance sampling, our proposal
scans low-dimensional models under the assumption of sparsity and, for each
of them, estimates their objective function to assess their predictive power in
order to select. Two applications on cancer data sets and a simulation study
show that the proposal compares favorably with competing alternatives
such as, for example, Elastic Net and Support Vector Machine. Indeed,
the proposed method not only selects smaller models for better, or at least
comparable, classification errors but also provides a set of selected models
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instead of a single one, allowing to construct a network of possible models
for a target prediction accuracy level.

Keywords: Biomarker selection, Genomic networks, Disease classification,
Breast cancer, Acute leukemia, Model averaging



1 Introduction

Gene selection has become a common task in most gene expression studies.1

The problem of assigning tumours to a known class is an example that is of2

particular importance and has received considerable attention in the last ten years.3

Conventional class prediction methods of leukemia or other cancers are in general4

based on microscopical examination of stained tissue specimens. However, such5

methods require highly trained specialists and are subjective (Tibshirani et al.,6

2002).7

To avoid these drawbacks, many automatic selection methods have been8

proposed recently. The goal of these methods is often to identify the smallest9

possible set of genes that can still achieve good predictive performance (Dı́az-10

Uriarte and De Andres, 2006), although this is not necessarily the only criterion11

based on which model (gene) selection is carried out (see, for example Leng et al.,12

2006). However, these methods have the advantage of being objective and have13

improved the correct classification rate in various cases. Among the different14

methodologies brought forward in this context we can find those proposed by15

Tibshirani et al. (2002), Dudoit et al. (2002), Zhu and Hastie (2004), Zou and16

Hastie (2005). See also Dı́az-Uriarte and De Andres (2006) and the references17

therein for other approaches.18

Nonetheless, many of these methods do not necessarily respond to the needs of19

practitioners and researchers when they approach the gene selection process. First20

of all, many of them have to rely on some form of size reduction and often require21

a subjective input to determine the dimension of the problem. Also, many of these22

methods often provide a single model as an output whereas genes interact inside23

biological systems and can be interchangeable in explaining a specific response.24

The idea of interchangeability of genes in explaining responses appears for instance25

in Kristensen et al. (2012). These authors use the PARADIGM algorithm of Vaske26

et al. (2010) to combine mRNA expression and DNA copy number in order to27

construct clusters of patients that provide the best predictive value. The resulting28

clusters can be seen as being characterized by different significantly expressed29

genes and we can refer to their interactive structure as paradigmatic networks.30

Another issue of most existing gene selection methods is their reliance on the31

likelihood function, or a penalized version of it, as a means to develop a selection32

criterion. However, the likelihood function may not necessarily be the quantity33

that users are interested in as they may want to target some other kind of loss34

function such as, for example, the classification error. Of course, maximizing35
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the likelihood function is not typically the same as minimizing a particular loss36

function. Moreover, adapting these methods to handle missing or contaminated37

data is not straightforward. This has limited the applicability and reliability of38

these methods in many practical cases.39

To eliminate the limitations of the gene selection procedures described above,40

this paper proposes an objective function for out-of-sample predictions that can41

be tailored to the requirements of practitioners and researchers. This is achieved42

by enabling them to select a criterion according to which they would like to assess43

and/or interpret a given problem. However, the optimization of such a criterion44

function is typically not an easy task since the function can be discontinuous,45

non-convex and would require computationally intensive techniques. To tackle46

this issue, we propose a solution using a different approach based on a procedure47

that resembles importance sampling. This new approach provides a general and48

flexible framework for gene selection as well as for other model selection problems.49

The advantages of this proposal are multiple:50

• Flexibility: It allows the users to specify a criterion that can be tailored to51

the specific problem setting. It is able to handle different kinds of responses,52

problems of missing and contaminated data, multicollinearity, etc.53

• Prediction Power: The result of the procedure is a set of models with54

high predictive power with respect to the specified criterion. It is especially55

suitable in selecting genes and models to achieve accurate predictions.56

• Dimension-reduction: It can provide an assessment of the dimension of57

the problem because it greatly reduces the number of necessary covariates58

and eases the interpretation without requiring any preliminary size reduction.59

• Network-building: With the reduced model size, it preserves the capacity60

to build gene-networks to provide a more general view of the potential61

paradigmatic structures of the genetic information.62

This last aspect is of great interest for gene selection since this list can provide63

insight into the complex mechanisms behind different biological phenomena.64

Different cases, some of which can be found in Section 4, indicate that this method65

appears to outperform other methods in terms of criteria minimization while,66

at the same time, selects models of considerably smaller dimension which allow67

improved interpretation of the results. The set of selected models can naturally68

be viewed as a network of possible structures of genetic information. We call69
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this a paradigmatic network. In Section 4 we give an example of a graphical70

representation of such networks based on the analysis of one of two cancer data71

sets which are discussed therein.72

In this paper we first describe and formalize the proposed approach within the73

model selection statistical framework in Section 2. In Section 3 we illustrate the74

techniques and algorithms used to address the criterion minimization problem75

highlighted in Section 2. The performance of our approach is then illustrated on76

two data sets concerning leukemia classification (Golub et al., 1999) and breast77

cancer classification (Chin et al., 2006) in Section 4. We conclude the paper in78

Section 6 by summarizing the benefits of the new approach and providing an79

outlook on other potential applications that can benefit from this methodology.80

2 Approach81

To introduce the proposed method, let us first define some notation which will be82

used throughout this paper:83

1. Let Jf = {1, 2, ..., p} be the set of indices for p potential covariates included84

in the n× p matrix X. We allow X to include a vector of 1s.85

2. Let J = P(Jf) \ ∅, |J | = 2p − 1, be the power set including all possible86

models that can be constructed with the p covariates excluding the empty87

set.88

3. Let  ∈ J be a model belonging to the above mentioned power set.89

4. Let β ∈ Rp be the parameter vector for model , i.e.

β
k =

{
βk if k ∈ 
0 if k 6∈ 

where β
k, βk are respectively the kth element of β and β, with β =90

(β1, . . . ,βp)
T ∈ B ⊆ Rp.91

Keeping this notation in mind, for a given model  ∈ J we have that92

E[Y |X] = g(X,β), (1)
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where E[·] is the expectation operator and g(·, ·) is a link function known up to the93

parameter vector β ∈ Rp. Models of the form (1) are very general and include94

all parametric models and a large class of semiparametric models when g(·, ·) is95

not completely known.96

We assume that for a fixed , based on a specific choice for model (1) with97

corresponding parameter vector β and given a new covariate vector X0, the user98

can construct a prediction Ŷ (X0,β
). To assess the quality of this prediction99

we assume that we have a divergence measure available which we denote as100

D{Ŷ (X0,β
), Y0}. The only requirement imposed on the divergence measure is101

that it satisfies the property of positiveness, i.e.102

D(u, v) > 0 for u 6= v

D(u, v) = 0 for u = v.

With this property being respected, the divergence measure can arbitrarily be103

specified by the user according to the interest in the problem. Examples of such104

divergence measures include the L1 loss function105

D{Ŷ (X0,β
), Y0} = |Ŷ (X0,β

)− Y0|

or an asymmetric classification error106

D{Ŷ (X0,β
), Y0} =I{Ŷ (X0,β

) = 1, Y0 = 0}w1

+I{Ŷ (X0,β
) = 0, Y0 = 1}w2.

where w1, w2 ≥ 0. The latter is for a Bernoulli response and is typically an107

interesting divergence measure when asymmetric classification errors have to be108

considered. Indeed, in most clinical situations, the consequences of classification109

errors are not equivalent with respect to the direction of the misclassification. For110

instance, the prognosis and the treatment of Estrogen Receptor (ER) positive111

Breast Cancers (BC) are quite different from those of ER negative ones. Indeed,112

if a patient with ER negative is treated with therapies designed for patients with113

ER positive, the consequence is much more severe than if this were done the114

other way round because of the excessive toxicities and potentially severe side115

effects. It therefore makes sense to give different values to w1 and w2. By defining116

w1 > w2 we would take these risks into account, where w1 would be the weight for117

a misclassification from ER negative to ER positive BC and w2 for the opposite118

direction. Weight values can be modulated according to the current medical119

knowledge and the clinical intuition of the physicians.120
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Considering this divergence measure D(·, ·), we are consequently interested in121

finding the best models within the general class given in (1). To do so, we would122

ideally aim at solving the following risk minimization problem :123

β̂

∈ B ≡ argmin

∈J
argmin

β
E0

[
D
{
Ŷ (X0,β

), Y0

}]
, (2)

where E0 denotes the expectation on the new observation (Y0,X0). Let 0 denote124

the models with the smallest cardinality among all β̂

∈ B. Note that there125

could be more than one model with the same prediction property and of the126

same size, hence 0 could contain more than one model. Let us define the models127

corresponding to 0 as the “true” models. Thus, our “true” models are essentially128

the most parsimonious models that minimize the expected prediction error.129

The optimization problem in (2) is typically very difficult to solve. First of all,130

supposing we do not consider interaction terms, the outer minimization would131

require to compare a total of 2p−1 results, each a result of the inner minimization132

problem. In addition, each of the 2p − 1 inner minimization problems is also very133

hard to solve, even if the risk E0[D{Ŷ (X0,β
), Y0}] were a known function of β.134

Indeed, the inner minimization problem is in general non-convex and could be135

combinatorial, implying that the minimizer might not be unique. For example,136

when D(·, ·) is the classification error, this problem is combinatorial by nature. In137

practice, the computational challenge is even greater because the risk function138

E0[D{Ŷ (X0,β
), Y0}] is a function of βJ without explicit form and needs to be139

approximated.140

We propose to estimate E0[D{Ŷ (X0,β
), Y0}] via an m-fold cross-validation141

(typically m = 10) repeated K times. More specifically, for a sample of size n,142

we repeat the following procedure K times. At the kth repetition, we randomly143

permute the sets (Xr, Yr), with r indexing a row of the data (i.e. r = 1, . . . , n),144

and then select bn/mc observations from the permuted data to form “test” data145

sets, subindexed (i, l) (with i = 1, . . . , bn/mc and l = 1, . . . ,m) and superindexed146

k = 1, . . . , K, i.e. (Xk
(i,l), Y

k
(i,l)). Therefore l indicates the test set, i indicates the147

observation within this test set and k represents the repetition (associated with148

a certain permutation of the data). The classical 10-fold cross-validation, for149

example, is obtained by defining K = 1 and m = 10. Given this, the estimated150

risk is151

Ê0

[
D
{
Ŷ (X0,β

), Y0

}]
=

1

bn/mcmK

K∑
k=1

m∑
l=1

bn/mc∑
i=1

D{Ŷ (Xk
(i,l),β

), Y k
(i,l)}. (3)
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Having approximated the expectation E0, the minimization problem in (2)152

becomes153

argmin
∈J

argmin
β

Ê0

[
D
{
Ŷ (X0,β

), Y0

}]
. (4)

Despite the above approximation, the minimization problem remains compli-154

cated for the reasons mentioned earlier. Thus, we further eliminate the inner155

minimization problem in (4) by inserting an estimator β̂


obtained indepen-156

dently from the minimization procedure. More specifically, we assume that an157

estimator of β, say β̂
,k

, is available based on model (1) and “training” observa-158

tions (Xk
bn/mc+1, Y

k
bn/mc+1), . . . , (X

k
n, Y

k
n ) (i.e. those observations excluded from the159

above mentioned “test” data sets). This estimator can be any available estimator,160

for example, the maximum likelihood estimator (MLE), a moment based estimator,161

or a quantile regression based estimator, etc. (see, for example, Azzalini, 1996;162

Hall et al., 2005; Koenker, 2005). We then replace the inner minimization in (4)163

directly with the approximate expectation evaluated at β̂
,k

’s and simplify (4) to164

argmin
∈J

1

bn/mcmK

K∑
k=1

m∑
l=1

bn/mc∑
i=1

D{Ŷ (Xk
(i,l), β̂

,k
), Y k

(i,l)}. (5)

The intuition of replacing the inner minimization in (4) with a sample average165

evaluated at an arbitrary estimator is due to the fact that this estimator, under a166

fixed “true” model and regardless of whether this estimator is a standard MLE or167

a minimizer of the divergence measure D(·, ·), is an approximation to the “true”168

parameter. This means that, consequently, different estimators are “close” to each169

other. As a consequence, the minimization problem in (5) can be considered to be170

a close approximation to minβ E0

[
D
{
Ŷ (X0,β

), Y0

}]
. In fact, using an informal171

law of large numbers argument, as n/m→∞, then we have that β̂
 p→ β. If in172

addition m→∞ then, under some regularity conditions on D(·, ·), the averages173

tend to the desired expectation. On the other hand, if instead we consider m as174

fixed, we would have an unbiased estimator of the expected risk.175

We now have an optimization problem in (5) which requires a comparison176

of 2p − 1 values and is much easier to solve. To further reduce the number of177

comparisons, the following section describes some procedures and algorithms178

allowing to solve this problem in a more efficient manner.179
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3 Heuristic procedure180

To solve the optimization problem in (5), we propose an approach designed to181

have the following three features:182

1. Identify a set of models that carry large predictive power instead of a183

single “best” model;184

2. Find this set of models within a reasonable time, without having to185

explore all possible models;186

3. This set achieves sparsity, i.e. most of the parameters in β will be fixed at187

zero in each of the models in the set.188

Note that the last feature above reflects the belief that most of the covariates189

are irrelevant for the problem under consideration and should be excluded. Indeed,190

our method is designed to work effectively if such a sparsity assumption holds,191

putting it on the same level of almost all variable selection procedures in the192

literature. Moreover, we require the method to have the first feature in order to193

increase flexibility in terms of interpretation. Indeed, in many domains such as194

gene selection, for example, the aim may not be to find a single model but a set195

of variables (genes) that can be inserted in a paradigmatic structure to better196

understand the contribution of each of them via their interactions.197

Given this goal, assume that we have at our disposal an estimate of the198

measure of interest D(·, ·) for all possible 2p − 1 models. In this case, our interest199

would be to select a set of “best” models by simply keeping the set of models200

that have a low discrepancy measure D(·, ·). It is of course unrealistic to obtain201

a discrepancy measure for all models in most practical cases because this would202

require a considerable amount of time for computation. Therefore, in order to203

achieve the second feature, instead of examining all possible models, we can204

randomly sample covariates from J . The random sampling needs to be carefully205

devised because in practice, for example in gene selection problems, the number206

of covariates p can easily reach thousands or tens of thousands (see examples207

in Section 4, where p = 7, 129 and p = 22, 215 respectively). In such situations,208

2p − 1 is an extremely large number and the probability of randomly sampling209

a “good” set of variables from the 2p − 1 variables is very small. Using the210

sparsity property of the problem, we propose to start with the set of variablesM0211

(typically an empty set) and increase the model complexity stepwise. Throughout212

this procedure, we ensure that at step k, the most promising covariates based213
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on the evaluation at step k − 1 are given higher probabilities of being randomly214

drawn. The last idea is in the spirit of “importance sampling” in the sense that215

covariates with more importance based on the previous step are “encouraged” to216

be selected in the current step. Note that by construction we achieve sparsity if217

we stop the stepwise search at models of size dmax � p.218

More formally, let us first define the set of all possible models of size d as219

Sd = {(i1, . . . , id) | i1, . . . , id ∈ Jf ; i1 < . . . < id}.
We then define the set of promising models, S∗d , as the ones with an estimated220

out-of-sample divergence measure D(·, ·) below a certain estimated α-quantile.221

The value of α is user-defined depending on the problem at hand, and is typically222

a small value such as α = 1%. The formal definition of this set would then be223

S∗d = { |  ∈ Sd ; D̂ ≤ q̂d(α)},
where224

D̂ ≡
1

bn/mcmK

K∑
k=1

m∑
l=1

bn/mc∑
i=1

D{Ŷ (Xk
(i,l), β̂

,k
), Y(i,l)}, (6)

and q̂d(α) is the α-quantile of the D̂ ( ∈ Sd) values issued from B randomly225

selected models. Finally, we define the set of indices of covariates that are in S∗d226

as227

I∗d = {i | i ∈ ,  ∈ S∗d}
whose complement we define as Icd (i.e. all those covariates that are not included228

in I∗d).229

With this approach in mind and using the above notations, to start the230

procedure we assume that we have p variables from which to select.231

A. Initial Step: We start by adding the number of variables d = 1 to our initial232

variable set M0 with the goal of finally obtaining the set I∗1 .233

1. Construct the p possible one variable models by augmenting M0 with234

each of the p available variables.235

2. Compute D̂ for every model obtained in Step A.1.236

8



3. From Steps A.1 and A.2, construct the set I∗1 using (3). Go to Step B237

and let d = 2.238

B. General Step: We define here the general procedure to construct I∗d for239

2 ≤ d ≤ dmax.240

1. Augment M0 with d variables as follows:241

(i) Randomly select a set, either set I∗d−1 with probability π or its242

complement Icd−1 with probability 1− π.243

(ii) Select one variable uniformly at random and without replacement244

from the set chosen in Step (i) and add this variable to M0.245

(iii) Repeat Steps (i) and (ii) until d variables are added to M0.246

2. Construct a model of dimension d using the d variables selected in Step247

B.1. Repeat Step B.1 B times to construct B such models.248

3. From Steps B.1 and B.2, construct the set I∗d according to (3). If249

d < dmax, go to Step B and let d = d+ 1, otherwise exit algorithm.250

Once the algorithm is implemented, the user obtains an out-of-sample discrep-251

ancy measure for all evaluated models. Given that the goal is to obtain a set252

of models S∗d with high predictive power, the discrepancy measure delivers the253

criterion based on which it is possible to determine the optimal model dimension254

and the corresponding network structure.255

3.1 Practical Considerations256

The algorithm described above lays out the basic procedure to solve the problem257

in (2). However, as many other heuristic selection procedures, there are a series258

of “hyper-parameters” to be determined and certain aspects to be considered.259

In the following paragraphs we will discuss some of these issues arising when260

implementing our algorithm in practice.261

3.1.1 Choice of algorithm inputs262

The parameters dmax, B, α and π of the above algorithm are to be fixed by263

the user. As mentioned earlier dmax represents a reasonable upper bound for264

the model dimension which is constrained to dmax ≤ l, where l depends on the265

limitations of the estimation method and is commonly the sample size n. As266
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for the parameter B, a larger value is always preferable to better explore the267

covariate space. However, a larger B implies heavier computations, hence a rule268

of thumb that could be used is to choose this parameter such that p ≤ B ≤
(
p
2

)
.269

As mentioned earlier, the parameter α should define a small quantile, typically270

1%. Finally, π determines to what extent the user assigns importance to the271

variables selected at the previous step. Given that dmax � p and α is small, we272

will typically have that |I∗d−1| < |Icd−1|. In this setting, a choice of π = 0.5 for273

example would deliver a higher probability for the variables in I∗d−1 to be included274

in I∗d . All other parameters being equal, increasing the value of π would decrease275

the probability of choosing a variable in Icd−1 and vice versa. Moreover, we discuss276

in Appendix A how the proposed algorithm can be adjusted to situations where p277

is either small or very large.278

As a final note, it is also possible for the initial model M0 to already contain279

a set of p0 covariates which the user considers to be essential for the final output.280

In this case, the procedure described above would remain exactly the same since281

the procedure would simply select from the p covariates which are not in the282

user-defined set and the final model dimension would simply be p0 + d.283

3.1.2 Model Dimension and Network Building284

The final goal of the algorithm is to find a subset of models of dimension d∗ that285

in some way minimize the considered discrepancy. A possible solution would286

be to select the set of models S∗d∗ such that d∗ = min∈{1,...,dmax} qd(α). However,287

the quantity qd(α) is unknown and replaced by its estimator q̂d(α). Due to288

this, a solution that might be more appropriate would be to consider a testing289

procedure to obtain d∗ taking into account the variability of q̂d(α). For example,290

we could find the dimension d∗ such that we cannot reject the hypothesis that291

q̂d∗(α) = q̂d∗+1(α). Thus we sequentially test whether q̂j+1 is smaller than q̂j for292

j = 1, . . . , dmax. As long as the difference is significant we increment j by one293

unit, otherwise the minimum is reached and d∗ = j.294

The type of test and its corresponding rejection level are determined by the295

user based on the nature of the divergence measure. For example, if we take the296

L1 loss function as a divergence, one could opt for the Mann-Whitney test or if297

the loss function is a classification error (as in the applications in Section 4), one298

could choose the binomial test or other tests for proportions. The rejection level299

will depend, among others, on the number of tests that need to be run, typically300

less than dmax − 1, and need to be adjusted using, for example, the Bonferroni301

correction. Finally, once the set S∗d∗ is obtained, the user may still want to “filter”302
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the resulting models. Indeed, the number of models in the solution S∗d∗ may be303

large and the corresponding divergence estimates may vary considerably from304

model to model. Since these divergence measures are estimators, we again propose305

a multiple testing procedure to reduce the number of models in S∗d∗ . Before doing306

so, we eliminate redundant models, thereby making sure that every model is307

included only once. Then, we start the testing procedure with an empty set308

S0
d∗ = ∅ to which we add the model (or one of the models) that has the minimum309

divergence measure estimate, denoted D̂min
, where min ∈ S∗d∗ denotes this model.310

Then for every model  ∈ S∗d∗\min, we test whether D̂ is greater than D̂min
. We311

add the model to S0
d∗ if the difference is not significant and stop adding models as312

soon as the test deems that the divergence of the next model is indeed larger. By313

doing so we finally obtain S0
d∗ ⊆ S∗d∗ which is the set containing the models (and314

hence covariates) which can be interpreted in a paradigmatic network. Generally315

speaking, this network can be built starting from the most frequent covariate(s)316

present in S0
d∗ (we call these “hubs”) and, subsequently, connecting these with317

the most frequent covariates included in the models with the previous hubs. This318

can be continued until the number of connected hubs is equal to d∗.319

3.2 Related literature320

Some of the ideas put forth in this work have also been considered in the literature.321

An extensive survey of the related works goes beyond the scope of this paper.322

Here we briefly describe some of the connections to three main ideas that have323

been explored to this point.324

The first one is recognizing that practitioners might aim to minimize some325

criterion that differs from likelihood-type losses. An interesting paper illustrating326

this point is Juang et al. (1997) in the context of speech recognition. For their327

classification problem, these authors propose to minimize a “smoothed” version of328

the decision rule used for classification. The advantage of this procedure is that329

it yields better misclassification errors than using pure likelihood based criteria330

which intrinsically fit a distribution to the data. In the approach presented in this331

work we also deliver an approximate solution but, as opposed to approximating332

the problem and solving the latter in an exact manner as in Juang et al. (1997), we333

define the exact problem and try to approximately minimize the misclassification334

error through our algorithm.335

Secondly, there is a large literature that uses stochastic search procedures to336

explore the space of candidate models. Influential work in this direction includes337
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George and McCulloch (1993) and George and McCulloch (1997) who postulate338

hierarchical Bayesian models. In their set-up, subsets of promising predictors339

form models with higher posterior probabilities. An interesting application of340

this framework for disease classification using gene expression data is the work of341

Yang and Song (2010). Cantoni et al. (2007) also consider a random exploration342

of the space of possible models, but avoiding the Bayesian formulation of George343

and McCulloch (1993). Their approach defines a probability distribution for the344

various candidate models based on a cross-validated prediction error criterion and345

then uses a Markov Chain Monte-Carlo method to generate a sample from this346

probability distribution. An important feature of the stochastic search implied by347

our algorithm is that it is a greedy method, while the aforementioned methods are348

not. The typical forward/backward greedy algorithms proposed in the literature349

are not random, while existing stochastic procedures are not greedy. Thus, the350

combination of greedy approach and random search approach seems to be new351

(see for instance Zhang, 2011, for some theory on greedy algorithms in sparse352

scenarios).353

Finally, other authors have also considered providing a set of interesting models354

as opposed to a single “best” model. The stochastic search procedures mentioned355

in the above paragraph can naturally be used to obtain a group of interesting356

models. For example, Cantoni et al. (2007) consider a set of best indistinguishable357

models in terms of prediction. Random forests can be used to select variables and358

account for the stability of the chosen model as in Dı́az-Uriarte and De Andres359

(2006). These methods can also be used to construct a set of interesting models.360

4 Case Studies361

In this section we provide an example of how the methodology proposed in this362

paper selects and groups genes to explain, describe and predict specific outcomes.363

We focus on the data-set (hereinafter leukemia) which collects information on364

Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) and365

is frequently used as an example for gene selection procedures. Indeed, Golub366

et al. (1999) were among the first to use this data to propose a gene selection367

procedure which was then followed up by other proposals that used the same368

data to compare their performance. We will use this data-set to underline the369

features and advantages of the proposed method. A second data-set concerning370

the research on breast cancer (presented in Chin et al. (2006)) is analysed in371
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Appendix C to show the outputs of the proposed method from another example1.372

The analysis of these data-sets focuses both on the advantages of the proposed373

methodology and the biological interpretation of the outcomes. One of the goals374

of our method is to help decipher the complexity of biological systems. We will375

take on an overly simplified view of the cellular processes in which we will assume376

that one biomarker maps to only one gene that in turn has only one function.377

Although this assumption is not realistic, it allows us to give a straightforward378

interpretation of the selected models or “networks” which can therefore provide an379

approximate first insight into the relationships between variables and biomarkers380

(as well as between the biomarkers themselves). We clarify that we do not claim381

any causal nature in the conclusions we present in these analyses but we believe382

that the selected covariates can eventually be strongly linked to other covariates383

that may have a more obvious and direct interpretation for the problem at hand.384

Finally, the data-set has binary outcomes (as does the data-set in Appendix C),385

hence we will make use of the Classification Error (CE) as a measure of prediction386

performance and we will not assign weights to a given prediction error. This387

means that misclassification errors are given the same weight, in the sense that a388

false positive prediction (e.g. predicted “presence” when the truth is “absence”)389

is considered as undesirable as a false negative prediction. However, our method390

can consider also divergence measures based on unequal weights as highlighted in391

Section 2.392

4.1 Acute Leukemia393

Golub et al. (1999) were among the first to propose an automatic selection method394

for cancer classification and demonstrated the advantages of using such a method.395

One of the main applications of their method was on the leukemia data-set in396

which information regarding 72 patients is included, namely their type of leukemia397

(25 patients with AML and 47 patients with ALL) and 7,129 gene expressions398

used as explanatory variables to distinguish between two types of leukemia. As399

explained in Golub et al. (1999) this distinction is critical for successful treatment400

which substantially differs between classes. In fact, although remissions can be401

achieved using any of these therapies, cure rates are markedly increased and402

unwarranted toxicities are avoided when targeting the specific type of leukemia403

with the right therapy.404

1The Acute Leukemia (Section 4.1) and the Breast Cancer (Appendix C) data-sets are made
available in the R package “datamicroarray”.
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Figure 1: Number of covariates vs. D̂ on leukemia cancer classification training set.
The names are abbreviations for other selection method referred to in Table 1.

4.1.1 Statistical analysis405

In order to understand how our proposed methodology performs compared to406

existing ones, we split the leukemia data into the same training set (38 patients)407

and test set (34 patients) as in the original work by Golub et al. (1999). We employ408

our method on the training set to understand the dimension of the model and409

to select the most relevant genes. Setting α = 0.01, the corresponding observed410

quantile of the 10-fold cross-validation CE (D̂) is shown in Figure 1. It can be seen411

that the error immediately decreases to almost zero when using two covariates412

instead of one, after which it roughly monotonically increases, suggesting that the413

optimal model dimension is two.414

In Figure 1 we also plotted the performance of the other selection methods415

used on this training data which are represented by labelled dots reporting the416

acronyms of these methods that are listed in Table 1. These cross-validation417

errors are taken from Zou and Hastie (2005) in the same setting in which we ran418
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the proposed method. However, another table in which the competing methods419

were ran using currently available software is presented in Appendix B where the420

conclusions in terms of comparison do not differ from those presented in Table421

12. Indeed, the approach proposed in this work compares favourably to all other422

methods in terms of prediction power since they lie under the curve to the right423

of its minimum indicating that, compared to our method, they select models of424

considerably higher dimensions without achieving the same degree of performance425

in terms of CE. Therefore, for this particular case, our method outperforms the426

other methods. The sparsity and tenfold CV error are further illustrated in Table427

1, where we also present the average prediction error on the test data. Considering428

the latter, it can be seen how the performance of the different methods are similar429

but the proposed method (which we refer to as Panning) is able to achieve the430

same performance by selecting models of a considerably lower dimension. As a431

final note to the table, the last line reports the performance of model averaging.432

Indeed, if the interest lies in predicting, the algorithm of Section 3 provides a433

set of models whose CE is below a given quantile α. The predictions of these434

models can be used in the spirit of model averaging where a general prediction435

can be obtained by taking the average of predictions of the selected set of models.436

The proposed methodology can therefore be potentially seen as a bridge between437

model selection and model averaging.438

439

Once this procedure is completed, we can create a gene network to facilitate440

interpretation. This is a direct benefit of our method which does not deliver441

a single model after the selection process but provides a series of models that442

can be linked to each other and interpreted jointly. Indeed, the existence of a443

single model that links the covariates to the explained variable is probably not444

realistic in many settings, especially for gene classification. For this reason, the445

frequency with which each gene is included within the selected models and with446

which these genes are coupled with other genes provides the building block to447

create an easy-to-interpret gene network with powerful explanatory and predictive448

capacities. A graphical representation of this gene network can be found in449

Figure 2 where the size of a disk represents the frequency with which a particular450

biomarker is included in the selected models, and the line connecting the disks451

indicates the biomarkers that are included in the same model. Since the model452

dimension in this case is two, each biomarker is connected with only one other453

biomarker and, as can be observed, the proposed method identifies three main454

2The use of the software making available the competing methods is described in Section 5.
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Method Tenfold CV Test error Number of
error genes

Golub 3/38 4/34 50
Support vector machine 2/38 1/34 31
(with recursive feature elimination)
Penalised logistic regression 2/38 1/34 26
(with recursive feature elimination)
Nearest shrunken centroids 2/38 2/34 21
Elastic net 3/38 0/34 45

Panning Algorithm (107)
Model a 0/38 2/34 2
Model b 0/38 2/34 2
Model c 0/38 2/34 2
[. . .]
Model averaging 2/34 2

Table 1: Summary of Leukemia classification results. The table is taken from Zou and
Hastie (2005) where we added the Panning Algorithm. We obtained a total of 107 models
of size 2 (109 different biomarkers) using a probability α = 0.01, B = 20′000 bootstrap
replicates, a selection probability π = 0.5 with D(·, ·) estimated through tenfold-CV
repeated K = 10 times. Models “a” to “c” are three examples out of the 107 models.
All 107 models have a tenfold-CV error of 0. The best test error is 2 and the worst is
12. For model averaging all models are equally weighted.

“hubs” for the networks (green disks) generating three networks. Appendix B also455

reports a related table where the biomarkers are listed according to their position456

in the model. These positions represent families of biomarkers (or genes) whose457

members are interchangeable. By the latter we mean that, given the presence of458

biomarkers from other families, specific biomarkers can be replaced by another459

biomarker from within the same family without losing predictive power. This is460

the idea behind finding a paradigmatic network for gene selection purposes. In461

the following paragraph we provide a summary biological interpretation of the462

the three main biomarkers (i.e. the most frequent in the selected models) which463

we call “hubs” from which the networks start.464
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Figure 2: Network representation of biomarkers selected from the leukemia data-set.
Colors represent the position of covariates within the model: green for first position
(hub) and orange for second. The width of the connecting lines is proportional to the
frequency with which two biomarkers appear in the same model. The size of the disk is
proportional to the frequency with which a biomarker is present within the selected set
of models.
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4.1.2 Biological interpretation465

The three hubs that were identified are the following:466

1. Cystatin C: a secreted cysteine protease inhibitor abundantly expressed in467

body fluids (see Xu et al., 2015);468

2. Zyxin: a zinc-binding phosphoprotein that concentrates at focal adhesions469

and along the actin cytoskeleton;470

3. Complement factor D: a rate-limiting enzyme in the alternative pathway of471

complement activation (see White et al., 1992).472

In the current state of knowledge about acute leukemia, these three hubs appear473

to make sense from a biological viewpoint. Cystatin C is directly linked to many474

pathologic processes through various mechanisms and recent studies indicate that475

the roles of Cystatin C in neuronal cell apoptosis induction include decreasing476

B-cell leukemia-2 (BCL-2) whose deregulation is known to be implicated in477

resistant AML (see Sakamoto et al., 2015). Zyxin is a protein that interacts with478

Vasodilator-stimulated phosphoprotein (VASP) with both being involved in cellular479

adhesion and motility. VASP interacts with ABL (breakpoint cluster region-480

abelson) and is a substrate of the BcrAbl oncoprotein which drives oncogenesis in481

patients with chronic myeloid leukemia (CML) due to a constitutive activation482

of tyrosine kinase activity (see Bernusso et al., 2015). Further results suggest483

that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-484

bridged mechanism regulates association of VASP with focal adhesions, which485

may regulate adhesion of Bcr-Abl-transformed leukaemic cells (see Masahiro et al.,486

2012). Finally, Complement factor D, together with several other components487

of both the classical and alternative complement cascade, is primarily expressed488

through both adipocytes and monocytes-macrophages in human subjects (see489

White et al., 1992; Gabrielsson et al., 2003). A recent review in Ratajczak (2014)490

has stressed the role of the complement cascade as a trigger for hematopoietic491

stem cells from bone marrow into blood.492

The interpretation of the network can be carried out through plots or tables493

such as those presented in Appendix B where the biomarkers can be grouped to-494

gether into clusters having the same biological traits, e.g. transcription/translation495

factor activity, DNA repair and catabolism, apoptotic activity. This grouping496

allows a more straightforward interpretation of the links between the different497

families thereby providing a more general overview of how the elements of the498

identified network interact.499
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5 Simulation study500

In this section we present a simulation study whose goal is to highlight the501

practical benefits of the proposed method over competing methods frequently502

used in genomics. Considering the complexity of simulating from a gene network,503

in this setting we limit ourselves to considering the existence of a unique true504

model which therefore does not allow to assess one of the features of the proposed505

approach which is its network building capacities. Hence, this section specifically506

focuses on the prediction power and dimension-reduction ability of the method507

and, for the comparison with alternative methods to be fair, we only keep one508

model for each simulation replicate. This means that, once the dimension of the509

model has been identified, the model with the lowest estimated prediction error is510

kept (thereby discarding the other potential candidates).511

In this optic, for the simulation study we mimicked the acute leukemia dataset
seen in Section 4.1 where we set the true model to be generated by a combination
of two gene expressions: Cystatin C (X1) and Thymine-DNA Glycosylase (X2)
(see Section 4.1.2). Hence the response y? in the simulations is a realization of a
Bernoulli random variable with probability parameter γ which is obtained through
a logit-link function applied to a linear combination of the two above-mentioned
variables plus an intercept (with all β coefficients equaling one) i.e.:

γ =
1

1 + exp(1+X1+X2)
.

Once the binary response variable y? is generated, this is then separated into a512

training and a test set of the same size as that in the original data-set (i.e. 38513

and 34 respectively).514

Using the implementation of the proposed algorithm available at the cor-515

responding GitHub repository3, the results of the simulations based on 100516

replications can be found in Table 2 where the median performances are reported.517

The proposed algorithm’s hyper-parameters are α = 0.01, B = 20′000, π = 0.5518

and D(·, ·) based on the classical tenfold-CV (K = 1). To select the dimension d∗,519

we ran the testing procedure described in Section 3.1.2 based on a p-value of 0.1.520

As mentioned earlier, unlike Table 1, we only kept one model of dimension d∗521

instead of a set of models. This model was chosen such that it had the minimum522

training error and, if this minimum was not unique, then the model was randomly523

chosen among those achieving this minimum.524

3https://github.com/SMAC-Group/panning
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Concerning the competing methods, these were implemented using existing525

R functions with default values. For the Elastic Net we used the R package526

“glmnet”, that implements the coordinate descent algorithm described in Friedman527

et al. (2010), using the cv.glmnet() function to select the lasso parameter. We528

performed a grid search over the values {0.2, 0.4, 0.6, 0.8, 1} for the parameter529

α of the Elastic Net and kept the value yielding the best deviance4. As for the530

Nearest Shrunken Centroids method of Tibshirani et al. (2002) we considered531

the R package “pamr”. We applied the function pamr.train() on the training532

data and took the value of the tuning parameter (threshold) yielding the best533

classification. The Support Vector Machines approach with recursive feature534

elimination was obtained through the function fit.rfe() in the “pathClass”535

R package . We used the function crossval() to select the soft-margin tuning536

parameter discussed in Chapelle et al. (2002). Finally, the penalized L2 logistic537

regression with greedy forward selection and backward deletion was implemented538

with the function step.plr() of the “stepPlr” R package. Note that this function539

also considers all possible interactions among the active variables and it is an540

implementation of the methodology proposed by Park and Hastie (2008). Finally,541

we used our own implementation for the logistic regression with greedy forward542

selection, selecting the model with the minimum BIC.543

Method Tenfold CV Test error Number of
error genes

Panning Algorithm 0/38
(all)

1/34
(min: 0/34; max: 12/34)

2/7129
(all)

Elastic net 10/38
(min: 9/38; max: 12/38)

0/34
(all)

81/7129
(min: 1; max: 104)

Support vector machine 0/38
(all)

15/34
(all)

4/7129
(min: 4; max: 6)

Penalised logistic regression 12/34
(min: 8/34; max: 12/34)

5/7129
(all)

Nearest shrunken centroids 12/38
(min: 7/38; max: 18/38)

5/34
(min: 0/34; max: 5/34)

30/7129
(min: 3; max: 30)

Table 2: Median performances of selection methods on 100 simulations based on a
dataset of 7129 genes where only two are relevant.

544

4Note that the special cases α = 0 and α = 1 correspond respectively to ridge regression and
lasso.
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Table 2 shows how the proposed method compares favorably in terms of545

median performance with the respect to the competing methods. Indeed, it is the546

best approach (or it is among the best) both in terms of cross-validation error as547

in terms test error. Even considering its maximum test error it is comparable to548

the other methods, keeping in mind that it selects models of extremely low (and549

above all correct) dimensions. For example, the Elastic Net is the without doubt550

the best in terms of test error but it selects a unique model of size 81 (in median)551

making its genetic interpretation much more complex. On the other hand, the552

proposed algorithm selects the correct dimension and, if considering the set of553

best models, would deliver a network which is more straightforward to interpret.554

6 Conclusions555

This paper has proposed a new model selection method with various advantages556

compared to existing approaches. Firstly, it allows the user to specify the criterion557

according to which they would like to assess the predictive quality of a model. In558

this setting, it gives an estimate of the dimension of the problem, allowing the user559

to understand how many gene expressions are needed in a model to well describe560

and predict the response of interest. Building on this, it provides a paradigmatic561

structure of the selected models where the selected covariates are considered as562

elements in an interconnected biological network. The approach can handle more563

variables than observations without going through dimension-reduction techniques564

such as pre-screening or penalization.565

The problem definition of this method and the algorithmic structure used to566

solve it deliver further advantages such as the ability to cope with noisy inputs,567

missing data, multicollinearity and the capacity to deal with outliers within the568

response and the explanatory variables (robustness).569

Some issues which must be taken into account concerning the proposed method570

are (i) its computational demand and (ii) its need for an external validation. As571

far as the first aspect goes, this can be considered indeed negligible compared to572

the time often required to collect the data it should analyse and can be greatly573

reduced according to the needs and requirements of the user. Concerning the574

second aspect, external validation is a crucial point which is often overlooked575

and is required for any model selection procedure. In this sense, the proposed576

method does not differ from any other existing approach in terms of additional577

requirements.578
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Having proposed a method with considerable advantages for gene selection579

using statistical ideas in model selection and machine learning, future research580

aims at studying the statistical properties of this approach to understand its581

asymptotic behaviour and develop the related inference tools.582

Acknowledgements583

We are very thankful to John Ramey (http://ramhiser.com/) for having pro-584

cessed the breast cancer and leukemia data set in Github and for having kindly585

answered our requests.586

We thank Maria-Pia Victoria-Feser (Research Center for Statistics, University587

of Geneva, Switzerland) for her valuable comments and inputs as well as her588

institutional support.589

Funding and Conflict of interest590

No conflict of interest can be declared.591

22

http://ramhiser.com/


References592

Andres, S. A. and Wittliff, J. L. (2012). Co-expression of genes with estro-593

gen receptor-α and progesterone receptor in human breast carcinoma tissue.594

Hormone molecular biology and clinical investigation, 12(1), 377–390.595

Azzalini, A. (1996). Statistical inference based on the likelihood , volume 68. CRC596

Press.597

Bernusso, V. A., Machado-Neto, J. A., Pericole, F. V., Vieira, K. P., Duarte,598

A. S., Traina, F., Hansen, M. D., Saad, S. T. O., and Barcellos, K. S. (2015).599

Imatinib restores vasp activity and its interaction with zyxin in bcr–abl leukemic600

cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(2),601

388–395.602

Bohrer, L. R., Chuntova, P., Bade, L. K., Beadnell, T. C., Leon, R. P., Brady,603

N. J., Ryu, Y., Goldberg, J. E., Schmechel, S. C., Koopmeiners, J. S., et al.604

(2014). Activation of the fgfr–stat3 pathway in breast cancer cells induces605

a hyaluronan-rich microenvironment that licenses tumor formation. Cancer606

research, 74(1), 374–386.607

Cantoni, E., Field, C., Mills Flemming, J., and Ronchetti, E. (2007). Longitudinal608

variable selection by cross-validation in the case of many covariates. Statistics609

in medicine, 26(4), 919–930.610

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). Choosing611

multiple parameters for support vector machines. Machine learning , 46(1-3),612

131–159.613

Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo,614

W.-L., Lapuk, A., Neve, R. M., Qian, Z., Ryder, T., et al. (2006). Genomic and615

transcriptional aberrations linked to breast cancer pathophysiologies. Cancer616

cell , 10(6), 529–541.617

Chou, J., Provot, S., and Werb, Z. (2010). Gata3 in development and cancer618

differentiation: cells gata have it! Journal of cellular physiology , 222(1), 42–49.619

Christer, H., Peter, K., Margaret, L. A., Stephen, H., and Kathryn, M. T. (2013).620

A mechanism for epithelial-mesenchymal transition and anoikis resistance in621

breast cancer triggered by zinc channel zip6 and stat3 (signal transducer and622

activator of transcription 3). Biochemical Journal , 455(2), 229–237.623

23



Chung, S. S., Giehl, N., Wu, Y., and Vadgama, J. V. (2014). Stat3 activation in624

her2-overexpressing breast cancer promotes epithelial-mesenchymal transition625

and cancer stem cell traits. International journal of oncology , 44(2), 403–411.626

Dı́az-Uriarte, R. and De Andres, S. A. (2006). Gene Selection and Classification627

of Microarray Data using Random Forest. BMC Bioinformatics , 7(1), 3.628

Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of Discrimination629

Methods for the Classification of Tumors using Gene Expression Data. Journal630

of the American statistical association, 97(457), 77–87.631

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for632

generalized linear models via coordinate descent. Journal of statistical software,633

33(1), 1.634
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A Adapting the algorithm to p700

In this subsection we provide two variants of the algorithm proposed in Section 3701

in order to adapt it to situations where p is either small or large.702

A.1 Adapting the algorithm to very large p703

In situations where p is extremely large and the initial step of the algorithm is not704

computationally feasible, this step can, for example, be replaced by the following705

modified initial step:706

A′. Large p Modified Initial Step: We start by augmenting our initial variable707

set M0 with d = 1 variable in order to construct the set I∗1 .708

1. Augment M0 with d = 1 variable selected uniformly at random in Jf .709

2. Construct B models of dimension 1 by repeating Step A′.1 B times.710

3. From Steps A′.1 and A′.2, construct the set I∗1 using (3). Go to Step711

B and let d = 2.712

A.2 Adapting the algorithm to small p713

On the other hand, when p is of reasonable size it may be possible to compute714

and evaluate all the
(
p
d′

)
models of dimension 2 ≤ d′ ≤ dmax. In such cases, it may715

be feasible to also modify the initial step of the proposed algorithm to a different716

modified initial step. A possible modification is the following:717

A′′. Small p Modified Initial Step: We start by augmenting our initial varable set718

M0 with d (1 ≤ d ≤ d′) variables in order to construct the sets I∗1 , ..., I∗d′ .719

1. We augment our initial variable set M0 with 1 variable in order to720

construct the set I∗1 .721

(i) Construct the p possible models obtained by augmentingM0 with722

each of the p available variables.723

(ii) Compute D̂(·, ·) for every model obtained in Step (i).724

(iii) From Steps (i) and (ii), construct the set I∗1 using (3). Go to Step725

A′′.2 and let d = 2.726
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2. We augment our initial model M0 set by d variables in order to727

construct the set I∗d .728

(i) Construct the
(
p
d

)
possible models and augment M0 with all vari-729

ables of these constructed models.730

(ii) Compute D̂ for every model obtained in Step (i).731

(iii) From Steps (i) and (ii), construct the set I∗d using (3) and let732

d = d+ 1. Go to Step A′′.2 (if d < d′) or Step B.1 (if d ≥ d′), with733

model dimension starting value d.734

B Complementary results on Acute Leukemia735

Table 3 reports the main biomarker hubs and related biomarker networks for the736

leukemia data set analysed in Section 4.1.737

Table 4 reports the performances of our implementation of the competing738

methods as described in Section 5. Unlike reported in Table 1, here the proposed739

method uses the classical tenfold-CV for D(·, ·) (K = 1). The other hyper-740

parameters are kept the same (i.e. α = 0.01, B = 20′000 and π = 0.5).741

742

C Breast Cancer743

The second data-set we analyzed is the breast cancer data presented in Chin744

et al. (2006). The main goal behind analyzing this data is to identify the estrogen745

receptor expression on tumor cells which is a crucial step for the correct manage-746

ment of breast cancer. Similarly to Table 4 in Appendix B, Table 5 reports the747

performances of our implementation of the competing methods and the proposed748

approach on the breast cancer data. For the sake of this comparison, the data-set749

was randomly split into training (60) and test (58) sets. The hyper-parameters of750

the proposed method are α = 0.01, B = 30′000, π = 0.5 and D(·, ·) is the classical751

tenfold-CV (K = 1).752

753
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Affy ID Gene ID Gene Function Biological
Process

NETWORK 1
Position 1 M27891 at ENSG00000101439 Cystatin C AA

Position 2 D80006 at ENSG00000114978 MOB kinase activator 1A AA
M20778 s at ENSG00000163359 Collagen, type VI, alpha 3 AA
U57316 at ENSG00000108773 K(lysine) acetyltransferase 2A TF
U90549 at ENSG00000182952 High mobility group nucleosomal binding domain 4 TF
X66899 at ENSG00000182944 Ewing Sarcoma region 1; RNA binding protein TF
M74088 s at ENSG00000134982 Adenomatous polyposis coli, DP2, DP3, PPP1R46 TF
U51166 at ENSG00000139372 thymine-DNA glycosylase TF
Z69881 at ENSG00000074370 ATPase, Ca++ transporting, ubiquitous IPT
U49248 at ENSG00000023839 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 IPT
X89109 s at ENSG00000102879 Coronin, actin binding protein, 1A IPT
HG2815-HT2931 at ENSG00000092841 Myosin, Light Chain, Alkali, Smooth Muscle (Gb:U02629) ACC
M94345 at ENSG00000042493 Capping protein (actin filament), gelsolin-like ACC
L33075 at ENSG00000140575 IQ motif containing GTPase activating protein 1 ACC
L07633 at ENSG00000092010 Proteasome (prosome, macropain) activator subunit 1 (PA28 alpha) APC
J03589 at ENSG00000102178 Ubiquitin-like 4A APC
D83920 at ENSG00000085265 FCN1, Ficolin-1 IR
X03934 at ENSG00000167286 CD3d molecule, delta (CD3-TCR complex) IR

NETWORK 2
Position 1 X95735 at ENSG00000159840 Zyxin ACC

Position 2 X04526 at ENSG00000185838 Guanine nucleotide binding protein (G protein), beta polypeptide 1 ST
D78577 s at ENSG00000128245 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase ST

activation protein, eta
U32645 at ENSG00000102034 E74-like factor 4 (ets domain transcription factor) TF
U93867 at ENSG00000186141 Polymerase (RNA) III (DNA directed) polypeptide C (62kD) TF
U29175 at ENSG00000127616 SWI/SNF related, matrix associated, actin dependent

regulator of chromatin, subfamily A, member 4
TF

Y00291 at ENSG00000077092 Retinoic acid receptor, beta TF
D17532 at ENSG00000110367 DEAD (Asp-Glu-Ala-Asp) Box Helicase 6 TF
HG3521-HT3715 at ENSG00000127314 Ras-Related Protein Rap1b TF
M83233 at ENSG00000140262 Transcription factor 12 TF
U94855 at ENSG00000175390 Eukaryotic translation initiation factor 3, subunit F TF
L07758 at ENSG00000136045 PWP1 homolog TF
D63506 at ENSG00000116266 Syntaxin binding protein 3 IR
M33680 at ENSG00000110651 CD81 molecule IR
HG1612-HT1612 at ENSG00000175130 Macmarcks CG
M92287 at ENSG00000112576 Cyclin D3 CG
M60483 rna1 s at ENSG00000113575 Protein Phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform CG
U84388 at ENSG00000169372 CASP2 and RIPK1 domain containing adaptor with death domain AA
S80437 s at ENSG00000169710 Fatty acid synthase

NETWORK 3
Position 1 M84526 at ENSG00000197766 Complement factor D (adipsin) IR

Position 2 M28130 rna1 s at ENSG00000169429 Interleukine-8 IR
Z32765 at ENSG00000135218 CD36 - Thrombospondin receptor IR

Table 3: Biomarker network organisation - leukemia data set - Lymphoblastic /
Myeloblastic leukemia. TF = Transcription/translation factor activity, DNA repair and
catabolism - AA = apoptotic activity - IR = immunity, inflammatory response (blood
coagulation, antigen presentation and complement activation) - IPT = intracellular
protein trafficking, transmembrane transport - ACC = actin activity, cytoskeleton
organisation - APC = protein catabolism - ST = intracelular signal transduction - CG =
cell growth, proliferation and division. Source: www. ensembl. org ; www. uniprot. org
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Method Tenfold CV Test error Number of
error genes

Support vector machine 0/38 5/34 2/7129
(with recursive feature elimination)

Penalised logistic regression 0/38∗ 4/34 3/7129
(with forward selection

followed by backward deletion)

Nearest shrunken centroids 3/38 1/34 372/7129

Elastic net 3/38 2/34 74/7129

Panning Algorithm (131)
Model a 0/38 1/34 2/7129
Model b 0/38 2/34 2/7129
Model c 0/38 2/34 2/7129
[. . . ] 2/7129

Table 4: Performances of our implementation of the competing methods on the leukemia
data-set. For the Penalised logistic regression(*), the in-sample error is reported instead
of the tenfold-CV error. For the Panning Algorithm, models “a” to “c” are three
examples out of the 131 models. All the 131 models have a tenfold-CV error of 0. The
best test error is 1 and the worst is 20.

Method Tenfold CV Test error Number of
error genes

Support vector machine 0/60 10/58 3/22215
(with recursive feature elimination)

Penalised logistic regression 0/60∗ 12/58 15/22215
(with forward selection

followed by backward deletion)

Nearest shrunken centroids 2/60 11/58 5/22215

Elastic net 3/60 11/58 196/22215

Panning Algorithm (241)
Model a 0/60 9/58 3/22215
Model b 0/60 9/58 3/22215
Model c 0/60 10/58 3/22215
[. . . ] 3/22215

Table 5: Performances of our implementation of the methods on the breast cancer
data-set. For the Penalised logistic regression (*), the in-sample error is reported instead
of the tenfold-CV error. For the proposed method, models “a” to “c” are three examples
out of 241 models. All the 241 models have a tenfold-CV error of 0. The best test error
is 9 and the worst is 28.
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Figure 3: Network representation of biomarkers selected from breast cancer data-set.
Colors represent the position of covariates within the model: green for first position (hub),
orange for second and purple for third. The width of the connecting lines is proportional
to the frequency with which two biomarkers appear in the same model. The size of
the circles is proportional to the frequency with which a biomarker is present within
the selected set of models. (Note: biomarker “209602 s at” is merged with biomarker
“209604 s at”).

Figure 3 shows the paradigmatic network identified by our method for the754

breast cancer data for which the selected model dimension is three (i.e. only three755

biomarkers are needed in a model to well classify the breast cancer). We used the756

hyper-parameters α = 0.01, B = 22′215, π = 0.05 and for D(·, ·) the tenfold-CV757

repeated K = 10 times was used. Table 6 provides the details of the networks758

based on the three main hubs and is to be interpreted as described in Section 4.1.759

This figure is a clear example of the advantages of the proposed method since,760

it not only selects a set of low-dimensional models with a high predictive power,761

but also provides the basis for a more general biological interpretation which takes762

into account interactions between different biomarkers as opposed to one single763
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model. The three main hubs identified through the proposed algorithm are:764

1. GATA binding protein 3 (GATA3): a transcription factor regulating the765

differentiation of breast luminal epithelial cells;766

2. IL6 Signal Transducer (IL6 ST): a pro-inflammatory cytokine signal trans-767

ducer;768

3. TBC1 domain family, member 9 (TBC1D9): a GTPase-activating protein769

for Rab family protein involved in the expression of the ER in breast tumors.770

GATA3 is known to regulate the differentiation of epithelial cells in mammary771

glands (see Kouros-Mehr et al., 2006) and is required for luminal epithelial772

cell differentiation. Its expression is progressively lost during luminal breast773

cancer progression as cancer cells acquire a stem cell-like phenotype (see Chou774

et al., 2010). IL6 ST has been linked to breast cancer epithelial-mesenchymal775

transition and cancer stem cell traits (see Chung et al., 2014), cancer-promoting776

microenvironment (see Bohrer et al., 2014) and resistance (see Christer et al.,777

2013). Moreover, this result supports the assertion by Taniguchi and Karin (2014)778

that IL6 ST and related cytokines are the critical lynchpins between inflammation779

and cancer. Finally, concerning the third biomarker, a recent publication by780

Andres and Wittliff (2012) has shown that the expression of the ER on the surface781

of breast tumor cells is highly correlated with the coordinate expression of different782

genes among which we can find TBC1D9 and GATA3. These two genes are not783

only considered as relevant genes according to the proposed method but as actual784

hubs of the “best” models which define the structure of the identified network.785

Instead of selecting a single model with many biomarkers whose interactions may786

be difficult to interpret, the proposed method selects a set of models with few787

biomarkers that allow them to be individually easy to interpret without losing788

the possibility of interpreting them within the larger network. This is what this789

paper intends with the expression “paradigmatic network” since by taking this790

approach it is possible to identify a set of biomarker families within which each791

biomarker is interchangeable with the others.792
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Affy ID Gene ID Gene Function Biological
Process

NETWORK 1
Position 1 209604 s at ENSG00000107485 GATA binding protein 3 TF

Position 2 205520 at ENSG00000115808 Striatin, calmodulin binding protein ER
Position 3 204902 s at ENSG00000168397 Autophagy related 4B, cysteine pepti-

dase (APG4B, AUTL1, DKFZp586D1822,
KIAA0943)

APC

221698 s at ENSG00000172243 C-type lectin domain family 7, member A IR
49049 at ENSG00000178498 Deltex 3, E3 ubiquitin ligase APC
209602 s at ENSG00000107485 GATA binding protein 3 TF
216604 s at ENSG00000003989 Solute carrier family 7 (cationic amino acid

transporter, y+ system), member 2
IPT

218877 s at ENSG00000066651 TRNA methyltransferase 11 homolog TF
201316 at ENSG00000106588 Proteasome (prosome, macropain) subunit,

alpha type, 2
APC

Position 2 208019 at ENSG00000147117 Zinc finger protein 157 TF
Position 3 219168 s at ENSG00000186654 PRR5 (Proline rich 5 (renal)) CG

219493 at ENSG00000171241 SHC SH2-domain binding protein 1 CG
204590 x at ENSG00000139719 Vacuolar protein sorting 33 homolog A APC
210021 s at ENSG00000152669 Cyclin O CG
208915 s at ENSG00000103365 Golgi-associated, gamma adaptin ear con-

taining, ARF binding protein 2
IPT

Position 2 214318 s at ENSG00000073910 Furry homolog ACC
Position 3 205766 at ENSG00000173991 Titin-cap (Telethonin) ACC

221696 s at ENSG00000060140 Serine/threonine/tyrosine kinase 1 CG
202498 s at ENSG00000059804 Solute carrier family 2 (facilitated glucose

transporter), member 3
STM

Position 2 201102 s at ENSG00000141959 Phosphofructokinase, liver STM
Position 3 208915 s at ENSG00000103365 Golgi-associated, gamma adaptin ear con-

taining, ARF binding protein 2
IPT

Position 2 201316 at ENSG00000106588 Proteasome (prosome, macropain) subunit,
alpha type, 2

APC

Position 3 212288 at ENSG00000187239 Formin binding protein 1 ACC

Position 2 209713 s at ENSG00000116704 Solute carrier family 35 (UDP-GlcA/UDP-
GalNAc transporter), member D1

STM

Position 3 208915 s at ENSG00000103365 Golgi-associated, gamma adaptin ear con-
taining, ARF binding protein 2

IPT

Position 2 212702 s at ENSG00000185963 Bicaudal D homolog 2 ACC
Position 3 221030 s at ENSG00000138639 Rho GTPase activating protein 24 ACC

Position 2 212956 at ENSG00000109436 TBC1 domain family, member 9 (with
GRAM domain)

IPT

Position 3 210221 at ENSG00000080644 Cholinergic receptor, nicotinic, alpha 3
(neuronal)

ITT

Position 2 214194 at ENSG00000083520 DIS3 mitotic control homolog (Ribosomal
RNA-processing protein 44)

TF

Position 3 221696 s at ENSG00000060140 Serine/threonine/tyrosine kinase 1 CG

Position 2 216814 at ENSG00000232267 ACTR3 pseudogene 2 PUP
Position 3 221103 s at ENSG00000206530 Cilia and flagella associated protein 44 ACC

Position 2 221030 s at ENSG00000138639 Rho GTPase activating protein 24 ACC
Position 3 201316 at ENSG00000106588 Proteasome (prosome, macropain) subunit,

alpha type, 2
APC

Position 2 221696 s at ENSG00000060140 Serine/threonine/tyrosine kinase 1 CG
Position 3 209287 s at ENSG00000070831 Cell division control protein 42 homolog ACC

Position 2 221901 at ENSG00000138944 KIAA1644 PUP
Position 3 208915 s at ENSG00000103365 Golgi-associated, gamma adaptin ear con-

taining, ARF binding protein 2
IPT

Position 1 209602 s at ENSG00000107485 GATA3 TF

Position 2 202951 at ENSG00000112079 Serine/threonine kinase 38 CG
Position 3 220443 s at ENSG00000116035 VAX2 (ventral anterior homeobox 2) TF

221955 at ENSG00000088256 Guanine nucleotide binding protein (G pro-
tein), alpha 11 (Gq class)

ITT

207303 at ENSG00000154678 Phosphodiesterase 1C, calmodulin-
dependent 70kDa

ST
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205152 at ENSG00000157103 Solute carrier family 6, member 1 ST
207518 at ENSG00000153933 Diacylglycerol kinase, epsilon 64kDa ST

Position 2 206270 at ENSG00000126583 Protein kinase C, gamma ST
Position 3 208964 s at ENSG00000149485 Fatty acid desaturase 1 FAM

201197 at ENSG00000123505 Adenosylmethionine decarboxylase 1 CG
201102 s at ENSG00000141959 ATP-dependent 6-phosphofructokinase,

liver type
STM

214972 at ENSG00000198408 Protein O-GlcNAcase (Meningioma ex-
pressed antigen 5 (hyaluronidase))

ST

Position 2 210477 x at ENSG00000107643 Mitogen-activated protein kinase 8 CG
Position 3 205907 s at ENSG00000127083 Osteomodulin STM

NETWORK 2
Position 1 212195 at ENSG00000134352 IL6 Signal Transducer ICT

Position 2 202951 at ENSG00000112079 Serine/threonine kinase 38 CG
Position 3 221955 at ENSG00000088256 Guanine nucleotide binding protein (G pro-

tein), alpha 11 (Gq class)
ITT

207303 at ENSG00000154678 Phosphodiesterase 1C, calmodulin-
dependent 70kDa

ICT

NETWORK 3
Position 1 212956 at ENSG00000109436 TBC1 domain family, member 9 (with

GRAM domain)
IPT

Position 2 202951 at ENSG00000112079 Serine/threonine kinase 38 CG
Position 3 205152 at ENSG00000157103 Solute carrier family 6, member 1 ST

207518 at ENSG00000153933 Diacylglycerol kinase, epsilon 64kDa ST

Position 2 216814 at ENSG00000232267 ACTR3 pseudogene 2 PUP
Position 3 221103 s at ENSG00000206530 Cilia and flagella associated protein 44 ACC

Table 6: Biomarker network organisation - breast cancer data set - Estrogen Receptor
- Breast Cancer.
TF = Transcription/translation factor activity, DNA/RNA repair and catabolism - ER
= estrogen receptor activity - APC = autophagy - protein catabolism - IR = immu-
nity, inflammatory response (blood coagulation, antigen presentation and complement
activation) - CC = cell/cell communication - ST = intracellular signal transduction,
protein glycosylation - CG = cell growth and division - IPT = intracellular protein
trafficking , transmembrane amino-acid transporter - ACC = actin activity, cytoskele-
ton organisation, cell projection - STM = sugar transport and metabolism - ITT =
ion transmembrane transport, transmembrane signaling systems - PUP = pseudogene,
uncharacterized protein - FAM = fatty acid metabolism. Source: www. uniprot. org ;
www. ncbi. nlm. nih. gov/ gene
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