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An important goal in clinical and statistical research is properly
modeling the distribution for clustered failure times which have a
natural intra-class dependency and are subject to censoring. We han-
dle these challenges with a novel approach that does not impose re-
strictive modeling or distributional assumptions. Using a logit trans-
formation, we relate the distribution for clustered failure times to
covariates and a random, subject-specific effect. The covariates are
modeled with unknown functional forms, and the random effect may
depend on the covariates and have an unknown and unspecified distri-
bution. We introduce pseudo-values to handle censoring and splines
for functional covariate effects and frame the problem into fitting an
additive logistic mixed effects model. Unlike existing approaches for
fitting such models, we develop semiparametric techniques that esti-
mate the functional model parameters without requiring specifying
or estimating the random effect distribution. We show both theoret-
ically and empirically that the resulting estimators are consistent for
any choice of random effect distribution and any dependency struc-
ture between the random effect and covariates. Lastly, we illustrate
the method’s utility in an application to a Huntington’s disease study
where our method provides new insights into differences between mo-
tor and cognitive impairment event times in at risk subjects.
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1. Introduction. Clustered failure time data are commonly collected
in biomedical research. Examples include the onset ages among family mem-
bers for neurodegenerative disorders (Marder et al., 2003); and the time until
first signs appear from an infectious disease in clusters of hospitals (Huang et
al., 2010). In these examples and others, a key interest is properly modeling
the clustered failure time distribution which has several challenges: within
cluster dependency, right censoring, and the unknown relationship between
covariates and failure times. We address these challenges with a new estima-
tion framework that is simple and uses minimal assumptions to reduce the
chance of model misspecification. The research focus is often on the failure
time distributions themselves instead of hazard functions, so in this regard,
we directly model the clustered failure time distribution. We use a time-
varying, proportional odds model with functional covariates and a random
effect. The random effect is free of distributional assumptions and is possibly
correlated with some or all covariates. Over a range of time points, we cast
the proportional odds model into an additive logistic mixed effect model
using pseudo-values (Logan et al., 2011) to handle censoring and splines
for the functional covariate effects. We then develop semiparametric meth-
ods to consistently estimate the model parameters without estimating or
specifying working models for the random effect distribution. Our approach
thus contributes a flexible new estimation framework that circumvents the
challenges of clustered failure time data.

1.1. Motivating example. Our work is motivated by an observational
study of Huntington’s disease (HD) that evaluated failure-type events repre-
sentative of the disease progression. HD is an autosomal dominant, neurode-
generative disease caused by an unstable expansion of the cytosine-adenine-
guanine (CAG) trinucleotide repeat in the huntingtin gene (Huntington’s
Disease Collaborative Research Group, 1993). More CAG repeats lead to
earlier onset of impairments (Ross and Tabrizi, 2010). In 2005-2011, the
Cooperative Huntington’s Observational Research Trial (COHORT) study
was conducted on genetically predisposed individuals. For each participant,
the study recorded (potentially censored) failure-type events representative
of the disease course: the age when an individual first experienced a motor
sign (i.e., chorea, dystonia, rigidity), and the age when cognitive impair-
ments first impacted daily life. The data are an example of clustered failure
times: for each subject, a cluster is formed by the two event times measured
on that subject. A key interest is comparing the conditional odds of these
events occurring by age t given the subject’s CAG repeat-length and gen-
der. Large conditional odds in favor of one event occurring before the other
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helps to inform the natural history of the disease. This is critical for plan-
ning clinical trials, deciding the timing of intervention focus, and prognostic
counseling.

For cluster i = 1, . . . , n and member j = 1, . . . ,mi, we model the clustered
failure time distribution. Let Tij denote failure times, Xij ∈ R and Zij ∈ Rp1
denote covariates, and Ri(·) denote a random, cluster-specific effect. In the
HD example, cluster i includes event times from the ith participant: age
of first motor impairment (Ti1) and age when cognitive impairments first
impact daily life (Ti2). Associated covariates are CAG repeat lengths (X)
and gender (Z), and a random effect Ri(·) is associated with each subject.
The clustered failure time distribution is then modeled as

logit[pr{Tij ≤ t|Xij ,Zij , Ri(t)}] = α(Xij , t) +ZT
ijβ(t) +Ri(t)(1.1)

where logit(p) = log{p/(1 − p)}. The above is a time-varying, proportional
odds model with random effect and the overall objective is to estimate the
functional parameters α(X, t) ∈ R and β(t) ∈ Rp1 . For the HD example,
α(X, t) represents the time-varying effect of CAG repeats and β(t) the gen-
der effect. Estimating these functional parameters allows us to compare
event times through conditional odds ratios. For example, with HD, given
the subject covariates and random effect, we may compute the conditional
odds of a motor impairment occurring by age t compared to a cognitive im-
pairment occurring by age t via exp{α̂(X, t) + β̂(t)Z} (see Section 4). The
resulting quantity helps to identify which event in the disease course has
better odds of occurring first.

A few remarks of the model in (1.1) are in order. First, the model is pre-
sented for scalarXij , but it can easily accomodate vectorXij = (Xij1, . . . , Xijp)

T

by replacing α(Xij , t) with the summation
∑p

k=1 α(Xijk, t). This generality
introduces more computation but does not change the essence of the pro-
posed method. Second, we separate covariates Xij and Zij to distinguish
between assumptions of their effects. Specifically, for Xij we make nonpara-
metric assumptions and for Zij , we make parametric assumptions where
the choice between assumptions is driven by the application and the flexi-
bility desired. One could consider only nonparametric covariate effects (i.e.,
only α(X, t) terms) or only parametric effects (i.e., only ZTβ(t) terms), but
our method does not fundamentally change. Thus, because these two gen-
eralities do not fundamentally change our method, we proceed under the
presentation in equation (1.1).

1.2. Relationship to existing models and methods. Model (1.1) differs
from the existing proportional odds model for univariate censored data (Ben-
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nett, 1983; Murphy et al., 1997) and for multivariate data with random ef-
fects (Zeng et al., 2005). These models are not designed for time-varying or
functional parameters as is ours, and extensions are non-trivial. A significant
challenge with the model in (1.1) is estimating α(X, t),β(t) in the presence
of the unobserved random effect Ri(t). This same challenge exists for pro-
portional hazards frailty models (Clayton, 1978) which is another model for
clustered failure time distributions. The standard in proportional hazards
frailty models is to specify a distribution for the random effect (i.e., frailty)
such as inverse gaussian (Henderson and Oman, 1999), log normal (Ripatti
and Palmgren, 2000), and gamma (Chen and Lio, 2008) for its mathematical
convenience. Empirical studies have shown that minimal bias and efficiency
loss occur under an assumed gamma frailty when the true frailty distribution
is inverse Gaussian or positive stable (Hsu et al., 2007) or specific discrete
distributions (Glidden and Vittinghoff, 2004). Despite these encouraging
robustness results, they do not hold for population-averaged proportional
hazards models when there is strong within-cluster dependency or when co-
variates and random effects are dependent (Heagerty and Kurland, 2001).
In fact, because it is very difficult to model the distribution of the random
effects conditional on the covariates, random effects are routinely assumed
to be independent of covariates and modeled with a marginal model. But
doing so can bias the subsequent estimation (Garcia and Ma, 2015).

Concerns for misspecification of the random effect (or frailty) distribution
have motivated a range of graphical and numerical goodness-of-fit tests (Shih
and Louis, 1995; Chen and Bandeen-Roche, 2005). Unfortunately, these tests
are only applicable for certain cluster sizes and no test indicates the correct
distribution when a poor fit is detected. Various approaches have been de-
veloped to directly address misspecification. These include modeling the
random effect as a mixture of normals (Lesaffre and Molenberghs, 2001), a
Student-t (Congdon, 1994), skew-t (Lee and Thompson, 2008), and other
families of parametric distributions (Piepho and McCulloch, 2004). None
of the parametric approaches, however, solves the problem completely since
parametric forms do not span the entire range of possibilities. Semiparamet-
ric or nonparametric methods (e.g., Geerdens et al., 2013) better handle the
misspecification problem, but also require more intense computation.

All aforementioned methods target at the issue caused by the misspeci-
fication of the random effect distribution. When population average effects
are of interest, one way to bypass the random effect is to consider a dif-
ferent modeling approach and to work with marginal models (Chen et al.,
2010). A marginal model does not impose any particular form of depen-
dency. Hence, it is different from our model (1.1), which is a conditional
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model that captures dependency by conditioning on the random effect. The
interpretation of parameters in marginal models also differs from that of a
conditional model with random effects, and the two are not comparable for
nonlinear models (e.g. logit-link models as in equation (1.1)). In this work,
our parameters of interest are conditional time-dependent log odds ratios
instead of marginal parameters. Lastly, our approach has some resemblance
with that of Efron (1988) in that we will use logistic regression techniques
for survival curve estimation. However, our approach applies to clustered
failure time data which that of Efron (1988) does not.

1.3. Proposed method. Given the aforementioned limitations of existing
methods, we propose here a new, flexible approach that allows Ri(·) to de-
pend on covariates and have a distribution that is unknown and unspecified.
Our approach uses pseudo-values to handle censoring and splines for func-
tional covariate effects. The combination leads to a simple semiparametric
estimation framework that circumvents the challenges of having the ran-
dom effect distribution be unknown and unspecified. The remainder of the
paper is as follows. Section 2 describes the main technical results of the pro-
posed method including asymptotic properties. Section 3 demonstrates the
method’s numerical effectiveness against competing approaches in terms of
different clustering structures, random effect distributions, and dependen-
cies between the random effect and model covariates. Section 4 provides a
novel analysis of clinical differences between motor and cognitive impairment
event times in individuals genetically predisposed to Huntington’s disease.
Section 5 concludes the paper. All proofs and additional simulations are de-
ferred to Supplementary Material. An R implementation of the procedure
is available upon request.

2. Main Estimation.

2.1. Estimation setup. Our main objective is to estimate α(x, t),β(t)
in equation (1.1) in the presence of unobserved random effects Ri(t) with
unknown distribution. At first glance, one may want to place restrictions on
α(x, t),β(t) and Ri(t) to ensure that pr{Tij ≤ t|Xij ,Zij , Ri(t)} is a non-
decreasing function of t. However, this does not necessarily hold since Ri(t)
is random at different t values and cannot be required to be monotone.
Therefore, we do not impose any restrictions on α(x, t),β(t) and Ri(t).

We propose to estimate α(x, t),β(t) at different t = t0 values and then
use linear interpolation. The t0 values are chosen to spread evenly across the
range of Sij = min(Tij , Cij), where Tij denotes the failure time and Cij the
right-censoring time. (See Step 1 in the algorithm of Section 2.2 for how to
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choose the number of t0 values). Throughout, we assume Cij is independent
of Tij and covariates Xij ,Zij . Lastly, we let ∆ij = I(Tij ≤ Cij) denote the
censoring indicator.

We will transform the model in (1.1) to an additive logistic mixed effects
model by introducing splines for functional covariate effects and jackknife
pseudo-values to handle censoring as described next.

2.1.1. Splines for functional parameters. At each t0, we approximate the
unknown functional form α(x, t0) using a B-spline of order r with N internal
knots. We let

ξ1 = · · · = ξr < ξr+1 < · · · < ξr+N < ξN+r+1 = · · · = ξN+2r(2.1)

where ξr+1, . . . , ξN+r is the sequence of internal knots. We also let the dis-
tance between neighboring knots be hk = ξk+1 − ξk for r ≤ k ≤ N + r, and
let h = maxr≤k≤N+r hk. In practice, the knots are often placed at equally
spaced sample quantiles of the predictor X, and a common order is r = 4
corresponding to a cubic B-spline. In our empirical examples, we found that
this knot selection and order worked well.

Based on the order and the number of internal knots, the number of
B-spline basis functions is p2 = N + r, and α(x, t0) is approximated by

α̃(x, t0) =

p2∑
k=1

Bk(x)ak(t0) = BT(x)a(t0),(2.2)

where a(t0) is a p2-dimensional spline coefficient vector, and B(·) are spline
basis functions that do not include the intercept. We can ignore the intercept
as it is common to all failure times and thus, by definition, is absorbed into
the random intercept.

2.1.2. Pseudo-value approach for censoring. Pseudo-value regression (Lo-
gan et al., 2008, 2011) is a simple method to perform estimation for incom-
plete data due to right-censoring. In our case, the response of interest is
the binary event status Yij(t0) ≡ I(Tij ≤ t0) motivated by modeling the
distribution function via logistic regression (Efron, 1988). The binary event
Yij(t0) is observable when ∆ij = 1, or when ∆ij = 0 and Cij ≥ t0 for which
I(Tij ≤ t0) = 0 since t0 ≤ Cij < Tij . Otherwise, when ∆ij = 0 and Cij < t0,
Yij(t0) is unobservable.

To replace the unobservable Yij(t0), the idea is to construct jackknife
pseudo-values that seemingly ignore dependencies in the data, but are later
related to covariates and the random effect in a regression model that
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re-captures the dependency. The construction of the pseudo-values uses
Kaplan-Meier estimators designed for independent data, but are consistent
even for dependent data (Ying and Wei, 1994). We show below that the
pseudo-values satisfy properties which allow us to (i) relate the pseudo-
values to covariates and random effect through a regression model; and (ii)
use the regression model to unbiasedly estimate the model parameters even
when pseudo-values are used in place of the unknown binary events.

We now define two types of jackknife pseudo-values depending on the
nature of event type.

Example 1. Single event type. Suppose cluster i contains information
about a common event. For example, cluster i corresponds to a family and Tij
represents the time to a common event (e.g., disease-onset age) for each fam-
ily member j. Another example is when cluster i corresponds to an individual
and Tij are recurrent event times (e.g., tumor occurrences) for individual i.

Let M =
∑n

i=1mi. The jackknife pseudo-value to substitute Yij(t0) is

Y ∗ij(t0) = MF̂ (t0)− (M − 1)F̂−(ij)(t0).

Here, F̂ (t0) = 1− Ŝ(t0) with Ŝ(t0) the Kaplan-Meier estimator based on all
M events, and F̂−(ij)(t0) is a similar estimator after removing observation
j from cluster i.

The pseudo-value in Example 1 is a special case of pseudo-values con-
structed for clustered data with competing risks but there is no competing
outcome (Logan et al., 2011). When there is no censoring prior to t0, Y ∗ij(t0)
simplifies to I(Tij ≤ t0) (Logan et al., 2011, sec. 2.3). Otherwise, under
censoring, Y ∗ij(t0) satisfies two properties:

(P1) For clusters, i 6= k, pseudo-values Y ∗ij(t0) and Y ∗k`(t0) are approximately
independent as M tends to infinity.

(P2) The conditional expectation of Y ∗ij(t0) given Xij ,Zij and Ri(t0) satis-
fies limM→∞E{Y ∗ij(t0)|Xij ,Zij , Ri(t0)} = pr{T ≤ t0|Xij ,Zij , Ri(t0)}.

Justification of (P1) and (P2) is provided in Logan et al. (2011) and a
summary of the key results is in Section S.1.1 (Supplementary Material).
The properties imply that (asymptotically) the relationship between pseudo-
values and the covariates and random effect is exactly the conditional dis-
tribution pr{T ≤ t0|Xij ,Zij , Ri(t0)} in equation (1.1); see property (P2).
As shown in Klein et al. (2014, chap. 10), this implies that one may con-
struct unbiased estimating equations using the pseudo-values in place of the
unobservable binary event indicators. The unbiased estimating equations
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(see Proposition 3) will then lead to consistent estimators for the model
parameters of interest.

Example 2. Multiple event types. Suppose cluster i contains informa-
tion about multiple event types. For example, cluster i corresponds to an
individual and Tij represents measures of multiple event types j on the same
individual (i.e., age of first motor impairment, age of first cognitive impair-
ment as in the HD application, Section 4). The jackknife pseudo-value to
substitute the unobservable Yij(t0) is

Y †ij(t0) = nF̂j(t0)− (n− 1)F̂
−(i)
j (t0).

Here, F̂j(t0) = 1 − Ŝj(t0) with Ŝj(t0) the Kaplan-Meier estimator using

only information for event j from all n clusters, and F̂
−(i)
j (t0) is a similar

estimator after removing cluster i.

The setting of Example 2 resembles that for competing risks except that
the occurrence of one event does not preclude the observation of another.
This is exactly the setting of the HD application (Section 4). One observes
the age of first motor impairment and age of first cognitive impairment as
the disease progresses, but the occurrence of either impairment does not
preclude the other. In Example 2, because the event types are different
and non-competing, it does not make sense to combine information across
event types when computing pseudo-values (as done in Example 1). Instead,
when handling different, non-competing event types, pseudo-values are con-
structed using event-specific Kaplan-Meier estimators (i.e., 1 − Ŝj(t0)) as
specified in Example 2.

Properties of Y †ij(t0) are similar to those for Y ∗ij(t0) except for the nota-
tional changes to reflect the event-specific Kaplan-Meier estimators. First,
when there is no censoring prior to t0, Y †ij(t0) is the binary indicator of

whether event type j for person i occurred prior to t0. Second, Y †ij(t0) sat-
isfies

(P1†) For clusters, i 6= k, the pseudo-values Y †ij(t0) and Y †kj(t0) are approxi-
mately independent as n tends to infinity.

(P2†) The conditional expectation of Y †ij(t0) given Xij ,Zij and Ri(t0) satis-

fies limn→∞E{Y †ij(t0)|Xij ,Zij} = pr{Tj ≤ t0|Xij ,Zij , Ri(t0)} where
pr{Tj ≤ t0|Xij ,Zij , Ri(t0)} denotes the conditional distribution for
event type j.

Justification of properties (P1†) and (P2†) is in Section S.1.2 (Supplemen-
tary Material) and follows the proof in Logan et al. (2011). As with Exam-



ROBUST MIXED-EFFECTS MODEL 9

ple 1, properties (P1†) and (P2†) mean that one may construct regression
models relating the pseudo-values to model covariates with pseudo-values
appropriately replacing the unobservable I(Tij ≤ t0). Estimating equations
constructed from these regression models will also be unbiased and hence
yield consistent estimators for parameters in the conditional distribution
which is linked to pseudo-values by (P2†).

A few remarks about the pseudo-values in Examples 1 and 2 are in order.
Properties (P2) and (P2†) follow because we assume that censoring does
not depend on covariates. This assumption, however, can be relaxed by con-
structing pseudo-values that are covariate-dependent (Andersen and Perme,
2010). Suppose censoring depends on a discrete covariate U with values
1, 2, . . . ,mu. Then, for Example 1, in place of the Kaplan-Meier estimator
F̂ (t0) = 1 − Ŝ(t0), one would use 1 − Ŝk(t0) where Ŝk(t0) is the Kaplan-
Meier estimate based on subjects with covariate U = k. Also, in place of
M , one would use Mk corresponding to the number of subjects with co-
variate U = k. Likewise for Example 2, let Ŝjk(t0) be the Kaplan-Meier
estimate for event type j based on subjects with covariate U = k, and nk be
the number of subjects with covariate U = k. Then, in Example 2, one re-
places F̂j(t0) = 1− Ŝj(t0) with 1− Ŝjk(t0) and replaces n with nk. Andersen
and Perme (2010) showed that this approach corrects the bias introduced
when covariate-dependent censoring is ignored, but induces higher variabil-
ity than pseudo-values based on the standard Kaplan Meier estimators. The
approach of Andersen and Perme (2010) is easy to accommodate when U
is discrete and can be adapted to continuous U via kernel weights. How-
ever, the method quickly becomes onerous when U is multivariate for both
discrete and continuous cases. These cases require a careful and separate
investigation that is beyond the scope of the current paper.

Lastly, the jackknife pseudo-values as defined in the Examples are not
guaranteed to be in [0, 1]. This is important considering that they are ulti-
mately used to model a conditional distribution function. When the pseudo-
values fall outside this interval, we can round them to the nearest 0 or 1.
In our empirical studies, the proportion of jackknife pseudo-values that fall
outside [0, 1] was less than 7% (see Table S.1, Supplementary Material), and
consistency appears unaffected. Logan et al. (2008) made similar observa-
tions for identical pseudo-values as proposed here.

2.2. Estimation procedure. We now describe how we relate the pseudo-
values to the covariates in an additive logistic mixed-effect model. Following
Section 2.1.2, let Yij(t0) be I(Tij ≤ t0) when the binary indicator is observ-
able and a pseudo-value otherwise. The computation of the pseudo-value
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depends on the problem (see Examples 1 and 2).
For ease in notation, we describe the estimation procedure at a fixed

t = t0, so that the notation Yij(t0), α(x, t0), a(t0), β(t0), simplifies to Yij ,
α(x), a, β, respectively. Let θ = (aT,βT)T be a vector of length q = p1 +
p2; Y i = (Yi1, . . . , Yimi)

T and Xi = (Xi1, . . . , Ximi)
T be mi-dimensional

vectors, and Zi = (Zi1, . . . ,Zimi) be a p1 × mi matrix. Then, under the
B-spline model in (2.2), our model in (1.1) satisfies

E(Yij |Xij ,Zij , Ri) =
exp{η(Xij ,Zij ;θ) +Ri}

1 + exp{η(Xij ,Zij ;θ) +Ri}
, j = 1, . . . ,mi,

where η(Xij ,Zij ;θ) = BT(Xij)a+ZT
ijβ. The above expression is the con-

ditional mean for a logistic mixed effects model, and holds whether Yij is an
observed binary indicator or a pseudo-value. With f denoting (conditional)
densities described by the subindices, the density for the ith cluster is

fY ,X,Z(yi,xi, zi;θ) =

∫
fY |X,Z,R(yi|xi, zi, ri;θ)fX,Z,R(xi, zi, ri)dµ(ri)

=

∫
exp

{ηT(xi, zi;θ) + 1T
mi
ri}yi −

mi∑
j=1

log[1 + exp{η(xij , zij ;θ) + ri}]


×fX,Z,R(xi, zi, ri)dµ(ri).(2.3)

Here, µ denotes the dominating measure, 1mi is a mi-dimensional vector
of ones and η(xi, zi;θ) = {η(xi1, zi1;θ), . . . , η(ximi , zimi ;θ)}T. We assume
the joint density fX,Z,R(x, z, r) is a valid, yet unspecified distribution with
X,Z and R not necessarily independent.

An immediate advantage of the representation in (2.3) is that it reveals
the connection between fY ,X,Z(y,x, z) and generalized linear latent variable
models (Huber et al., 2004; Conne et al., 2010) with latent variable R. We
show in Section S.1.3 (Supplementary Material) that for such a model, a
consistent estimator for θ results from treating fX,Z,R(x, z, r) as a nuisance
parameter and factoring out its effect with semiparametric projection. The
result is summarized in the proposition below.

Proposition 1. For the joint density in (2.3), whether Y i consists of
observable binary indicators or pseudo-values, a consistent estimator for
θ is the root of

∑n
i=1 Seff(Y i,Xi,Zi;θ) = 0 where Seff(Y ,X,Z;θ) =

Sθ(Y ,X,Z) − E{h(X,Z, R)|Y ,X,Z}. The q-dimensional score vector
Sθ(Y ,X,Z) = ∂logfY ,X,Z(Y ,X,Z;θ)/∂θ and h is an unknown q-dimensional
function satisfying

E{Sθ(Y ,X,Z)− E{h(X,Z, R)|Y ,X,Z}|X,Z, R] = 0.(2.4)
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The proof of Proposition 1 is in Section S.1.3 (Supplementary Material).
The proposition indicates that forming the estimating equation requires solv-
ing for h in (2.4), but this is an ill-posed problem (Tsiatis and Ma, 2004).
Fortunately, Proposition 1 combined with a simple decomposition of Y i al-
lows us to circumvent the ill-posed problem.

Proposition 2. Define Wi = 1T
mi
Y i =

∑mi
j=1 Yij, V i = (0, Imi−1)Y i =

(Yi,2, . . . , Yi,mi)
T,

Ai =

(
1 1

T

mi−1

0 Imi−1

)
.

Under this transformation, Y i = A−1
i (Wi,V

T

i )
T

and a simpler, consistent
estimator for θ is the root of

∑n
i=1 Seff(Y i,Xi,Zi;θ) = 0, where

Seff(Y ,X,Z;θ) = E{Uθ(Y ,X,Z, R)|W,V ,X,Z}
−E{Uθ(Y ,X,Z, R)|W,X,Z}.

Here Uθ(Y ,X,Z, R) = ∂logfY |X,Z,R(Y |X,Z, R;θ)/∂θ and fY |X,Z,R(y |
x, z, r) is the first product term of the integrand in (2.3).

The construction ofW and V comes from how one may isolate the random
effect terms in (2.3). The isolation comes from two special properties (proofs
are in Section S.1.4 of Supplementary Material). The first property is that
given (W,X,Z), the terms R and V are conditionally independent. The
second property is that for any q-dimensional function g(W,X,Z) when-
ever E{g(W,X,Z)|X,Z, R} = 0, we have that g(W,X,Z) = 0. Applying
these properties to the ill-posed equation in (2.4) removes the outer inte-
gral with the random effect and leads to the simplified estimating equation
in Proposition 2. A proof of this result is in Section S.1.4 (Supplementary
Material).

The results in Proposition 2 are fundamental to simplifying our method.
They establish that the estimating equation solely involves conditional ex-
pectations of Uθ(Y ,X,Z, R). While such a calculation normally requires
integrating out the unknown random effect, we show next that we can ac-
tually bypass this step since the random effect drops out.

Proposition 3. With Wi and V i as in Proposition 2, the estimating
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equations for the logistic mixed effects model are free of Ri and take the form

n∑
i=1

Seff,a(Y i,Xi,Zi;θ) =

n∑
i=1

mi∑
j=1

{B(Xij)−B(Xi1)}{Vij − E(Vij |Wi,Xi,Zi;θ)}

n∑
i=1

Seff,β(Y i,Xi,Zi;θ) =

n∑
i=1

mi∑
j=1

(Zij −Zi1){Vij − E(Vij |Wi,Xi,Zi;θ)}.

The proof for Proposition 3 (Section S.1.5 of Supplementary Material)
follows from the form of fY |X,Z,R, the first product term in the integrand in
(2.3). Specifically, direct calculation shows thatUθ(Y ,X,Z, R) = ∂logfY |X,Z,R(Y |
X,Z, R;θ)/∂θ is composed of two terms: the first a function of (Y ,X,Z)
and the second a function of (X,Z, R). This separation allows us to elimi-
nate the contribution of R via the special properties of W and V mentioned
above. Because R and V are conditionally independent given (W,X,Z),
then for any function k(X,Z, R), we have E{k(X,Z, R)|W,V,X,Z} −
E{k(X,Z, R)|W,X,Z} = 0. Hence, the second term in Uθ(Y ,X,Z, R),
which is the only one containing R, does not contribute at all to the esti-
mating equations. For this reason, the estimating equations in Proposition 3
are free of the unknown R, and the need to integrate out the random effect
is completely eliminated.

The only main computation in Proposition 3 is forming E(Vij |Wi,Xi,Zi;θ).
In Section S.1.6 (Supplementary Material), we show that this expectation is

E(Vij |Wi,Xi,Zi;θ) =

∫
R(vi)

vij exp{ηT(Xi,Zi;θ)A−1
i (wi,v

T
i )T}dµ(vi)∫

R(vi)
exp{ηT(Xi,Zi;θ)A−1

i (wi,vT
i )T}dµ(vi)

,

where R(vi) denotes the range of possible values of vi = (yi2, . . . , yimi)
T

such that
∑mi

i=1 yij = wi. When the event times are not censored, Yij takes
values in {0, 1} and the expectation E(Vij |Wi,Xi,Zi;θ) is a discrete sum.
Otherwise, Yij is a pseudo-value and takes values in the interval [0, 1]; the
expectation will then involve a mix of discrete sums and integrations to
account for the proper range of Yij . Determining the appropriate rangeR(vi)
can be cumbersome if handled by brute-force especially when mi is large.
However, in Section S.1.6 (Supplementary Material), we provide a systematic
approach that uses the built in function adaptIntegrate in R (Johnson and
Narasimhan, 2013) to handle this complex problem.

A sumary of our method to estimate α(x, t),β(t) at each t = t0 is provided
below.

Algorithm for estimating α(x, t),β(t).
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1. Choose t01, . . . , t0L evenly spaced across the range of Sij = min(Tij , Cij)
for failure times Tij and censoring times Cij . In general, we recommend
choosing L ≥ 5 as it worked well in our empirical examples. The exact
choice of L for a particular application will influence how smoothly
β(t), α(x, t) is approximated over time t, where larger L will generally
lead to more wiggly estimates of β(t), α(x, t) compared to smaller L.

2. For each t0 in Step 1, do the following:

(a) Set Yij(t0) = I(Tij ≤ t0) when ∆ij = 1 or ∆ij = 0 and Cij ≥ t0.
Otherwise, when ∆ij = 0 and Cij < t0, let Yij(t0) be the pseudo-

value Y ∗ij(t0) (Example 1) or Y †ij(t0) (Example 2) depending on
the nature of event type.

(b) Choose a set of spline basis functions B(·) that does not include
the intercept and has its knots at equally spaced sample quantiles
of the observed Xij values, i = 1, . . . , n, j = 1, . . . ,mi.

(c) Set η(Xij ,Zij ;θ) = BT(Xij)a+ZT
ijβ.

(d) SetWi =
∑mi

j=1 Yij and V i = (Yi2, . . . , Yi,mi)
T. Compute E(Vij |Wi,Xi,Zi;θ)

for all i, j. See Section S.1.6 for a systematic implementation.

(e) Obtain â and β̂ as the roots of the estimating equation in Proposi-
tion 3. Then set β̂(t0) = β̂ and α̂(xk, t0) = BT(xk)â for different
xk values evenly spread along the range of x.

Repeat Step 2 separately for each t0`, ` = 1, . . . , L to obtain estimates
α̂(xk, t0`) and β(t0`). For estimates at other t values within the range of
t01, . . . , t0L, use linear interpolation along t.

A few remarks are in order. First, our model and algorithm currently
assume common α(x, t) and β(t). With minor modifications, we can gener-
alize the method to different functional coefficients such as αj(Xij , t) and
βj(t). In this case, at each t0, Step 2(c) has η(Xij ,Zij ,θ) = BT

j (Xij)aj +

ZT
ijβj , where Bj(·) are potentially different sets of B-splines for each event

type j. Also, the estimating equations in Step 2(e) are now 2m-many with
Seff,aj

(Y i,Xi,Zi;θ) = {B(Xij)−B(Xi1)}{Vij −E(Vij |Wi,Xi,Zi;θ)} and
Seff,βj

(Y i,Xi,Zi;θ) = (Zij −Zi1){Vij − E(Vij |Wi,Xi,Zi;θ)}.
Second, our method can also adapt to non-event specific covariates with

minor modifications. Consider the case that mi = 2 for all i. One interest
is modeling the effects of non-event specific covariates such as baseline co-
variates. For example, we could have Xi1 = Xi2 ≡ Xi,Zi1 = Zi2 ≡ Zi, so
the covariates are the same for j = 1 and j = 2. Because the covariates
are non-event specific, common functions of Xi,Zi form part of the random
effect and must be absorbed into Ri(t). In this case, our method identifies
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and estimates the logit differences of covariate effects. That is, we model

logit[pr{Ti1 < t|Xi,Zi, Ri(t)}] = α(Xi, t) +ZT
i β(t) +Ri(t),(2.5)

logit[pr{Ti2 < t|Xi,Zi, Ri(t)}] = Ri(t),

and estimate α(x, t), and β(t) which represent effects of a covariate on the
conditional log odds ratio of events Ti1 < t and Ti2 < t given random
effects and covariates. The parametrization in (2.5) is seen in some joint
modeling of longitudinal outcomes and censored outcomes literature (Ri-
zopoulos et al., 2011), where longitudinal model components enter a sur-
vival model through shared random frailty terms. Such parametrization al-
lows flexible estimates of α(x, t),β(t) which are important in comparing the
odds of events as in the HD application (Section 4). In terms of estima-
tion, our algorithm remains the same except Step 2(c) uses ηi1(Xi,Zi;θ) =
BT(Xi)a + Ziβ and ηi2(Xi,Zi;θ) = 0, and the estimating equations in
Step 2(e) are Seff,a(Y i, Xi,Zi;θ) = B(Xi){Vi − E(Vi|Wi, Xi,Zi;θ)} and
Seff,β(Y i, Xi,Zi) = Zi{Vi − E(Vi|Wi, Xi,Zi;θ)}.

It is important to note that interpretations of marginal effects in equation
(2.5) are not possible. Because we make no distributional assumptions about
the random effect, we cannot integrate over it to obtain the marginal effect
of the covariates. Therefore, α(x, t),β(t) solely represent the effect of the
logit-differences between the distributions.

Third, asymptotic properties of α̂(x, t) and β̂(t) are developed in Ap-
pendix A. In summary, α̂(x, t) and β̂(t) are shown to be asymptotically
consistent and normally distributed. We establish the asymptotic variability
of each, but in practice, we recommend a bootstrap variability as described
in Section 2.3.

2.3. Features of the proposed estimator. A major advantage of our ap-
proach is that the construction of the score vectors Seff,a and Seff,β in Propo-
sition 3 completely breaks free of the unknown density fX,Z,R(x, z, r). This
means we can construct the score vectors without estimating the unknown
random effect distribution or postulating potentially incorrect parametric
forms. Doing so is useful in practice since it is almost impossible to know
the random effect distribution a priori.

A second advantage is that our approach yields consistent estimators
whether the random effect and covariates are independent or not. Tradi-
tionally, the random effect is considered independent of the covariates, but
such an assumption can be invalid in biological studies. For example, in
a model for repeatedly measured apathy responses, Heagerty and Kurland
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(2001) showed that the variability of the random effect depended on the co-
variate gender. Govindarajulu et al. (2007) likewise demonstrated that the
random effect in a frailty model for the Framingham Heart Study depended
on patient covariates. An appropriate model should thus accommodate de-
pendency between the random effect and covariates when necessary.

Testing for dependency between covariates and the random effect can be
accomplished using the Hausman (1978) chi-squared test which tests the null
hypothesis that the covariates and the random effect are independent. At a
single time point t0, the test involves comparing results from our proposed
method which makes no restrictions on the dependency between (X,Z)
and R(·), and a method which imposes independence between (X,Z) and
R(·). A method that is a competitor to ours but assumes independence be-
tween (X,Z) and R(·) is the generalized additive mixed model (Wood, 2008,
GAMM). At each t = t0, GAMM views the model in (1.1) as an additive
mixed effects model and estimates parameters using a penalized likelihood
and automatic selection of multiple smoothing parameters to capture the
functional parameter shapes. We show in Section 3 that when (X,Z) and
R(·) are independent, GAMM estimates are consistent and otherwise, they
are not. It is this flip between consistent and inconsistent estimates that
drives the results of the Hausman chi-squared test.

To form the Hausman chi-squared test at t = t0: (i) compute the estimates

obtained from our method denoted as ψ̂(X, t0) = {α̂(X, t0), β̂
T

(t0)}T ; and
(ii) compute the estimates obtained from GAMM denoted as ψ̂IND(X, t0) =

{α̂IND(X, t0), β̂
T

IND(t0)}T where the notation IND emphasizes the indepen-
dence assumption between (X,Z) and R(·). Under the null hypothesis, both
ψ̂(X, t0) and ψ̂IND(X, t0) are consistent, and under the alternative, ψ̂(X, t0)
is consistent and ψ̂IND(X, t) is not. Therefore, a statistically significant dif-
ference between ψ̂(X, t0) and ψ̂IND(X, t0) is evidence in favor of depen-
dency between (X,Z) and R(·). The Hausman chi-squared test statistic is
{ψ̂(X, t0)− ψ̂IND(X, t0)}T [var{ψ̂(X, t0)}− var{ψ̂IND(X, t0)}]−1{ψ̂(X, t0)−
ψ̂IND(X, t0)}, and it follows a chi-squared distribution with k degrees of
freedom, where k = rank[var{ψ̂(X, t0)} − var{ψ̂IND(X, t0)}]. See Hausman
(1978) for the derivation of the test statistic.

Extending the Hausman chi-squared test over a range of time points t0
can be achieved with graphical methods. Plot ψ̂(X, t) from our method and
ψ̂IND(X, t) from GAMM over t = t01, . . . , t0L using linear interpolation to
connect estimates between the t0`’s, ` = 1, . . . , L. In addition, plot the 95%
confidence band associated with each estimate. A confidence band for our
method is obtained using a bootstrap approach. For GAMM, it is formed
using estimated variances from Bayesian principles implemented in the mgcv
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package in R (Wood, 2008). For our method, a bootstrap data set is obtained
by randomly selecting n clusters (with replacement), keeping the cluster
membership in tact. That is, we randomly select among the cluster groups,
not among the individual cluster members. We then apply our algorithm to
each bootstrap data set and obtain the corresponding parameter estimates
at t01, . . . , t0L. The 95% bootstrap confidence band is then formed by first
computing the percentile bootstrap confidence interval at each t0` (i.e., the
2.5th and 97.5th percentiles of the bootstrap estimates at each t0`), and then
connecting the bootstrap confidence interval across the t0`’s using linear
interpolation. In our application, we found B = 100 bootstrap data worked
well.

After forming the 95% confidence band for estimates from our method
and from GAMM, we then compare the two to asses the null hypothesis that
the covariates and random effect are independent. If the confidence bands
overlap, the null hypothesis is not rejected. Otherwise, if the confidence
bands do not overlap at least at one t, then the null hypothesis is rejected
and thus there is evidence of dependency between the covariates and random
effect. We apply this graphical test to our Huntington’s disease application
in Section 4.

Although the Hausman chi-squared test and its graphical version are help-
ful for determining dependency between covariates and the random effect,
it does not specify how to model the dependency. Existing methods that
do model such dependency involve multiple mixed effects models (Heagerty
and Kurland, 2001) or intensive Monte Carlo Markov Chain computations
(Govindarajulu et al., 2007), both of which are computationally burdensome.
Our approach is advantageous in this respect in that it is computationally
simple and does not require testing for dependency beforehand.

A last advantage is our method’s simplicity in constructing estimating
equations. The most involved computation is the expectation E(Vij |Wi,Xi,Zi;θ)
which is, at worst, a combination of discrete sums and numerical integra-
tions that can be systematically carried out in R with the adaptIntegrate
function (see Supplementary Material S.1.6).

3. Simulation Study.

3.1. Simulation design. We evaluated the performance of our method
for different random effect distributions and different dependencies between
the random effect and model covariates. Because at each t = t0 we view the
model in (1.1) as an additive logistic mixed effects model, a competitor is
the generalized additive mixed model (Wood, 2008, GAMM) as described
in Section 2.3. GAMM is well developed theoretically (Wood, 2008) and
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computationally (i.e., mgcv package in R), but, compared to our method,
assumes that the random effect is normally distributed and independent
of model covariates. Our simulation study is designed to investigate the
sensitivity of these assumptions. We show results for clustered failure times
formed from single event types (Example 1) here, and from multiple event
types (Example 2) in the Supplementary Material (Section S.2).

To assess sensitivity to non-normally distributed random effects, we con-
sidered different distributional forms for R(t). We generated R(t) = R where
(i) R is Normal(0, 1); (ii) R is a mixture with 50% from Normal(−1, 1) and
50% from Normal(1, 0.252); (iii) R is a mixture with 50% from Normal(−1, 1)
and 50% from Beta(4, 2); and (iv) R is Uniform[−2.5, 2.5]. Setting (i) is the
standard assumption in GAMM, while the others strongly deviate from the
normality assumption. Covariates Xij were generated from a Uniform[0,1]
distribution and Zij from a Uniform[1,2] distribution.

To assess sensitivity to dependence between covariates and the random
effect, we generated Ri using the distributions (i)-(iv) above and added
another complexity. We set Ri(t) = Ri + bi, and Xij = X∗ij + bi where bi
is Normal(0, 0.052) and X∗ij is Uniform[0, 1]. Lastly, we generated Zij from
Uniform[Ri − 1, Ri + 1]. Under this setup, both Xij and Zij depend on Ri.

In all settings, we set n = 500,mi = 3 and simulated 1000 data sets from
model (1.1) with α(x, t) = 3 sin(πx)log(t/50), β(t) = 2log(t/50), both of
which are nonlinear. At each t, the generated random intercept Ri(t) were
centered, in accordance with the assumptions of GAMM, and event times
are 40% censored from an independent, uniformly distributed censoring time
Cij . We applied our method and GAMM to estimate α(x, t),β(t) across 18
equally spaced times t in [40,50] and 100 equally spaced x-values in [0,1].

We evaluated bias, empirical variance, estimated variance and 95% cover-
ages at specific t- and x-choices (t = 46, x = 0.50) and averaged across t in
[40, 50] and x in [0, 1]. For bias, we report pointwise bias at t = 46, x = 0.50.
We also report bias over a range of t (or x values) through average abso-

lute bias, calculated via
∑L

`=1 |β̂(t0`)− β0(t0`)|/L, and similarly for α(x, t).

Here, β0(t0`) is the truth and β̂(t0`) is the average estimate based on 1000
simulations.

Lastly, estimated variances for our method are bootstrap-based as de-
scribed in Section 2.3. For GAMM, estimated variances are obtained using
the implemented Bayesian variance calculations in the mgcv package in R.

3.2. Simulation results. Regardless of the random effect’s distribution
or dependency between covariates and random effect, our method unbias-
edly estimates α(x, t) and β(t). This is evident from the negligible average
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absolute bias of parameter estimates (Table 1), negligible pointwise bias (Ta-
ble 2), and Figure 1. In Figure 1, estimates from our method (red dashed)
overlap the true curves (black solid) when R ∼ Normal(0, 1). Similar unbi-
asedness is observed for different distributions of R. The estimated bootstrap
variances of our method also closely match the empirical variances (Table 2)
and the 95% coverage probabilities match the nominal levels in all settings.
These numerical and graphical results exemplify that our method is robust
to the true and unknown properties of the random effect and its distribution.

Interestingly, GAMM estimates are not sensitive to deviations from non-
normally distributed random effects. Average absolute biases (top-half of
Table 1) and pointwise biases (left-half of Table 2) of the estimated pa-
rameters remain negligible for all distributional assumptions of the random
effect. The empirical robustness to non-normal random effect distributions
is similar to that seen in Glidden and Vittinghoff (2004), Hsu et al. (2007)
and Gorfine et al. (2012). They observed robustness in gamma frailty models
when the true frailty was not gamma distributed.

Despite this observed robustness to distributional deviations, GAMM is
quite sensitive whenX andR are dependent, and Z andR are dependent. (In
simulations not shown, dependence betweenX and Z, but not withR did not
appear to affect the performance of GAMM.) The bias is visually evident in
Figure 1 (right half) where the GAMM estimates (blue dashed-dotted curve)
completely miss the true α(x, t) and β(t) curves (black solid curves) across
x and t. The strong biases lead to 95% coverage probabilities that are far
from the nominal level and lead to inflated mean squared errors (MSE). In
all settings where the covariates and random effect are dependent, the MSE
for GAMM estimates are nearly twice as large as the MSE for estimates
from the proposed method (Tables 1 and 2). These results illustrate that
GAMM is limited to situations where covariates and random effects are
independent. However, such an assumption is not always valid in biological
studies (Heagerty and Kurland, 2001; Govindarajulu et al., 2007).

Evident in all settings (Tables 1, 2) is that our method has more vari-
ability than GAMM. This larger variability is expected and is an artifact
of our assumption that the random effect has an unknown and unspecified
distribution. The fact that about 7% of jackknife pseudo-values fall outside
[0,1] (Table S.1 in Supplementary Material) does not contribute to the larger
variability. As evidence of this, we re-performed our simulation study at 0%
censoring in which case, all event times are observed and no pseudo-values
are introduced into the estimation process. Results in Table S.4 (Supplemen-
tary Material) show that even without pseudo-values, our proposed method
has larger variability than does GAMM. This indicates that the unspecified
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distribution of the random effects drives the increased variability.
Stronger model assumptions such as those in GAMM always reduce the

variability of the parameter estimates. Though GAMM’s efficiency initially
appears advantageous, its effect is actually the opposite, especially when the
estimates are biased. When estimates are biased and have small variability,
this leads to a false conclusion that the researcher treats with great con-
fidence as correct. This is worse than any method which yields confidence
intervals that indeed have a promised chance of covering the truth. In addi-
tion, when GAMM estimates are biased, the resulting mean squared errors
are always larger than those from our method, indicating that the high bias
outweighs our method’s larger variability.

4. Application to a Huntington’s Disease (HD) Study.

4.1. Clinical research problem. We applied our method and GAMM to
COHORT, a large observational study of HD that evaluated failure-type
events representative of the disease course. From 2005-2011, COHORT col-
lected information from 1,293 symptomatic or at-risk adults, including gen-
der, number of CAG repeats, and the ages when certain events occurred
that most impacted a person’s normal life. These events include

1. Age when a subject first experiences a motor sign (i.e., chorea, dys-
tonia, rigidity). Reported ages are either from (i) a trained rater, or
(ii) the subject if the rater did not observe a motor sign but the sub-
ject did, or (iii) a family member if neither the rater nor the subject
observed a motor sign but a family member did. Among the 1,293
subjects, 774 subjects (59.8%) experienced a first motor sign during
the COHORT study, and 519 did not (i.e., age of first motor sign had
40.1% censoring). For those who experienced a first motor sign, 75.1%
had the ages of first motor sign determined by a rater, 19.8% were
self-determined, and 5.2% were determined by a family member.

2. Age when cognitive impairments first impact daily life. This age is
patient-reported in response to “At what age did cognitive impairment
impact your daily life?”, and we report the first age of occurrence.
Among the 1,293 subjects, 385 subjects (29.8%) experienced impacting
cognitive impairment and 908 subjects did not (i.e., age of impacting
cognitive impairment had 70.2% censoring).

The data are an example of clustered failure times where, for each sub-
ject, a cluster is formed by the two event types measured on that subject.
For subject i, we let Ti1 be the age of first motor sign, and Ti2 be the age
of impacting cognitive impairment. Censoring for both events is largely ad-
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ministrative (i.e., the study period ends before the event of interest occurs),
so assuming covariate independent censoring, as our method does, is appro-
priate here. We let Zi denote gender (Zi=1 corresponds to a male) and Xi

denote the subject’s CAG repeat-length. Forty-four percent of the subjects
were males, and we focused on those individuals with CAG repeat-lengths
39 to 50 since very few had repeats outside this range (81% of subjects had
less than 45 CAG repeats).

Given that the covariates are non-event specific, the data are modeled
using model (2.5). The model will help determine whether a motor sign
or cognitive sign has higher odds of occurring first. Knowing which sign
occurs first facilitates prioritizing these features as endpoints in clinical trial
planning and assists in disease management.

The parameters α(x, t), β(t) in (2.5) represent the logit-differences be-
tween the distributions for T1, T2. That is, α(x, t) represents the difference
in how CAG repeat-length affects the log odds of the dichotomized time T1

compared to that of T2. Likewise, β(t) represents the difference in how gen-
der affects the same two log odds of dichotomized survival times. We discuss
the importance of these functional parameters in relation to HD in Section
4.2. Using our approach and GAMM, we estimated α(x, t),β(t) over the
range of CAG repeat-lengths and for t in 35 to 60 (age measured in years)
at t0 = 35, 40, · · · , 60. CAG repeats (X) were standardized to be in [0,1]
and we estimated α(x, t) at 11 equally spaced points in this interval. Esti-
mated variances for β̂(t) and α̂(x, t) from our method were obtained using
100 bootstrap replicates. We found that less than 5% of the pseudo-values
computed for the HD data fell outside [0,1] (Table S.5, Supplementary Ma-
terial). This observation is similar to pseudo-values computed for simulated
data in Section 3.

4.2. Results. Prior to applying our method to the COHORT study, we
confirmed that our method performed well at 70% censoring similar to that
observed in COHORT (see Section S.2, Supplementary Material).

We evaluated for dependence between the random effect and covariates
by comparing results from our proposed method and GAMM. As described
in Section 2.3, dependence is evident if the 95% confidence bands of the
estimates from our method and GAMM do not always overlap. Figure 2
shows results from both methods for β̂(t) and α̂(x, t) over t in [35,60] and
at x = 40 CAG repeats. While the 95% confidence bands clearly overlap for
β̂(t), they do not for α̂(x, t) when t ≥ 40. The non-overlapping confidence
bands is evidence of dependence between the covariates and random effect.
From our simulation results (Section 3), this means that results from GAMM
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will be biased as it is not designed to handle dependence between covariates
and the random effect. We now discuss and compare results from our method
and GAMM.

Our method found that β(t) is not significantly different from zero (Table
3, left upper half). This implies that gender has the same effect on the
likeliness of a first motor sign occurring before age t (35 ≤ t ≤ 60) as it
does on impacting cognitive impairment occurring before age t. The result
agrees with earlier studies where no gender effect was found in the mean
survival time of HD patients (Harper, 1996) and HD progression (Marder
et al., 2000).

Our method estimated α(x, t) to be positive and, for the most part, sig-
nificantly different from zero (Table 3, left lower half). Thus, it is more likely
that a first motor sign occurs before a patient self-reports impacting cogni-
tive impairment. The implication of the positive α(x, t) is best understood
through the conditional odds ratio comparing the odds of observing a first
motor sign before age t to the odds of impacting cognitive impairment before
t given CAG repeat length, gender, and random intercept. The conditional
odds ratios, computed as exp{α̂(X, t) + β̂(t)Z}, are given in Table 4 (first
column) and indicate odds in favor of observing a first motor sign. For ex-
ample, for a male with 40 CAG repeats, the conditional odds of a first motor
sign occurring before age 50 is 4.264 (95% CI: 1.671, 12.013) times the odds
of impacting cognitive impairment occurring before age 50. For a male with
46 CAG repeats and at age 50, the conditional odds ratio increases to 14.171
(95% CI: 4.61, 53.88). This conditional odds in favor of a first motor sign is
similarly observed with females.

These conditional odds highlight the challenges of relying on self-reported
cognitive signs. Some clinical studies suggest that cognitive impairments
emerge years before a motor-diagnosis and, perhaps, even before first motor
impairments (Stout et al., 2011). In contrary, our results estimate odds to
favor a first motor impairment. But, progression of cognitive decline is grad-
ual and often too slow to detect from a subject’s perspective (Stout et al.,
2011). This means there is often a long delay before a subject realizes his
cognitive impairment is impacting his daily life. This delay could sensibly
lead to observing a motor impairment first. Alternative measures that do
not focus on the impact of cognitive impairments but rather on the effect
itself include mild cognitive impairment (Duff et al., 2010): when a subject’s
cognitive exam score is 1.5 standard deviations below the mean of the cog-
nitive scores for healthy controls. Examining mild cognitive impairment for
COHORT is difficult, however, since the study is primarily a retrospective
one, and so the cognitive exam scores for subjects are unavailable. Therefore,
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future work with prospective studies assessing mild cognitive impairment in
addition to ages of first motor symptom would be of interest.

Results from GAMM (Table 3, right, lower half) generally agreed with our
method, except that α̂(x, t) was at times negative and statistically signifi-
cant, and at other times, positive and statistically significant. Understanding
these sign changes is again best illustrated through conditional odds ratios
(Table 4, second column). GAMM suggests that for a male with 40 CAG
repeats, the conditional odds of experiencing a first motor sign before age 50
is 0.637 times (95% CI: 0.507, 0.766) times the odds of impacting cognitive
impairment occurring before age 50. The result reverses at 46 CAG repeats
in that the conditional odds ratio is 3.377 (95% CI: 2.454, 4.3). Similar re-
sults are observed for females. Thus, according to GAMM, having 40 CAG
repeats increases the conditional odds of impacting cognitive impairment
occurring, whereas having 46 CAG repeats increases the odds of experienc-
ing a first motor sign. The flip between cognitive and motor signs having
increased coditional odds could be an artifact of the discrepancies observed
with GAMM (see Section 3) in that it is sensitive to violations of indepen-
dence between covariates and random effects. Or the flip could be due to an
age-effect as subjects with 40 CAG repeats are, on average, 20 years older
than those with 46 repeats.

4.3. Practical impacts on HD research. In summary, results from our
method indicate higher conditional odds of a first motor impairment oc-
curing before impacting cognitive impairment. However, given the nuances
of self-reporting measures, our work highlights the need for better cogni-
tive assessments that are objective and that can be measured prospectively.
This is important for deciding whether to prioritize cognitive or motor im-
pairments in a clinical trial, as well as deciding how best to intervene with
disease impairments (i.e., whether treatments should target cognitive or mo-
tor impairments first). Active work in this area is ongoing (Duff et al., 2010;
Paulsen and Long, 2014).

In addition, the difference effects for CAG repeats, α(x, t), are nonlinear
and vary over x and t (see Figure 3). This result adds a new time-component
to the current modeling standard in the clinical literature (Langbehn et
al., 2004) which models the effect of CAG repeat-length independent of
time. Our graphical results can thus supplement the existing findings from
Langbehn et al. (2004) to inform clinicians on the the changes CAG repeats
have over time.

5. Discussion. To model the distribution of clustered failure times, we
present a novel approach that does not model the intra-class correlation with
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a parametric random effect or assume independence between the random
effect and covariates. The covariates are modeled using unknown functional
forms. The random effect is kept free of any distributional assumptions and is
allowed to correlate with some or all covariates. The pseudo-value (Logan et
al., 2011) viewpoint allows us to simultaneously handle censoring and derive
semiparametric techniques to bypass estimation that directly involves the
random effects.

Our estimation procedure is computationally simple, and does not require
estimating nor positing a working model for the unknown random effect dis-
tribution. Our approach thus circumvents the challenges of modeling depen-
dencies between covariates and random effects which can be detected with
a Hausman chi-squared test or graphically, but cannot be precisely defined.
Standard methods (e.g., GAMM) assume independence between covariates
and random effects, but they can be severely biased (Section 3) or lead to
inconclusive results in real applications (e.g., whether motor or cognitive
signs in HD have higher odds of occurring first).

Our estimation procedure avoids the problems of modeling the random
effect distribution because the estimating equation in Proposition 3 does not
have any terms that include the random effect. Our model is an example
of a generalized linear mixed effect model which does not include a disper-
sion parameter nor random slopes. In the general case where the dispersion
parameter is unknown and/or the model has a random slope, the ensuing
estimating equation would have terms involving the random effect. Form-
ing the estimating equation in this case would then require a working model
for the random effect distribution. The computation becomes more involved,
but Ma and Genton (2010) contain details for potential working models that
can simplify the calculations.

The estimating equations in Step 2(d) of our algorithm is solved sepa-
rately for each t0. That is, we do not simultaneously solve L-many sets of
estimating equations formed at t01, . . . , t0L. This is because we do not as-
sume smoothness of the parameters α(x, t) and β(t) as functions of t. Hence,
theoretically speaking, there is no further information that could be gained
by considering all time points simultaneously.

A potential extension worth pursuing is developing an estimation proce-
dure when we assume the functional parameters are smooth over time t. Two
potential solutions are kernel method and spline method. With the former,
we could combine the current estimation equations or combine the current
estimators at each t via a weighted average, where the weights are formed by
kernels centered at t0. This would allow us to borrow information around t0
in estimating the parameter values at t0. With the latter, improvement could
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be achieved by using splines to express the parameter functions into linear
combination of spline bases, and then estimating the common parameters
across all the different t values.

When implementing these solutions, computational complications may
arise. For example, we would need to consider how best to choose the band-
width, how many time points should be considered in the estimation, and
how should the distribution of time points be considered to guarantee a gain
instead of a loss. We would also need to make careful decisions on how to
choose the bases spline functions, as well as how best we could take into ac-
count the correlation of the estimators across the different t’s. These issues
require future investigation.

SUPPLEMENTARY MATERIAL

Technical Proofs and Empirical Results
(doi: COMPLETED BY THE TYPESETTER). The supplementary mate-
rial contains theoretical derivations, additional simulation study results, and
additional results for the Huntington’s disease application.

http://dx.doi.org/COMPLETED BY THE TYPESETTER
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Table 1
Average results for clustered failure times with single event types. 40% censoring, 1000
simulations. Average absolute bias, empirical variance, 95% coverage probabilities and
mean squared error (MSE) when the true random intercept is as specified. β̂(·) denotes
results averaged over t; α̂(0.50, ·) is results at x = 0.50 averaged over t, and α̂(·, 46) is

results at t = 46 averaged over x.

Proposed Method GAMM Method

β̂(·) α̂(0.50, ·) α̂(·, 46) β̂(·) α̂(0.50, ·) α̂(·, 46)
X,Z,R independent

R ∼ Normal(0, 1)
abs bias 0.029 0.040 0.034 0.021 0.032 0.014
emp var 0.075 0.354 0.317 0.015 0.043 0.042
95% cov 0.950 0.944 0.948 0.951 0.948 0.951

MSE 0.075 0.356 0.319 0.016 0.044 0.042
R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)

abs bias 0.009 0.044 0.021 0.012 0.028 0.005
emp var 0.089 0.391 0.358 0.016 0.046 0.044
95% cov 0.946 0.946 0.948 0.946 0.947 0.951

MSE 0.089 0.393 0.358 0.016 0.047 0.044
R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)

abs bias 0.029 0.037 0.032 0.051 0.050 0.041
emp var 0.082 0.290 0.273 0.014 0.041 0.039
95% cov 0.944 0.948 0.947 0.932 0.945 0.947

MSE 0.083 0.292 0.274 0.017 0.044 0.041
R ∼ Uniform[−2.5, 2.5]

abs bias 0.015 0.062 0.055 0.011 0.017 0.005
emp var 0.096 0.426 0.400 0.013 0.036 0.035
95% cov 0.952 0.950 0.950 0.950 0.947 0.950

MSE 0.097 0.430 0.403 0.013 0.037 0.035

(X,Z) and R dependent
R ∼ Normal(0, 1)

abs bias 0.026 0.031 0.012 1.260 1.672 1.714
emp var 1.018 1.257 1.161 0.106 0.224 0.230
95% cov 0.949 0.947 0.949 0.010 0.037 0.024

MSE 1.019 1.258 1.162 1.693 3.023 3.377
R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)

abs bias 0.090 0.038 0.032 2.002 2.498 2.534
emp var 1.046 1.337 1.264 0.164 0.292 0.304
95% cov 0.944 0.944 0.945 0.000 0.001 0.001

MSE 1.055 1.338 1.265 4.174 6.537 7.179
R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)

abs bias 0.027 0.034 0.020 1.252 1.741 1.800
emp var 0.880 1.201 1.066 0.088 0.207 0.223
95% cov 0.947 0.948 0.946 0.001 0.015 0.014

MSE 0.881 1.203 1.066 1.658 3.251 3.692
R ∼ Uniform[−2.5, 2.5]

abs bias 0.028 0.018 0.014 2.104 2.802 2.869
emp var 0.947 1.278 1.134 0.177 0.384 0.411
95% cov 0.948 0.945 0.947 0.000 0.000 0.001

MSE 0.948 1.278 1.134 4.608 8.252 9.225
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Table 2
Pointwise results for clustered failure times with single event types. 40% censoring, 1000

simulations. Pointwise bias, empirical variance, estimated variance, 95% coverage
probabilities and mean squared error (MSE) for β̂(t) and α̂(x, t) at t = 46 and x = 0.50

when the true random intercept is as specified.

X,Z,R independent (X,Z) and R dependent
Proposed Method GAMM Method Proposed Method GAMM Method

β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46)
R ∼ Normal(0, 1)

bias -0.034 -0.051 0.017 0.016 -0.010 -0.026 1.277 -1.710
emp var 0.078 0.355 0.014 0.040 1.040 1.571 0.107 0.227

est var 0.083 0.367 0.013 0.036 1.037 1.153 0.041 0.092
95% cov 0.953 0.947 0.928 0.942 0.952 0.898 0.000 0.003

MSE 0.084 0.369 0.013 0.036 1.038 1.153 1.672 3.017

R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)
bias -0.018 -0.048 -0.004 0.002 0.057 0.018 2.014 -2.534

emp var 0.089 0.393 0.015 0.044 1.094 1.659 0.166 0.301
est var 0.096 0.421 0.014 0.039 1.108 1.254 0.047 0.090

95% cov 0.948 0.959 0.935 0.936 0.936 0.901 0.000 0.000
MSE 0.096 0.424 0.014 0.039 1.111 1.255 4.101 6.511

R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)
bias -0.021 -0.049 0.045 0.042 -0.013 -0.071 1.279 -1.795

emp var 0.080 0.297 0.013 0.037 0.955 1.477 0.091 0.211
est var 0.083 0.369 0.013 0.036 0.925 1.157 0.035 0.091

95% cov 0.953 0.969 0.926 0.936 0.943 0.910 0.000 0.000
MSE 0.083 0.372 0.015 0.038 0.925 1.162 1.671 3.312

R ∼ Uniform[−2.5, 2.5]
bias -0.016 -0.098 0.010 0.003 0.030 -0.063 2.137 -2.874

emp var 0.095 0.418 0.012 0.034 1.070 1.509 0.190 0.408
est var 0.102 0.449 0.012 0.034 1.051 1.296 0.040 0.093

95% cov 0.958 0.959 0.956 0.946 0.949 0.923 0.000 0.000
MSE 0.102 0.458 0.012 0.034 1.052 1.300 4.607 8.350
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Table 3
Parameter estimates for COHORT study when comparing distributions for age of first

motor sign to age when cognitive impairment first impacts daily life. Estimated β̂(t) and
α̂(x, t) and 95% confidence intervals (in parentheses) for different CAG repeats and ages

t in years.

CAG Age Proposed Method GAMM Method

β̂(t)
35 0.147 (-1.729, 1.308) 0.399 (0.079, 0.72)
40 -0.173 (-1.003, 0.453) 0.225 (-0.066, 0.515)
45 -0.249 (-1.445, 0.424) 0.016 (-0.235, 0.268)
50 0.388 (-0.468, 1.199) -0.01 (-0.232, 0.212)
55 0.135 (-0.552, 0.766) 0.019 (-0.189, 0.226)
60 0.077 (-0.406, 0.604) 0.102 (-0.097, 0.302)

α̂(x, t)
40 35 1.527 (-0.771, 4.012) -0.604 (-0.817, -0.391)
40 40 0.684 (-0.294, 1.869) -0.784 (-0.977, -0.591)
40 45 0.785 (0.022, 1.892) -0.764 (-0.921, -0.607)
40 50 1.063 (0.362, 1.802) -0.441 (-0.57, -0.312)
40 55 1.37 (0.806, 1.899) -0.156 (-0.271, -0.041)
40 60 0.719 (0.168, 1.087) 0.043 (-0.065, 0.151)
46 35 1.229 (0.455, 2.09) 1.075 (0.773, 1.378)
46 40 1.424 (0.586, 1.964) 1.127 (0.852, 1.402)
46 45 1.315 (0.54, 2.078) 0.99 (0.731, 1.249)
46 50 2.264 (1.303, 3.301) 1.227 (0.972, 1.482)
46 55 2.601 (1.846, 3.344) 1.441 (1.183, 1.699)
46 60 2.012 (1.403, 2.693) 1.697 (1.433, 1.96)
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Table 4
Conditional odds ratio estimates for COHORT study when comparing distributions for
age of first motor sign (T1) to age when cognitive impairment first impacts daily life

(T2). Estimated odds ratio (OR) for T1 < t compared to T2 < t conditional on gender,
fixed CAG, and fixed random effect. Estimates shown along with 95% confidence

intervals (in parentheses) for different CAG repeats and ages t in years.

CAG Age Proposed Method GAMM Method

OR for T1 < t compared to T2 < t for females
40 40 1.982 (0.745, 6.484) 0.456 (0.368, 0.544)
40 45 2.193 (1.023, 6.631) 0.466 (0.393, 0.539)
40 50 2.894 (1.436, 6.064) 0.643 (0.56, 0.726)
40 55 3.935 (2.24, 6.676) 0.856 (0.757, 0.954)
46 40 4.152 (1.797, 7.127) 3.086 (2.237, 3.935)
46 45 3.724 (1.716, 7.99) 2.692 (1.995, 3.388)
46 50 9.618 (3.68, 27.145) 3.411 (2.54, 4.283)
46 55 13.471 (6.335, 28.341) 4.227 (3.136, 5.318)

OR for T1 < t compared to T2 < t for males
40 40 1.667 (0.779, 4.587) 0.571 (0.414, 0.729)
40 45 1.709 (0.754, 4.959) 0.474 (0.362, 0.585)
40 50 4.264 (1.671, 12.013) 0.637 (0.507, 0.766)
40 55 4.504 (2.653, 10.813) 0.872 (0.711, 1.033)
46 40 3.492 (1.657, 6.928) 3.863 (2.713, 5.013)
46 45 2.902 (1.358, 6.947) 2.736 (1.967, 3.505)
46 50 14.171 (4.61, 53.88) 3.377 (2.454, 4.3)
46 55 15.422 (7.23, 36.989) 4.307 (3.128, 5.486)
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Fig 1. Clustered failure times with single event types and R ∼ Normal(0, 1). 40% cen-
soring, 1000 simulations. True parameter functions (black solid curve), mean of 1000
simulation estimates from our proposed method (red dashed line) and from GAMM (blue
dashed-dotted line).
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Fig 2. Comparison of α̂(x, t), β̂(t) from our proposed method (red solid curve) and GAMM
(blue dashed-dotted curve) for COHORT study. 95% confidence bands (dotted lines) overlap
for α̂(x, t) when t ≥ 40 which, from the Hausman test, indicates that the covariates and
random effects are dependent.
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APPENDIX A: ASYMPTOTIC PROPERTIES

We describe the asymptotic properties for α̂(x, t) and β̂(t) at any t; for
notational simplicity, we drop the variable t and use α̂(x), β̂. Recall that
we approximate α(x) using the B-spline approximation in (2.2) with order r
and N internal knots, denoted as ξr+1, . . . , ξN+r. We have also assumed that
the distance between neighboring knots is hk = ξk+1− ξk for r ≤ k ≤ N + r
and h = maxr≤k≤N+r hk.

To derive the asymptotic properties, we make the following regularity
conditions.

(C1) The density function fX(x) of random variable X has a compact sup-
port, is bounded away from 0 and satisfies the Lipschitz condition of
order 1 on its support. Denote the support [a, b], which corresponds to
the knot endpoints in (2.1); i.e., a = ξ1, b = ξN+2r.

(C2) The true α(x) function is α0(x) ∈ Cq[a, b] for q ≥ 2 and the spline
order r satisfies r ≥ q. Here, Cq[a, b] denotes functions on [a, b] that
have qth continuous derivative.

(C3) There exists 0 < ch <∞, such that

max
r≤k≤N+r

|hk+1 − hk| = o(N−1) and h/ min
r≤k≤N+r

hk < ch.

Furthermore, the number of internal knots satisfies N →∞, N−4n→
∞ and Nn−1/(2q) →∞ as n→∞.

(C4) The expectation E{ST
eff,β(Y , X,Z,β, α),ST

eff,a(Y , X,Z,β, α)}T = 0
has a unique zero in the neighborhood of the true parameter value. The
derivative of Seff(Y , X,Z,θ) = {ST

eff,β(Y , X,Z,θ),ST
eff,a(Y , X,Z,θ)}T

with respect to θ has bounded and nonsingular expectation.

Proofs of the asymptotic properties make use of the estimating equa-
tions in Proposition 3 and derivatives of these terms. For ease in nota-
tion, we define gn,a(β,a) = n−1

∑n
i=1 Seff,a(Y i,Xi,Zi;θ), gn,β(β,a) =
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n−1
∑n

i=1 Seff,β(Y i,Xi,Zi;θ), which correspond to the estimating equa-
tions for a and β, respectively. Derivatives of these terms will be denoted
by V n,aa(β,a) = −∂gn,a(β,a)/∂aT, V n,aβ(β,a) = −∂gn,a(β,a)/∂βT,

V n,βa(β,a) = −∂gn,β(β,a)/∂aT and V n,ββ(β,a) = −∂gn,β(β,a)/∂βT.
Analogous to these terms, let gn,a(β, α), gn,β(β, α), V n,aa(β, α), V n,aβ(β, α),
V n,βa(β, α) and V n,ββ(β, α) denote the corresponding quantities when
BT(x)a is replaced by α(x) at all x values. Also, define V aa(β, α), V aβ(β, α),
V βa(β, α) and V ββ(β, α) as replacing the averages across n respectively in
V n,aa(β, α), V n,aβ(β, α), V n,βa(β, α) and V n,ββ(β, α) by expectations.
Let J i = (−1mi−1, Imi−1)T for i = 1, . . . , n.

We first investigate the asymptotic properties in estimating α(x) and β
in the situation when no censoring has occurred and the event numbers are
identical for each subject (Theorems 1 and 2). We then proceed to study
the large sample properties under the assumption of censoring and allowing
different event numbers (Theorem 3). Proofs of Theorems 1 and 2 are in
Sections S.1.7 and S.1.8 (Supplementary Material).

Theorem 1. Assume mi = m < ∞ for i = 1, . . . , n, where mi is the
number of events for the ith individual as previously defined. Assume cen-
soring does not occur. Under regularity conditions (C1)-(C4), the estimators
β̂ and α̂(x) satisfy β̂ − β0 → 0 and ‖BT(x)â − α0(x)‖∞ → 0 as n → ∞.
Let β be either the true parameter β0 or a root-n consistent estimator of
β0. Then |α̂(x,β)− α(x)| = Op{(nh)−1/2 + hq} uniformly in x ∈ [a, b] and
as n→∞, α̂(x,β)− α(x) converges to a mean zero normal distribution.

The result in Theorem 1 establishes the asymptotic consistency, normality
and variability of α̂(x). The proof relies on three Lemmas (see Section S.1.7)
that calculate various quantities explicitly and establish necessary bounds on
the B-spline approximations. These properties combined with results from de
Boor (2001), Taylor expansion and the Central Limit Theorem then yield
the asymptotic normality and assess the variability of α̂(x). Given these
consistency results in Theorem 1, we can then apply a Taylor expansion to
yield the following asymptotic normality result for β̂.

Theorem 2. Assume mi = m < ∞ for i = 1, . . . , n, where recall that
mi is the number of events for the ith individual. Assume censoring does
not occur. Under regularity conditions (C1)-(C4), ‖β̂ − β0‖2 = Op(n

−1/2).

When n → ∞, n1/2(β̂ − β0) → Normal{0p1 ,Σ−1
0 (β0, α0)} in distribution,

where

Σ0(β0, α0) = E
(

[Seff,β(Y i,Xi,Zi;β0, α0)m−Π {Seff,β(Y i,Xi,Zi;β0, α0) | Sα}]⊗2
)
.
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Here Seff,β(Y i,Xi,Zi;β0, α0) is as defined in Proposition 3 except that
BT(x)a is replaced by α0(x) for all x. Additionally, Sα is the functional
space defined as

Sα = [{f(Xi1), . . . ,f(Xii)}J idiag{Vij − E(Vij |Wi,Xi,Zi;β0, α0), j = 2, . . . ,mi}1mi−1] ,

where f(x) is any arbitrary p1-component function with each component
in Cq[a, b], and Π [Seff,β(Y i,Xi,Zi;β0, α0)} | Sα] denotes the orthogonal
projection of Seff,β(Y i,Xi,Zi;β0, α0) onto Sα. In addition, Σ0(β0, α0) can
be estimated using

Σ(β̂, α̂) = V n,ββ(β̂, α̂)− V n,βa(β̂, α̂)V −1
n,aa(β̂, α̂)TV n,aβ(β̂, α̂).

Corollary 1. Under the same conditions as those required in Theo-

rem 2, the estimator β̂ obtained from solving the estimating equations in
Proposition 3 reaches the optimal semiparametric efficiency bound, given as
Σ0(β0, α0).

The efficiency result stated in Corollary 1 is for β̂ at each t0 and without
censoring. The result is immediate following the proof of Theorem 2, and by
noting that Sα is the residual of the tangent space with respect to α after
projecting it to the tangent space with respect to fX,Z,R. In establishing the
results in Theorems 1, 2 and Corollary 1, we have assumed all the subjects
experience the same number of events and all the events are observed. When
the number of events mi varies and when some of the events are censored,
similar results hold, as we state in Theorem 3. The derivation of the results
in Theorem 3 is almost identical to those in the proofs of Theorems 1 and 2,
except that we are obliged to retain summation across all the n individuals
instead of using a single expectation, hence we omit the details of the proof.
We emphasize that the Σ0 here is different from that in Theorem 2 not only
in the additional n−1

∑n
i=1, but also in that the calculation of expectations

E(Vij |Wi,Xi,Zi), which is different under censoring and not censoring.

Theorem 3. Under the regularity conditions (C1)-(C4), the estimators
β̂ and α̂(x) satisfy β̂ − β0 → 0 and ‖BT(x)â − α0(x)‖∞ → 0 as n → ∞.
For β that is either the true parameter β0 or a root-n consistent estima-
tor of β0, |α̂(x,β) − α(x)| = Op{(nh)−1/2 + hq} uniformly in x ∈ [a, b]
and as n → ∞, α̂(x,β) − α(x) converges to a mean zero normal distri-
bution. Further, ‖β̂ − β0‖2 = Op(n

−1/2). When n → ∞, n1/2(β̂ − β0) →
Normal{0p1 ,Σ−1

0 (β0, α0)} in distribution, where

Σ0(β0, α0) = lim
n→∞

1

n

n∑
i=1

E
(

[Seff,β(Y i,Xi,Zi;β0, α0)−Π {Seff,β(Y i,Xi,Zi;β0, α0) | Sαi}]
⊗2
)
.
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Here Sαi is the functional space defined as

Sαi = [{f(Xi1), . . . ,f(Ximi)}J idiag{Vij − E(Vij |Wi,Xi,Zi;β0, α0), j = 2, . . . ,mi}1mi−1] ,

where f(x) is any arbitrary p1-component function with each component
in Cq[a, b], and Π [Seff,β(Y i,Xi,Zi;β0, α0)} | Sαi ] denotes the orthogonal
projection of Seff,β(Y i,Xi,Zi;β0, α0) onto Sαi. In addition, Σ0(β0, α0) can
be estimated using

Σ(β̂, α̂) = V n,ββ(β̂, α̂)− V n,βa(β̂, α̂)V −1
n,aa(β̂, α̂)TV n,aβ(β̂, α̂).



ROBUST MIXED-EFFECTS MODEL 1

Supplementary Material for Robust mixed-effects
model for clustered failure time data: application to

Huntington’s disease event measures

Tanya P. Garcia, Yanyuan Ma, Karen Marder, and Yuanjia Wang

APPENDIX S.1: TECHNICAL PROOFS

S.1.1. Justification of properties (P1) and (P2). We highlight the

key results in Logan et al. (2011) that lead to properties (P1) and (P2). First,

F̂ (t0) can be written using an inverse probability of censoring weighting

(IPCW) formulation (Scheike et al., 2008) as F̂ (t0) = M−1
∑

i,j Nij(t0)/Ĝ(Lij)

where Nij(t0) = I(Lij ≤ t0)δij and Ĝ(Lij) is the Kaplan-Meier estimator

for the censoring survival distribution.

Second, the IPCW formulation and martingale properties leads to the

pseudo-values satisfying

Y ∗ij(t0) =
Nij(t0)

G(Lij)
+

∫ Lij

0

pr(T ≤ t0, δ = 1|T ≥ u)

G(u)
dMc

ij(u)(S.1)

+Op(M
−1/2)

whereMc
ij(t) = I(Lij ≤ t)(1− δij)−

∫ t
0 I(Lij ≥ u)λc(u)du is the martingale

for the censoring process for observation (i, j) with censoring hazard function

λc(u) = −dlog{G(u)}/du. See the Appendix of Logan et al. (2011) for exact

details.

Property (P1) then follows since Y ∗ij(t0) only depends on Lij and dMc
ij as

M approaches infinity. Property (P2) follows since the second term in (S.1)

is a martingale with mean zero, is independent of covariates and because

E{Nij(t0)/G(Lij)} = pr{T ≤ t0|Xij , Zij , Ri(t0)} (Scheike et al., 2008).

S.1.2. Proof of properties (P1†) and (P2†). Let Nij(t0) = I(Lij ≤
t0)δij , Nj(t0) =

∑
iNij(t0) denote the number of type j events observed up

to time t0, and Qj(t0) =
∑

i I(Lij ≥ t0) denote the risk set for event j at

t0. Write F̂j(t0) using an inverse probability of censoring weighting (IPCW)

formulation (Scheike et al., 2008) as F̂j(t0) = n−1
∑

iNij(t0)/Ĝj(Lij) where

Ĝj(t0) is the Kaplan-Meier estimate of the censoring survival distribution

for event j. Let Ĝ
(i)
j (t0) denote the Kaplan-Meier estimate for the censoring
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survival distribution for event j after removing cluster i. Based on the IPCW

representation, the pseudo-value Y †ij(t0) becomes

Y †ij(t0) =
∑
i

Nij(t0)

Ĝj(Lij)
−
∑
k 6=i

Nkj(t0)

Ĝ
(i)
j (Lkj)

=
∑
i

Nij(t0)

Gj(Lij)
−
∑
k 6=i

Nkj(t0)

Gj(Lkj)
(S.2)

+
∑
k 6=i

Nkj(t0)

[{
1

Ĝj(Lkj)
− 1

Gj(Lkj)

}
−

{
1

Ĝ
(i)
j (Lkj)

− 1

Gj(Lkj)

}]
(S.3)

+Nij(t0)

{
1

Ĝj(Lij)
− 1

Gj(Lij)

}
.(S.4)

We now proceed to simplify the terms above. First, the term in (S.2) is

Nij(t0)/Gj(Lij). Second, to simplify the term in (S.3), letMc
ij(t0) = I(Lij ≤

t0)(1 − δij) −
∫ t

0 I(Lij ≥ u)λcj(u)du be the martingale corresponding to

the censoring process for observation (i, j) with censoring hazard function

λcj(u) = −dlog{Gj(u)}/du. Also, let Mc
j(u) =

∑
iMc

ij(u) and Mc(i)
j (u) =∑

k 6=iMc
kj(u). We will also make use the following useful fact (Bang and

Tsiatis, 2000; Robins and Rotnitzky, 1992):

Ĝj(t)−Gj(t)
Gj(t)

= −
∫ t

0

Ĝj(u−)

Gj(u)

dMc
j(u)

Qj(u)
.

Based on the introduced notation, this useful fact, and that Mc
j(u) =

Mc(i)
j (u) +Mc

ij(u), we can re-write the term in (S.3) as∑
k 6=i

Nkj(t0)

Ĝj(Lkj)Ĝ
(i)
j (Lkj)

(S.5)

×
∫ Lkj

0

{
Ĝ

(i)
j (Lkj)Ĝj(u−)

Gj(u)Qj(u)
−
Ĝj(Lkj)Ĝ

(i)
j (u−)

Gj(u)Q(i)
j (u)

}
dMc(i)

j (u)

+
∑
k 6=i

Nkj(t0)

Ĝj(Lkj)

∫ Lkj

0

Ĝj(u−)

Gj(u)

dMc
ij(u)

Qj(u)
.(S.6)

Let rj(u) be such that Qj(u)/n converges in probability to rj(u). It thus

follows that∫ Lkj

0

{
(n− 1)Ĝ

(i)
j (Lkj)Ĝj(u−)

Gj(u)Qj(u)/n
−

nĜj(Lkj)Ĝ
(i)
j (u−)

Gj(u)Q(i)
j (u)/(n− 1)

}
dMc(i)

j (u)
√
n
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converges in distribution to Wkj , say. Therefore the first term in (S.5) is

asymptotically equivalent to

1√
n

∑
k 6=i

Nkj(t0)Wkj

(n− 1)Ĝj(Lkj)Ĝ
(i)
j (Lkj)

= Op(n
−1/2).

The term in (S.6) is asymptotically equivalent to∑
k 6=i

Nkj(t0)

Gj(Lkj)

∫ Lkj

0

dMc
ij(u)

Qj(u)

which is equivalent to∫ Lij

0

dMc
ij(u)

Qj(u)/n

∑
k 6=i

dNkj(t0)I(Lkj ≥ u)

nGj(Lkj)
(S.7)

because
∫ Lkj

0 dMc
ij(u)/Qj(u) =

∫ Lij

0 I(u ≤ Lkj)/Qj(u)dMc
ij(u). Following

the IPCW representation, the term in (S.7) is asymptotically equivalent to∫ Lij

0

pr(Tj ≤ t0, δ = 1|Tj ≥ u)

Gj(u)
dMc

ij(u).

Combining the above results, we thus have that

Y †ij(t0) =
Nij(t0)

Gj(Lij)
+

∫ Lij

0

pr(Tj ≤ t0, δ = 1|Tj ≥ u)

Gj(u)
dMc

ij(u) +Op(n
1/2).

It therefore follows that (P1†) holds because Y †ij(t0) only depends on Lij

and dMc
ij as n approaches infinity. Also, (P2†) holds because the second

term above is a martingale with mean zero, is independent of covariates and

because E{Nij(t0)/Gj(Lij)} = pr{Tj ≤ t0|Xij ,Zij , Ri(t0)} (Scheike et al.,

2008).

S.1.3. Proof of Proposition 1. Consider the Hilbert spaceH = {h(Y ,X,Z) :

E(h) = 0, var(h) <∞} consisting of mean zero, finite variance q-dimensional

functions h(Y ,X,Z). Two important subspaces of H are the nuisance tan-

gent space and its orthogonal complement. The nuisance tangent space is the

mean-squared closure of the space of elements BS where S is an arbitrary

nuisance score vector and B is a conformable matrix. Viewing the unknown

density fX,Z,R as a nuisance parameter, the nuisance tangent space is

Λ = [E{h(X,Z, R)|Y ,X,Z} : E(h) = 0, E(h
T
h) <∞]
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where h is a function of dimension the same length as θ. The space orthog-

onal to the nuisance tangent space is

Λ⊥ = [g(Y ,X,Z) : E{g(Y ,X,Z)|X,Z, R} = 0, E(g
T
g)} <∞],

where g is a q-dimensional function.

By results in semiparametric theory (Tsiatis, 2006), constructing unbiased

estimating equations for θ is based on the result of projecting the score

function with respect to θ onto Λ⊥. The result of this projection is the

so-called efficient score vector which is

Seff(Y ,X,Z;θ) = Π{Sθ(Y ,X,Z;θ)|Λ⊥}

= Sθ(Y ,X,Z;θ)−Π{Sθ(Y ,X,Z;θ)|Λ},

where Π(·|·) denotes projection. Hence, based on our form of Λ and Λ⊥, we

have

Seff(Y ,X,Z;θ) = Sθ(Y ,X,Z)− E{h(X,Z, R)|Y ,X,Z},

where h satisfies the condition in (2.4). It is important to note that solving

for θ̂ from
∑n

i=1 Seff{Y i,Xi,Zi;θ} = 0 indeed yields a consistent estimator

since E{Seff(Y ,X,Z;θ)} = E[E{Seff(Y ,X,Z;θ)|X,Z, R}] = 0 because

the terms in Seff satisfy (2.4). This result holds even when Y consists of

pseudo-values.

S.1.4. Proof of Proposition 2. Based on the form of fY |X,Z,R in

Proposition 1 and using a change of variables, we have that

fW,V |X,Z,R(wi,vi|xi, zi, ri)

= fY |X,Z,R

{
A−1
i (wi,vi)

T

∣∣∣∣∣xi, zi, ri
}

det(A−1
i )

= exp
{
ηT(xi, zi;θ)A−1

i (wi,vi)
T
}

× exp

riwi − mi∑
j=1

log[1 + exp{η(xij , zij ;θ) + ri}]

 .

Under this form of the joint conditional density fW,V |X,Z,R, we can now

show the first property that R and V are conditionally independent given
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(W,X,Z). That is,

fV |W,X,Z,R = fV |W,X,Z , fR|W,X,Z,V = fR|W,X,Z

This property holds since

fV |W,X,Z,R =
fW,V |X,Z,R(wi,vi|xi, zi, ri)∫

fW,V |X,Z,R(wi,vi|xi, zi, ri)dµ(vi)

=
exp

{
ηT(xi, zi;θ)A−1

i (wi,v
T

i )
T
}

∫
exp

{
ηT(xi, zi;θ)A−1

i (wi,v
T

i )T
}
dµ(vi)

.(S.8)

The last equality is completely independent of R suggesting that given

(W,X,Z), V and R are independent. Therefore, fV |W,X,Z,R = fV |W,X,Z

and similarly, fR|W,X,Z,V = fR|W,X,Z .

We can also show the second property in that

E{g(W,X,Z)|x, z, r} = 0 =⇒ g(W,X,Z) = 0.

Let k(wi,xi, zi) =
∫

exp
{
ηT(xi, zi;θ)A−1

i (wi,v
T

i )
T
}
dµ(vi) which is posi-

tive for all (wi,xi, zi). Then,

0 = E{g(Wi,Xi,Zi)|xi, zi, ri}

=

∫
g(wi,xi, zi)fWi,V i|X,Z,R(wi,vi|xi, zi, ri)dµ(wi)dµ(vi)

=

∫
k(wi,xi, zi)g(wi,xi, zi) exp(riwi)dµ(wi)

× exp

− mi∑
j=1

log[1 + exp{η(xij , zij ;θ) + ri}]

 .

This implies 0 =
∫
k(wi,xi, zi)g(wi,xi, zi) exp(riwi)dµ(wi), which means

k(wi,xi, zi)g(wi,xi, zi) = 0. But because k(wi,xi, zi) is positive for all

(wi,xi, zi), we have that g(wi,xi, zi) = 0. Therefore, the second property

holds.

Now based on these two properties, we can simplify the requirement in

(2.4) for the estimating equation. First the requirement can be rewritten as

E[E{Sθ(Y ,X,Z)|W,X,Z, R}|X,Z, R}] = E[E{h(X,Z, R)|W,V ,X,Z)}|X,Z, R].
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We now simplify the above display. Because R and V are independent given

(W,X,Z), we have that

E{Sθ(Y ,X,Z)|W,X,Z, R} = E

[
Sθ

{
A−1(W,V

T
)
T
,X,Z

} ∣∣∣∣∣W,X,Z, R

]
= E{Sθ(Y ,X,Z)|W,X,Z}

and E{h(X,Z, R)|W,V ,X,Z)} = E{h(X,Z, R)|W,X,Z)}. Therefore,

combining these two results, the requirement in (2.4) becomes

E[E{Sθ(Y ,X,Z)|W,X,Z}|X,Z, R}] = E[E{h(X,Z, R)|W,X,Z)}|X,Z, R].

However, this is of the form E{g(W,X,Z)|X,Z, R} = 0 with g(W,X,Z) =

E{Sθ(Y ,X,Z) − h(X,Z, R)|W,X,Z}. Hence, from our second property

derived above, we have that

E{Sθ(Y ,X,Z)|W,X,Z} = E{h(X,Z, R)|W,X,Z)}.

We can thus write

E{h(X,Z, R)|Y ,X,Z} = E{h(X,Z, R)|W,V ,X,Z}

= E{h(X,Z, R)|W,X,Z} = E{Sθ(Y ,X,Z)|W,X,Z}.

Therefore, the efficient score vector is

Seff = Sθ(Y ,X,Z)− E{h(X,Z, R)|Y ,X,Z}

= Sθ(Y ,X,Z)− E{Sθ(Y ,X,Z)|W,X,Z}

which is a closed form solution. The above simplifies to the form in Propo-

sition 2 because Sθ(Y ,X,Z) = E{Uθ(Y ,X,Z, R)|W,V ,X,Z} and be-

cause E{Sθ(Y ,X,Z)|W,X,Z} = E{Uθ(Y ,X,Z, R)|W,X,Z}.

S.1.5. Proof of Proposition 3. Direct calculation shows that for fY |X,Z,R

given in (2.3),

Uθ(Y i,Xi,Zi, Ri) =
∂logfY |X,Z,R(Y i|Xi,Zi, Ri;θ)

∂θ

=
∂ηT(Xi,Zi;θ)

∂θ
Y i − k(Xi,Zi, Ri),
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where k(Xi,Zi, Ri) =
∑mi

j=1 exp{η(Xij ,Zij)+Ri}/[1+exp{η(Xij ,Zij ;θ)+

Ri}]∂η(Xij ,Zij ;θ)/∂θ. To form the estimating equation based onUθ(Y i,Xi,Zi, Ri)

as in Proposition 2, we utilize the special properties of Wi and V i derived in

Appendix S.1.4. Specifically, because R and V are conditionally independent

given (W,X,Z) we have that for any k(Xi,Zi, Ri),

E{k(Xi,Zi, Ri)|Wi, Vi,Xi,Zi} − E{k(Xi,Zi, Ri)|Wi,Xi,Zi} = 0.

Therefore, the term k(Xi,Zi, Ri) does not contribute in computing Seff .

Next, because Y i = A−1
i (Wi,V

T
i )T, we have that

E(Y i|Wi,V i,Xi,Zi)− E(Y i|Wi,Xi,Zi)

= A−1
i (Wi,V

T
i )T − E{A−1

i (Wi,V
T
i )T|Wi,Xi,Zi}

= A−1
i [0,V T

i − E(V T
i |Wi,Xi,Zi;θ)]T.

Putting these two pieces together,

Seff =
∂ηT(Xi,Zi;θ)

∂θ
A−1
i [0,V T

i − E(V T
i |Wi,Xi,Zi;θ)]T.

Applying this to our model, we have ∂ηT(Xi,Zi;θ)/∂a = {B(Xi1), . . . ,B(Ximi)}
and ∂ηT(Xi,Zi;θ)/∂β = Zi. Hence, Seff,a and Seff,β are as specified.

S.1.6. Computation of E(Vij|Wi, Xi, Zi). Recall that V i = (Yi2, . . . , Yimi)
T,

so below we interchangeably refer to Yij ’s and Vij ’s.

The computation of E(Vij |Wi,Xi,Zi) involves the density fV |W,X,Z(vij |wi,xi, zi).
However, in Section S.1.4, we showed that fV |W,X,Z = fV |W,X,Z,R and that

fV |W,X,Z(vij |wi,xi, zi) =
exp

{
ηT(xi, zi;θ)A−1

i (wi,v
T
i )T

}∫
R(vi)

exp
{
ηT(xi, zi;θ)A−1

i (wi,vT
i )T

}
dµ(vi)

as in equation (S.8).

Computing E(Vij |Wi,Xi,Zi) requires specifying the range R(vi). Spec-

ifying R(vi) involves using the fact that Wi =
∑mi

j=1 Yij and that Yij can

either take values in {0, 1} or in the interval [0, 1] depending on censor-

ing and whether or not Cij < t0. We therefore separate the computation

based on the Yij ranges. Let Kij = 1 if Yij = I(Tij ≤ t0), and let Kij = 0

if Yij = pr(Tij ≤ t0). Also let Sm be a 2m × m matrix containing all 2m

combinations of 0’s and 1’s.
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In the description below, we will make use of different components of Sm.

For ease in readability, we introduce the following notation. For an arbitrary

matrix S, let s`j denote its (`, j) element, let (S)` denote its `th row, and

S [−1] denote the result of S after removing its first column.

Case 1: Wi = 0. Because Yij ≥ 0, we must have R(vi) = (0, . . . , 0)T. In

this case, the integrals in E(Vij |Wi,Xi,Zi) are both discrete sums.

Case 2: Wi = mi. Because Yij ≤ 1, we must have R(vi) = (1, . . . , 1)T. In

this case, the integrals in E(Vij |Wi,Xi,Zi) are both discrete sums.

Case 3: 0 < Wi < mi.

1.
∑mi

j=1Kij = mi. Then R(vi) includes those rows of S [−1]
mi corre-

sponding to the rows of Smi that sum to Wi. In this case, the

integrals in E(Vij |Wi,Xi,Zi) are both discrete sums.

2.
∑mi

j=1Kij = mi − 1. Then let j∗ denote the index associated

with Kij∗ = 0. Define S∗mi
= Smi , except with the entry s`j∗

as s`j∗ = Wi −
∑

j 6=j∗ s`j for ` = 1, . . . , 2mi . The range R(vi)

includes those rows ` of S∗[−1]
mi corresponding to the rows of S∗mi

where s`j∗ ∈ [0, 1]. In this case, the integrals in E(Vij |Wi,Xi,Zi)

are both discrete sums.

3.
∑mi

j=1Kij = m∗i and 0 ≤ m∗i < mi−1. Without loss of generality,

suppose Ki1 = · · · = Kim∗i
= 1 so that Yij ∈ {0, 1} for j ≤ m∗i ,

and Ki,mi∗+1 = · · · = Kimi = 0 so that Yij ∈ [0, 1] for j > m∗i .

Then, the range R(vi) is the union of each row of S [−1]
m∗i

with

([0, 1], . . . , [0, 1]) for those combinations that satisfy
∑mi

j=1 Yij =

Wi. To write this more explicitly, note that the requirement of

Wi =
∑mi

j=1 Yij is equivalent to Yi1 = Wi−
∑mi

j=2 Yij . Also, because

we require that Yi1 ∈ [0, 1], we thus have that the range R(vi) is

R(vi) =

{
vi : (vi2, . . . , vim∗i ) ∈

2m
∗
i⋃

`=1

(
S [−1]
m∗i

)
`
,

vi,m∗i +1, . . . , vimi ∈ [0, 1], 0 ≤ wi −
mi∑
j=2

vij ≤ 1

}
.

In this case then, the integrals in E(Vij |Wi,Xi,Zi) are a combi-

nation of sums over (vi2, . . . , vim∗i ) and integrals over (vi,m∗i +1, . . . , vimi).
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Specifically, it is∑
(vi2,...,vim∗

i
)∈
⋃2

m∗
i

`=1

(
S[−1]

m∗
i

)
`

∫
vi,m∗

i
+1∈[0,1] · · ·

∫
vimi

∈[0,1] vijg(wi,vi,xi, zi;θ)dvi,m∗i +1 · · · dvimi∑
(vi2,...,vim∗

i
)∈
⋃2

m∗
i

`=1

(
S[−1]

m∗
i

)
`

∫
vi,m∗

i
+1∈[0,1] · · ·

∫
vimi

∈[0,1] g(wi,vi,xi, zi;θ)dvi,m∗i +1 · · · dvimi

where g(wi,vi,xi, zi) = exp
{
ηT(xi, zi;θ)A−1

i (wi,v
T
i )T

}
and (vi2, . . . , vimi)

satisfies 0 ≤ wi −
∑mi

j=1 vij ≤ 1.

The expectation thus involves two multidimensional integrals over

hypercubes. This can easily be carried out using the adaptInte-

grate function in R as follows:

(a) Set ` = 1, fnum = 0, fden = 0.

(b) Set vi2, . . . , vim∗i as the `th row of S [−1]
m∗i

.

(c) Define

f1(vi,mi∗+1, . . . , vi,mi) =

{
vijg(wi,vi,xi, zi), if 0 ≤ wi −

∑mi
j=2 vij ≤ 1,

0, otherwise,

and

f2(vi,mi∗+1, . . . , vi,mi) =

{
g(wi,vi,xi, zi), if 0 ≤ wi −

∑mi
j=2 vij ≤ 1,

0, otherwise.

The arguments of f1, f2 are to emphasize that the integra-

tions will be performed on the variables vi,mi∗+1, . . . , vi,mi .

Recall, that vi2, . . . , vim∗i are fixed.

(d) Compute the integral on f1, f2 with the adaptIntegrate func-

tion as

f1,int = adaptIntegrate(f1, lowerLimit = 0mi−m∗i ,

upperLimit = 1mi−m∗i , fDim = mi −m∗i ),

f2,int = adaptIntegrate(f2, lowerLimit = 0mi−m∗i ,

upperLimit = 1mi−m∗i , fDim = 1),

where 0mi−m∗i and 1mi−m∗i are (mi−m∗i )-dimensional vectors

of zeros and ones, respectively.

(e) Update fnum ← fnum +f1,int, and fden ← fden +f2,int. Update

`← `+ 1. Go to Step (b).
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S.1.7. Proof of Theorem 1. For simplicity and the convenience of

the derivation, we slightly modify the estimation procedure in the proofs of

Theorems 1 and 2. Instead of solving the two sets of equations in Proposition

3 simultaneously, we consider solving the first set of equations in Proposition

3 to obtain â as a function of β, i.e. â(β), then plugging the resulting â(β)

into the second set of equations to obtain β̂. We finally update the estimator

to obtain â(β̂). That is, we implement the profiling procedure. Note that

the resulting estimator solves all the equations in Proposition 3 hence is

equivalent to solving the estimating equations in Proposition 3 directly to

obtain the estimator θ̂ simultaneously. We first establish several lemmas.

Lemma 1. For j, k = 1, . . . ,mi, let

cijk(β,a) =

∫
R(vi)

vijvik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)∫
R(vi)

exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

−

[∫
R(vi)

vij exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)
] [∫

R(vi)
vik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

]
[∫
R(vi)

exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)
]2 ,

and define Ci(β,a) = (cijk, j, k = 2, . . . ,mi). Let Ci(β, α) be Ci(β,a) with

B(x)Ta replaced with α(x) inside η. Then both Ci(β,a) and Ci(β, α) are

symmetric positive-definite matrices of size (mi−1)× (mi−1). In addition,

V n,ββ(β, α) =
1

n

n∑
i=1

(Zi1, . . . ,Zimi)J iCi(β, α)JT
i (Zi1, . . . ,Zimi)

T,

V n,βa(β, α) =
1

n

n∑
i=1

(Zi1, . . . ,Zimi)J iCi(β, α)JT
i {B(Xi1), . . . ,B(Ximi)}T,

V n,aβ(β, α) =
1

n

n∑
i=1

{B(Xi1), . . . ,B(Ximi)}J iCi(β, α)JT
i (Zi1, . . . ,Zimi)

T,

V n,aa(β, α) =
1

n

n∑
i=1

{B(Xi1), . . . ,B(Ximi)}J iCi(β, α)JT
i {B(Xi1), . . . ,B(Ximi)}T,

and they equal the sample averages n−1
∑n

i=1E{Seff,β(Y i,Xi,Zi;θ)⊗2 |
Xi,Zi},
n−1

∑n
i=1E{Seff,β(Y i,Xi,Zi;θ)ST

eff,a(Y i,Xi,Zi;θ) |Xi,Zi}, n−1
∑n

i=1E{Seff,a(Y i,Xi,Zi;θ)

ST
eff,β(Y i,Xi,Zi;θ) |Xi,Zi} and n−1

∑n
i=1E{Seff,a(Y i,Xi,Zi;θ)⊗2 |Xi,Zi}
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respectively, with BT(x)a replaced by α(x). Note that V n,βa(β, α) = V T
n,aβ(β, α)

and V n,ββ(β, α) and V n,aa(β, α) are symmetric positive definite matrices.

Proof of Lemma 1:

Through careful calculation, noting that the multiplier that contains only wi

without vi can be canceled in the ratio of the integrations, we can therefore

write

E(Vij |Wi,Xi,Zi;θ) =

∫
R(vi)

vij exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)∫
R(vi)

exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)
.

We can further verify that

∂
∫
R(vi)

exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

∂βT

=

mi∑
k=1

∫
R(vi)

vik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)(Zik −Zi1)T,

∂
∫
R(vi)

vij exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

∂βT

=

mi∑
k=1

∫
R(vi)

vijvik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)(Zik −Zi1)T,

∂
∫
R(vi)

exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

∂aT

=

mi∑
k=1

∫
R(vi)

vik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi){B(Xik)−B(Xi1)}T,

∂
∫
R(vi)

vij exp{ηT(Xi,Zi;θ)J ivi}dµ(vi)

∂aT

=

mi∑
k=1

∫
R(vi)

vijvik exp{ηT(Xi,Zi;θ)J ivi}dµ(vi){B(Xik)−B(Xi1)}T.

Taking into account the definition of cijk(β, α), we can then easily verify

the displayed results in the Lemma. It is also easy to verify that cov[{Vij −
E(Vij |Wi,Xi,Zi;θ)}{Vik − E(Vik|Wi,Xi,Zi;θ)}] = cijk(β, α). Thus the

displayed matrices are indeed the corresponding variance-covariance matri-

ces.
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Lemma 2. For any vector a = (a1, . . . , ap2)T, there exist constants 0 <

ca ≤ Ca <∞, such that for sufficiently large n,

caa
Tah ≤ aTV aa(β0, α0)a ≤ CaaTah,(S.9)

cah ≤ ‖V aa(β0, α0)‖2 ≤ Cah,(S.10)

max
1≤k1,k2≤p2

|V n,aa(β0, α0)− V aa(β0, α0)| = Op{
√
hn−1log(n)}.(S.11)

Proof of Lemma 2:

Note that Ci(β0, α0) is a positive-defnite matrix with positive eigenvalue.

Assume the eigenvalues are 0 < ρ1 < · · · < ρmi−1. Thus

aTV aa(β, α0)a

= E
[
aT{B(Xi1), . . . ,B(Ximi)}J iCi(β, α0)JT

i {B(Xi1), . . . ,B(Ximi)}Ta
]

= E
[
aT{B(Xi2)−B(Xi1), . . . ,B(Ximi)−B(Xi1)}Ci(β, α0)

{B(Xi2)−B(Xi1), . . . ,B(Ximi)−B(Xi1)}Ta
]

= aTE
[
ρ(i){B(Xi2)−B(Xi1), . . . ,B(Ximi)−B(Xi1)}⊗2

]
a

= aTE

ρ(i)
mi∑
j=2

{B(Xij)−B(Xi1)}{B(Xij)−B(Xi1)}T
a

=
m∑
j=2

aTE
[
ρ(i){B(Xij)−B(Xi1)}{B(Xij)−B(Xi1)}T

]
a

=

m∑
j=2

E
{
ρ(i)‖B(Xij)

Ta−B(Xi1)Ta‖2
}
,(S.12)

where ρ1 < ρ(i) < ρmi−1. From Theorem 5.4.2 on page 145 of DeVore and

Lorentz (1993), (S.12) further leads to c1‖a‖2h ≤ ‖B(Xij)
Ta−B(Xi1)Ta‖2 ≤

c2‖a‖2h for 0 < c1 < c2 < ∞. This leads to (S.9). Further (S.9) implies

that V aa(β0, α0) has eigenvalues between cah and Cah. Since V aa(β0, α0)

is symmetric, hence it also has singular values between cah and Cah, i.e.

‖V aa(β0, α0)‖2 is between cah and Cah, which leads to (S.10). Finally,

(S.11) is a direct result of Bernstein’s inequality in Bosq (1998).

Lemma 3. Let ca, Ca be defined in Lemma 2. Let CS be a constant s.t.
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0 < CS <∞. Then

C−1
a h−1 ≤ ‖V −1

aa(β0, α0)‖2 ≤ c−1
a h−1,(S.13)

‖V −1
aa(β0, α0)‖∞ ≤ CSh−1(S.14)

Proof of Lemma 3: Result (S.13) follows directly from (S.10). (S.14) follows

from Lemma 2, (S.13) and Theorem 13.4.3 in DeVore and Lorentz (1993).

We omit the details here.

Since α0(x) ∈ Cq [a, b], following de Boor (2001), there exists a ∈ Rp2 ,

such that

sup
x∈[a,b]

∣∣α0(x)−BT(x)a
∣∣ = O(hq).(S.15)

Let α̃(x) = BT(x)a. Also, let ga(β,a) = E{gn,a(β,a)}, gβ(β,a) = E{gn,β(β,a)},
ga(β, α) = E{gn,a(β, α)}, gβ(β, α) = E{gn,β(β, α)}, gn(β,a) = {gn,a(β,a)T, gn,β(β,a)T}T,

and g(β,a) = {ga(β,a)T, gβ(β,a)T}T. We have that at the true parameter

values β0, α0, g(β0, α0) = 0. Because of (S.15), ‖g(β0,a)‖2 = ‖g(β0, α̃)‖2 =

op(1). From condition (C4) and the law of large numbers, ‖gn(β0,a)‖2 =

op(1). However, gn(β̂, â) = 0, hence the uniqueness of zero and the continu-

ous differentiable property leads to ‖β̂−β0‖2 = op(1) and ‖â−a‖2 = op(1).

Hence ‖BT(x)â − α0(x)‖∞ ≤ ‖BT(x)â − α̃(x)‖∞ + O(hq) = ‖BT(x)(â −
a)‖∞+O(hq) ≤ supx∈[a,b] ‖B(x)‖2‖â−a‖2 +O(hq)→ 0. Note that α̂(x) =

BT(x)â and

‖V n,aa(β0,a)− V n,aa(β0, α0)‖∞

= ‖ 1

n

n∑
i=1

{B(Xi1), . . . ,B(Ximi)}J i{Ci(β0,a)−Ci(β0, α0)}JT
i {B(Xi1), . . . ,B(Ximi)}T‖∞

= ‖O(hq)n−1
n∑
i=1

mi∑
j=1

mi∑
k=1

B(Xij)B
T(Xik)‖∞

= O(hq) sup
l

n−1
n∑
i=1

mi∑
j=1

mi∑
k=1

Bl(Xij)

p2∑
l=1

Bl(Xik)


= O(hq) sup

l

n−1
n∑
i=1

mi∑
j=1

miBl(Xij)


= O(hq+1), (S.16)
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where in the last two steps, we used the fact that each B-spline basis function

takes values in [0, 1], are supported on only 2r − 1 intervals [ξk, ξk+1], and

the summation of all B-spline basis functions at any value x is 1. From

(S.14) and (S.11), ‖V n,aa(β0, α0)−1‖∞ = Op(h
−1). Further from (S.15),

‖V n,aa(β0,a)−1‖∞ = Op(h
−1). Thus, using (S.16), we have

‖V −1
n,aa(β0,a)− V −1

n,aa(β0, α0)‖∞
≤ ‖V −1

n,aa(β0,a)‖∞‖V n,aa(β0,a)− V n,aa(β0, α0)‖∞‖V −1
n,aa(β0, α0)‖∞

= Op(h
q−1).

From (S.13) and (S.11), there are constants 0 < c′v < C ′v < ∞, such that

with probability 1, c′vh
−1 ≤ ‖V −1

n,aa(β0, α0)‖2 ≤ C ′vh−1 and

‖V −1
n,aa(β0, α0)− V −1

aa(β0, α0)‖2
≤ ‖V −1

n,aa(β0, α0)‖2‖V n,aa(β0, α0)− V aa(β0, α0)‖2‖V −1
aa(β0, α0)‖2

= Op{h−2
√
hn−1log(n)}.(S.17)

By (S.15), following the same derivation as in (S.16),

‖gn,a(β0,a)− gn,a(β0, α0)‖∞ = O(hq)‖n−1
n∑
i=1

mi∑
j=1

B(Xij)‖∞ = Op
(
hq+1

)
.

By Bernstein’s inequality in Bosq (1998), ‖gn,a(β0, α0)‖∞ = Op

{√
hn−1log(n)

}
.

Thus for any c ∈ Rp2 with ‖c‖2 = 1,

|cT
{
V −1
n,aa(β0,a)gn,a(β0,a)− V −1

n,aa(β0, α0)gn,a(β0, α0)
}
|

≤ ‖c‖∞
∥∥V −1

n,aa(β0,a)
∥∥
∞

∥∥gn,a(β0,a)− gn,a(β0, α0)
∥∥
∞

+ ‖c‖∞
∥∥V −1

n,aa(β0,a)− V −1
n,aa(β0, α0)

∥∥
∞

∥∥gn,a(β0, α0)
∥∥
∞

= Op (hq) +Op
(
hq−1

)
Op

{√
hn−1log(n)

}
.(S.18)

Define ê = V −1
n,aa(β0, α0)gn,a(β0, α0) and σ̂2(x,β0) = BT(x)var (ê |X,Z )B(x),

where X,Z denote the collection of all the covariates. Then from the Cen-

tral Limit Theorem, we obtain {BT(x)var(ê|X,Z)B(x)}−1/2BT(x)ê →
Normal(0, 1). Note that var (ê |X,Z ) = n−1V −1

n,aa(β0, α0). Hence

σ̂2(x,β0) =
1

n
BT(x)V −1

n,aa(β0, α0)B(x)

=
1

n
BT(x)V −1

aa(β0, α0)B(x){1 + op(1)}.
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Note that for any x ∈ [a, b], only 2r − 1 terms in B1(x), . . . , Bp2(x) can

be nonzero, in addition, 0 ≤ Bk(x) ≤ 1 for all x ∈ [a, b] and all k =

1, . . . , p2, hence Lemma (3) implies that BT(x)V −1
aa(β0, α0)B(x) is an order

h−1 quantity. Thus, there exist constants 0 < cσ ≤ Cσ <∞ such that with

probability 1 and for sufficiently large n,

cσ(nh)−1/2 ≤ inf
x∈[a,b]

σ̂(x,β0) ≤ sup
x∈[a,b]

σ̂(x,β0) ≤ Cσ(nh)−1/2.(S.19)

Thus BT(x)ê = Op{(nh)−1/2} uniformly in x ∈ [a, b], and

BT(x)V −1
n,aa(β0,a)gn,a(β0,a) = Op

{
(nh)−1/2 + hq

}
uniformly in x ∈ [a, b]. By the consistency of â and the Taylor expansion,

â(β0)− a = V −1
n,aa(β0,a)gn,a(β0,a) {1 + op(1)} .(S.20)

Thus by (S.18), (S.19), and Condition (C3),

sup
x∈[a,b]

∣∣σ̂(x,β0)−1
[
BT(x) {â(β0)− a} −BT(x)ê

]∣∣
= sup

x∈[a,b]

∣∣∣∣∣σ̂(x,β0)−1

[
BT(x)V −1

n,aa(β0,a)gn,a(β0,a) {1 + op(1)}

−BT(x)V −1
n,aa(β0, α0)gn,a(β0, α0)

]∣∣∣∣∣
= Op

{
(nh)1/2

}{
Op(h

q) +Op
(
hq−1

)
Op

(√
hn−1log(n)

)}
+Op

{
(nh)1/2

}
op{(nh)−1/2 + hq}

= op(1).

By Slutsky’s theorem σ̂−1(x,β0) {α̂(x,β0)− α̃(x)} → Normal(0, 1) and α̂(x,β0)−
α̃(x) = Op

{
(nh)−1/2

}
uniformly in x ∈ [a, b]. From supx∈[a,b] |α0(x)− α̃(x)| =

o(hq), we obtain supx∈[a,b] |α̂(x,β0)− α0(x)| = Op{(nh)−1/2 + hq}. Further

from Slutsky’s theorem,

σ̂−1(x,β0) {α̂(x,β0)− α0(x)} → Normal(0, 1).
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S.1.8. Proof of Theorem 2. Following the consistency results estab-

lished in Theorem 1, we perform a Taylor expansion

0 = n1/2gn,β{β̂, â(β̂)}

= n1/2gn,β{β0, â(β0)}+

{
∂gn,β{β, â(β)}

∂βT
+
∂gn,β{β, â(β)}

∂â(β)T

∂â(β)

∂βT

} ∣∣
β=β∗

n1/2(β̂ − β0),

where β∗ lies on the line connecting β0 and β̂. The profiling procedures

imply that gn,a{β, â(β)} = 0 for all β, hence

∂gn,a{β, â(β)}
∂βT

+
∂gn,a{β, â(β)}

∂â(β)T

∂â(β)

∂βT
= 0

for all β, which leads to

∂â(β)

∂βT
= −

[
∂gn,a{β, â(β)}

∂â(β)T

]−1 ∂gn,a{β, â(β)}
∂βT

.

Hence,{
∂gn,β{β, â(β)}

∂βT
+
∂gn,β{β, â(β)}

∂â(β)T

∂â(β)

∂βT

} ∣∣
β=β∗

=

[
∂gn,β(β0,a)

∂βT
0

−
∂gn,β(β0,a)

∂aT

{
∂gn,a(β0,a)

∂aT

}−1 ∂gn,a(β0,a)

∂βT
0

]
{1 + op(1)}

=
[
−V n,ββ(β0,a) + V n,βa(β0,a)V −1

n,aa(β0,a)V n,aβ(β0,a)
]
{1 + op(1)}

=
[
−V n,ββ(β0, α0) + V n,βa(β0, α0)V −1

n,aa(β0, α0)V n,aβ(β0, α0)
]
{1 + op(1)}

=
[
−V ββ(β0, α0) + V βa(β0, α0)V −1

aa(β0, α0)V aβ(β0, α0)
]
{1 + op(1)}.

Here, the first equality used the consistency of β̂ and (S.15), the second

equality used the definition in Lemma 1, the third equality used the result

in (S.15) again, and the last equality follows from the law of large numbers.

Now let

Σ(b, α) = V ββ(β, α)− V βa(β, α)V −1
aa(β, α)V aβ(β, α),

then{
∂gn,β{β, â(β)}

∂βT
+
∂gn,β{β, â(β)}

∂â(β)T

∂â(β)

∂βT

} ∣∣
β=β∗

= −Σ(β0, α0){1 + op(1)}.
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On the other hand, under Condition (C3),

n1/2gn,β{β0, â(β0)} = n1/2gn,β(β0, α0) + n1/2[gn,β{β0, â(β0)} − gn,β(β0,a)]

+n1/2{gn,β(β0,a)− gn,β(β0, α0)}

= n1/2gn,β(β0, α0) + n1/2[gn,β{β0, â(β0)} − gn,β(β0,a)] + op(1).

Now using the Taylor expansion, (S.20), (S.15) and the law of large numbers

respectively,

n1/2[gn,β{β0, â(β0)} − gn,β(β0,a)]

=
∂gn,β(β0,a)

∂aT

√
n{â(β0)− a}{1 + op(1)}

= −V n,βa(β0,a)
√
n{â(β0)− a}{1 + op(1)}

= −
√
nV n,βa(β0,a)V −1

n,aa(β0,a)gn,a(β0,a) {1 + op(1)}

= −
√
nV βa(β0, α0)V −1

aa(β0, α0)gn,a(β0, α0) {1 + op(1)} .

This leads to the expansion

n1/2(β̂ − β0) = Σ−1(β0, α0)n−1/2
n∑
i=1

[Seff,β(Y i,Xi,Zi;β0, α0)− V βa(β0, α0)

×V −1
aa(β0, α0)Seff,a(Y i,Xi,Zi;β0, α0)

]
{1 + op(1)}.(S.21)

Now using Lemma 1,

var
{
Seff,β(Y i,Xi,Zi;β0, α0)− V βa(β0, α0)V −1

aa(β0, α0)Seff,a(Y i,Xi,Zi;β0, α0)
}

= E
{
Seff,β(Y i,Xi,Zi;β0, α0)⊗2

}
− E

{
Seff,β(Y i,Xi,Zi;β0, α0)Seff,a(Y i,Xi,Zi;β0, α0)T

}
×V −1

aa(β0, α0)TV βa(β0, α0)T + V βa(β0, α0)V −1
aa(β0, α0)E

{
Seff,a(Y i,Xi,Zi;β0, α0)⊗2

}
×V −1

aa(β0, α0)TV βa(β0, α0)T − V βa(β0, α0)V −1
aa(β0, α0)

×E
{
Seff,a(Y i,Xi,Zi;β0, α0)Seff,β(Y i,Xi,Zi;β0, α0)T

}
= V ββ(β0, α0)− V βa(β0, α0)V −1

aa(β0, α0)TV aβ(β0, α0)

= Σ(β0, α0).
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We now inspecting the p1 × p1 matrix Σ(β0, α0). Lemma 1 implies that

Σ(β0, α0)

= E{S⊗2
eff,β(Y i,Xi,Zi;β0, α0)} − E{Seff,β(Y i,Xi,Zi;β0, α0)Seff,a(Y i,Xi,Zi;β0, α0)T}

×
[
E{S⊗2

eff,a(Y i,Xi,Zi;β0, α0)}
]−1

E{Seff,a(Y i,Xi,Zi;β0, α0)Seff,β(Y i,Xi,Zi;β0, α0)T}

= E
(

[Seff,β(Y i,Xi,Zi;β0, α0)} −Π{Seff,β(Y i,Xi,Zi;β0, α0)} | Sa]⊗2
)
.

Here, we use Sa to denote the p1-component functional space spanned by

Seff,a(Y ,X,Z;β0, α0). A closer inspection of Sa reveals that

Sa = [C{B(Xi1), . . . ,B(Ximi)}J idiag{Vij − E(Vij |Wi,Xi,Zi;β0, α0), j = 2, . . . ,mi}1mi−1] ,

where C is any p1 × p2 matrix. For any j = 1 . . . ,mi and any function

fj(Xij) ∈ Cq(Xij), (S.15) ensures that when N is large enough, we can find

a p2 (recall p2 = N + r) dimensional vector cj so that cT
j B(Xij) approaches

fj(Xij) uniformly. Thus, C ≡ (c1, . . . , cq1)TB(Xij) can approach f(Xij) ≡
{f1(Xij), . . . , fq1(Xij)}T uniformly. This means sup |C{B(Xi1), . . . ,B(Ximi)}−
{f(Xi1), . . . ,f(Xim)}| → 0, where the sup is with respect to all elements

in the p1 × mi matrix and all Xij ’s in α0(x)’s support space [a, b] for

j = 1, . . . ,mi. Comparing the definition of Sα and Sa, this directly leads

to sup |Π{Seff,β(Y i,Xi,Zi;β0, α0) | Sa} − Π{Seff,β(Y i,Xi,Zi;β0, α0) |
Sα}| → 0, where the sup is with respect to all p1 functional components

and all Xij values. Hence ‖Σ0(β0, α0) − Σ(β0, α0)‖F → 0 when n → ∞,

where ‖ · ‖F is the Fronebius norm. Thus, from (S.21) and the Central Limit

Theorem for iid data, we have obtained
√
n(β̂ − β0) → Normal(0p1 ,Σ

−1
0 )

in distribution.

APPENDIX S.2: ADDITIONAL SIMULATION RESULTS

We generated data as in Section 3.1 except for clustered failure times

with multiple event types (Example 2). Data is generated using the model

in (2.5) with n = 500 and mi = 2 at 40% censoring, and with n = 1300

and mi = 2 at 70% censoring similar to the HD application setting. All

remaining aspects of the simulation design are as in Section 3.1, so our

focus is on the estimates of α(x, t), β(t) in (2.5) which represent the logit

differences in covariate effects.
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As in Section 3.2, GAMM estimates, though unbiased across non-normally

distributed random effects, are largely biased when the random effects and

covariates are not independent (Tables S.2, S.3). The biasedness of α̂(x, t)

and β̂(t) lead to mean squared errors (MSE) that are consistently larger than

the MSE from the proposed method in all settings. This further exemplifies

the sensitivity of GAMM to violations of the assumption that the covariates

and random effect are independent.

In comparison, our proposed method shows negligible bias for β̂(t), α̂(x, t)

averaged across x- and t-values (Table S.2) and in pointwise estimates (Ta-

ble S.3). The unbiasedness is visually evident across all simulations (Figures

S.1 and S.2), where estimates from our proposed method generally overlap

the true underlying curves of α(x, t) and β(t). At 70% censoring, our method

and GAMM have more difficulty in unbiasedly estimating the true curve.

However, our method better captures the truth than does GAMM partic-

ularly when the covariates and random effect are dependent (compare the

left and right panel of Figure S.2).

APPENDIX S.3: ADDITIONAL RESULTS FOR HUNTINGTON’S
DISEASE APPLICATION

Table S.5 provides the proportion of pseudo-value estimates Ỹ that fell

outside the [0, 1] range for the Huntington’s disease application at t =

35, 40, . . . , 60. The proportions are similar to those observed for the sim-

ulation study (Table S.1).
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Table S.1
Proportion of jack-knife estimates Ỹ (t) that fall outside [0,1] at t = 40, 46, 49. Results
shown for simulation study described in Section 3: clustered failure times with single
event types and multiple event types with different true random intercept as specified.

40% censoring. Results averaged over 1000 simulations.

X,Z,R independent (X,Z) and R dependent

Ỹ (t) < 0 Ỹ (t) > 1 Ỹ (t) < 0 Ỹ (t) > 1
Single event type R ∼ Normal(0, 1)

t = 40 0.001 0 0.001 0
t = 46 0.009 0 0.009 0
t = 49 0.014 0 0.014 0

R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)
t = 40 0.001 0 0.001 0
t = 46 0.010 0 0.010 0
t = 49 0.014 0 0.014 0

R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)
t = 40 0.001 0 0.001 0
t = 46 0.008 0 0.008 0
t = 49 0.014 0 0.014 0

R ∼ Uniform[−2.5, 2.5]
t = 40 0.001 0 0.001 0
t = 46 0.009 0 0.009 0
t = 49 0.015 0 0.015 0

Multiple event types R ∼ Normal(0, 1)
t = 40 0.010 0 0.010 0
t = 46 0.041 0 0.043 0
t = 49 0.058 0 0.060 0

R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)
t = 40 0.011 0 0.011 0
t = 46 0.046 0 0.047 0
t = 49 0.064 0 0.065 0

R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)
t = 40 0.010 0 0.010 0
t = 46 0.041 0 0.041 0
t = 49 0.057 0 0.057 0

R ∼ Uniform[−2.5, 2.5]
t = 40 0.010 0 0.010 0
t = 46 0.043 0 0.042 0
t = 49 0.061 0 0.060 0
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Table S.2
Average results for clustered failure times with multiple event types. 70% censoring, 1000

simulations. Average absolute bias, empirical variance, 95% coverage probabilities and
mean squared errors (MSE) when the true random intercept is as specified. β̂(·) denotes
results averaged over t; α̂(0.50, ·) is results at x = 0.50 averaged over t, and α̂(·, 46) is

results at t = 46 averaged over x.

Proposed Method GAMM Method

β̂(·) α̂(0.50, ·) α̂(·, 46) β̂(·) α̂(0.50, ·) α̂(·, 46)
X,Z,R independent

R ∼ Normal(0, 1)
abs bias 0.016 0.085 0.111 0.029 0.039 0.007
emp var 0.188 0.594 0.540 0.042 0.124 0.117
95% cov 0.949 0.950 0.946 0.947 0.945 0.947

MSE 0.188 0.603 0.554 0.043 0.126 0.118
R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)

abs bias 0.019 0.098 0.103 0.005 0.062 0.012
emp var 0.212 0.653 0.622 0.050 0.150 0.137
95% cov 0.946 0.950 0.948 0.952 0.946 0.950

MSE 0.212 0.664 0.633 0.050 0.156 0.138
R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)

abs bias 0.022 0.093 0.088 0.036 0.067 0.044
emp var 0.186 0.615 0.546 0.042 0.131 0.120
95% cov 0.948 0.946 0.946 0.947 0.942 0.947

MSE 0.186 0.625 0.554 0.043 0.137 0.123
R ∼ Uniform[−2.5, 2.5]

abs bias 0.025 0.091 0.107 0.022 0.059 0.040
emp var 0.235 0.787 0.684 0.056 0.156 0.149
95% cov 0.944 0.943 0.946 0.946 0.948 0.950

MSE 0.235 0.797 0.696 0.057 0.161 0.151
(X,Z) and R dependent

R ∼ Normal(0, 1)
abs bias 0.036 0.073 0.086 1.077 1.432 1.509
emp var 0.477 1.300 1.139 0.155 0.344 0.355
95% cov 0.958 0.955 0.955 0.224 0.326 0.256

MSE 0.478 1.305 1.147 1.316 2.403 2.794
R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)

abs bias 0.036 0.135 0.122 1.679 2.091 2.176
emp var 0.539 1.231 1.119 0.230 0.430 0.430
95% cov 0.950 0.951 0.952 0.041 0.091 0.058

MSE 0.541 1.249 1.135 3.049 4.806 5.500
R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)

abs bias 0.015 0.089 0.096 0.966 1.335 1.453
emp var 0.408 1.318 1.144 0.124 0.314 0.322
95% cov 0.951 0.949 0.952 0.233 0.354 0.245

MSE 0.409 1.328 1.154 1.066 2.126 2.581
R ∼ Uniform[−2.5, 2.5]

abs bias 0.036 0.176 0.159 1.650 2.211 2.311
emp var 0.450 1.272 1.106 0.224 0.490 0.510
95% cov 0.950 0.949 0.945 0.046 0.106 0.067

MSE 0.452 1.304 1.132 2.952 5.397 6.229
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Table S.3
Pointwise results for clustered failure times with multiple event types. 70% censoring,

1000 simulations. Pointwise bias, empirical variance, estimated variance, 95% coverage
probabilities and mean squared error (MSE) for β̂(t) and α̂(x, t) at x = 0.50 and t = 46

when the true random intercept is as specified.

X,Z,R independent (X,Z) and R dependent
Proposed Method GAMM Method Proposed Method GAMM Method

β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46) β̂(46) α̂(0.50, 46)
R ∼ Normal(0, 1)

bias 0.021 0.075 0.028 0.013 0.058 0.026 1.112 -1.485
emp var 0.181 0.564 0.039 0.114 0.553 1.470 0.153 0.343

est var 0.189 0.600 0.039 0.113 0.462 1.244 0.099 0.231
95% cov 0.949 0.963 0.945 0.952 0.927 0.933 0.083 0.162

MSE 0.189 0.605 0.040 0.114 0.465 1.245 1.336 2.438

R ∼ 0.5Normal(−1, 1) + 0.5Normal(1, 0.252)
bias 0.022 0.085 0.003 0.034 0.037 0.074 1.710 -2.141

emp var 0.214 0.642 0.045 0.134 0.549 1.212 0.223 0.412
est var 0.212 0.674 0.042 0.122 0.483 1.108 0.110 0.224

95% cov 0.941 0.961 0.939 0.946 0.939 0.937 0.006 0.020
MSE 0.213 0.682 0.042 0.123 0.484 1.114 3.034 4.808

R ∼ 0.5Normal(−1, 1) + 0.5Beta(4, 2)
bias 0.019 0.113 0.039 0.064 0.020 0.096 1.023 -1.416

emp var 0.189 0.613 0.039 0.120 0.445 1.416 0.120 0.301
est var 0.194 0.616 0.039 0.113 0.379 1.236 0.082 0.226

95% cov 0.958 0.939 0.940 0.936 0.938 0.932 0.071 0.195
MSE 0.194 0.629 0.041 0.117 0.379 1.246 1.129 2.232

R ∼ Uniform[−2.5, 2.5]
bias 0.012 0.111 0.025 0.038 0.017 0.112 1.707 -2.290

emp var 0.225 0.732 0.050 0.143 0.490 1.361 0.224 0.488
est var 0.228 0.732 0.043 0.125 0.411 1.178 0.096 0.234

95% cov 0.947 0.938 0.928 0.931 0.926 0.927 0.002 0.012
MSE 0.228 0.744 0.044 0.127 0.411 1.191 3.011 5.480
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Table S.4
Average results for clustered failure times with single event types and multiple event

types. 0% censoring, 1000 simulations. Average absolute bias, empirical variance, 95%
coverage probabilities and mean squared errors (MSE) when the true random intercept is

Normal(0,1). β̂(·) denotes results averaged over t; α̂(0.50, ·) is results at x = 0.50
averaged over t, and α̂(·, 46) is results at t = 46 averaged over x. Results show increased
variability for our proposed method compared to GAMM is due to our relaxed assumption

about the random effect distribution, and not due to pseudo-values being outside [0, 1].

Proposed Method GAMM Method

β̂(·) α̂(0.50, ·) α̂(·, 46) β̂(·) α̂(0.50, ·) α̂(·, 46)
Single event type

X,Z,R independent
abs bias 0.016 0.054 0.042 0.034 0.037 0.021
emp var 0.068 0.278 0.245 0.012 0.036 0.036

est var 0.068 0.278 0.245 0.012 0.036 0.036
95% cov 0.947 0.945 0.942 0.932 0.948 0.951

MSE 0.068 0.281 0.247 0.014 0.038 0.037
(X,Z) and R dependent

abs bias 0.035 0.021 0.031 1.390 1.838 1.881
emp var 0.954 1.211 1.098 0.120 0.247 0.258

est var 0.954 1.211 1.098 0.120 0.247 0.258
95% cov 0.948 0.947 0.945 0.005 0.019 0.015

MSE 0.956 1.212 1.099 2.052 3.631 4.048

Multiple event type
X,Z,R independent

abs bias 0.015 0.018 0.010 0.037 0.074 0.033
emp var 0.185 0.597 0.518 0.042 0.127 0.120

est var 0.185 0.597 0.518 0.042 0.127 0.120
95% cov 0.951 0.949 0.951 0.944 0.941 0.945

MSE 0.185 0.598 0.518 0.044 0.134 0.121
(X,Z) and R dependent

abs bias 0.062 0.071 0.059 1.250 1.606 1.710
emp var 0.505 1.335 1.167 0.169 0.366 0.376

est var 0.505 1.335 1.167 0.169 0.366 0.376
95% cov 0.953 0.951 0.950 0.133 0.254 0.180

MSE 0.509 1.340 1.170 1.733 2.961 3.508
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Fig S.1. Clustered failure times with multiple event types and R ∼ Normal(0, 1); 40%
censoring, 1000 simulations. True parameter functions (black solid curve), mean of 1000
simulation estimates from our proposed method (red dashed line) and from GAMM (blue
dashed-dotted line).
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Fig S.2. Clustered failure times with multiple event types and R ∼ Normal(0, 1); 70%
censoring, 1000 simulations. True parameter functions (black solid curve), mean of 1000
simulation estimates from our proposed method (red dashed line) and from GAMM (blue
dashed-dotted line).
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Table S.5
Proportion of jack-knife estimates Ỹ (t) that fall outside [0, 1] at t = 35, 40, . . . , 60 for the

Huntington’s disease application.

Ỹ (t) < 0 Ỹ (t) > 1

t = 35 0.000 0
t = 40 0.000 0
t = 45 0.000 0
t = 50 0.028 0
t = 55 0.044 0
t = 60 0.039 0
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