
© 2007 Royal Statistical Society 1369–7412/07/69429

J. R. Statist. Soc. B (2007)
69, Part 3, pp. 429–446

Semiparametric estimators of functional
measurement error models with unknown error

Peter Hall

Australian National University, Canberra, Australia

and Yanyuan Ma

Texas A&M University, College Station, USA

[Received January 2006. Revised December 2006]

Summary. We consider functional measurement error models where the measurement error
distribution is estimated non-parametrically.We derive a locally efficient semiparametric estima-
tor but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator
is proposed, where the measurement error distribution is estimated through non-parametric ker-
nel methods based on multiple measurements.The root n consistency and asymptotic normality
of the plug-in estimator are derived. Despite the theoretical inefficiency of the plug-in estimator,
simulations demonstrate its near optimal performance. Computational advantages relative to
the theoretically efficient estimator make the plug-in estimator practically appealing. Application
of the estimator is illustrated by using the Framingham data example.
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1. Introduction

Measurement error models frequently occur in practice when the measurements on covariates
contain error. It is well known that ignoring the measurement error can lead to biased estimation.
Various methods have been proposed to take this problem into account. A comprehensive study
of these methods has been given by Fuller (1987) for linear models, and by Carroll et al. (2006)
for non-linear models.

In general, a measurement error model can be summarized in two parts. Part 1 consists of
a classical model, which is most often a regression of the form pY |X,Z.Y |X, Z, β/, where Y is
the response variable, X and Z are unobservable and observable covariates respectively and β
is a parameter of interest. For example, in a linear regression case with normal model error, we
could have

pY |X,Z.Y |X, Z, β/=σ−1 φ

(
Y −β0 −XTβ1 −ZTβ2

σ

)
,

where φ is the normal probability density function and β = .β0, βT
1 , βT

2 /T. In a linear logistic
regression we could have

pY |X,Z.Y |X, Z, β/= exp{Y.β0 +XTβ1 +ZTβ2/}
1+ exp.β0 +XTβ1 +ZTβ2/

,
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where β = .β0, βT
1 , βT

2 /T; and in a linear Poisson regression we could have

pY |X,Z.Y |X, Z, β/= exp{−.β0 +XTβ1 +ZTβ2/}.β0 +XTβ1 +ZTβ2/Y

Y !
,

where β = .β0, βT
1 , βT

2 /T. Traditionally, except for some special cases, e.g. linear regression mod-
els (Bickel and Ritov, 1987), polynomial regression models (Chan and Mak, 1985; Cheng and
Schneeweiss, 1998), partially linear models (Liang et al., 1999) and models containing an unspec-
ified function of the observable covariate Z (Ma and Carroll, 2006), most research has focused
on parametric models. There, β is the only unknown parameter and is finite dimensional. To keep
this paper focused we shall also consider parametric models, although the method is applicable
in a larger class.

Part 2 of a measurement error model consists of a model describing the relationship between
a surrogate variable W and the unobservable covariate X. That is, instead of observing X , a
measurement is made of a variable W , and the relationship between X , Z and W is described
by pW |X,Z.W |X, Z/. In addition, the surrogacy assumption implies that

pW ,Y |X,Z.W , Y |X, Z/=pW |X,Z.W |X, Z/ pY |X,Z.Y |X, Z/:

Typically, conditional on X , W is independent of Z, and it is usually desired that the measure-
ment error be additive and symmetric, in particular W = X + U. In practice, various transfor-
mations have been proposed to achieve the additivity and symmetry; see Nusser et al. (1996)
and Eckert et al. (1997). Hence, modelling either the observed data or the transformed data,
we have

pW |X,Z.W |X, Z/=pU.W −X/,

where pU is symmetric. This is the model that is considered in the present paper.
The likelihood of a single observation .W , Y , Z/ is therefore

L.β, W , Y , Z/=
∫

pY |X,Z.Y |X, Z, β/ pU.W −X/ pX,Z.X, Z/ dμ.X/,

where μ.X/ is the probability measure that is associated with X. In the functional measurement
error model setting with which we work, no distributional assumption is made about pX,Z.X, Z/.
However, the identifiability of β requires that a model for pU be assumed. The most frequently
seen model for pU is normal with mean 0 and either a known or unknown variance–covariance
matrix ΩU . When ΩU is not known, the likelihood becomes

L.β, ΩU , Wi, Yi, Zi/=
∫

pY |X,Z.Y |X, Z, β/ pU.W −X, ΩU/ pX,Z.X, Z/ dμ.X/,

and ΩU is estimated along with β.
The model for pU is often adopted on grounds of convenience. Indeed, when X is not observed

and, instead, only a single surrogate W is available, it is impossible to justify from the data what
model for pU is reasonable in a particular problem. Even when additional information is available
for estimating pU , the tendency is always to adopt an approximate pU in a certain parametric
family. In other words, the part 2 model of a measurement error problem is often subjective and
susceptible to misspecification. Obviously, a misspecified model for the measurement error can
lead to bias in estimating β.
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The purpose of this paper is to incorporate an objective part 2 model in the functional mea-
surement error problems when additional information is available. Such information could be
additional instrumental variables, or simply multiple measurements. For example, in the case
of a single unobservable Xi, multiple measurements Wi1, . . . , Wim might be available. Often,
instruments or multiple measurements are obtained to estimate the error variance ΩU in a para-
metric model for the measurement error. Here, we propose utilizing the multiple observations,
to obtain instead a non-parametric kernel estimator of pU . Because the resulting estimator p̂U

does not converge at a typical parametric rate, a very different treatment from that in the para-
metric case is required to achieve semiparametric efficiency in estimation of β. In fact, although
the theoretical form of the semiparametric efficient estimator can be derived, its computational
complexity makes it difficult to implement.

Therefore we propose a plug-in estimator, i.e. we treat p̂U as a known distribution in the part 2
model, and proceed with an existing estimator. Besides estimating pU by using kernel methods, it
is possible to use deconvolution. However, a disadvantage of deconvolution is a potentially slow
rate of convergence; see, for example, work of Carroll and Hall (1988), Stefanski and Carroll
(1990) and Fan (1991).

Because the part 2 model no longer has an explicit form, computational advantages that rely
on the specific form of normality are lost. For example, estimators in generalized linear models
that take advantage of the existence of a complete and sufficient statistic, as studied by Stefanski
and Carroll (1985, 1987) and Ma and Tsiatis (2006), become much more computationally chal-
lenging. General regular asymptotically linear estimators still apply, although the asymptotic
properties of these estimators are different. In fact, owing to the relationship between the regular
asymptotically linear estimator and pU , general results on plug-in estimation cannot be applied
straightforwardly, and so an independent asymptotic analysis must be carried out. We empha-
size that our work is in the setting of a functional model and, in particular, no distributional
assumption is made about pX,Z.X, Z/.

As far as we are aware, this is the first attempt at relaxing parametric assumptions about
the error distribution in general functional measurement error problems. Previous work in
functional models concerns only estimation and inference in the absence of the distributional
assumption of unobserved variables. In such contexts, Stefanski and Carroll (1985, 1987) derived
consistent estimators in generalized linear models; Tsiatis and Ma (2004) presented consistent
and locally efficient estimators in a general model; approximately consistent estimators were
given by Cook and Stefanski (1995), via simulation–extrapolation, and by Carroll and Stefanski
(1990) and Gleser (1990), using regression calibration. Carroll and Wand (1991) considered
relaxing the parametric error distribution assumption in a special logistic model with validation
data, where they used non-parametric regression to estimate a quantity that depends directly
on the error distribution. In contrast, our method requires no distributional assumption for the
measurement error, and, at the same time, no distributional assumption on the latent variable.
In addition, the method yields an asymptotically root n consistent estimator for completely
general measurement error model problems.

The rest of the paper is organized as follows. We derive the locally efficient semiparametric
estimator and describe its complexity of implementation in Section 2. Section 3 describes the
plug-in estimator in a very simple hypothetical situation where measurement errors are directly
observable. In Section 4 the estimator is generalized to practical situations where multiple mea-
surements are available. Simulation results are given in Section 5, and in Section 6 we apply our
method in a real data set. Asymptotic properties of the plug-in estimator are demonstrated in
Section 7, and concluding remarks are given in Section 8. Some technical details are collected
in Appendix A; others are available from the second author.
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2. Locally efficient estimator

Consider a hypothetical situation, where we observe V1, . . . , VN which have the measurement
error distribution with density pU . For the case that is relevant to this paper, we shall as-
sume that N = n, although this is not required for the method. Thus, combining with the ob-
served .Wi, Yi, Zi/s, we assume that we have independent and identically distributed observations
.Wi, Yi, Zi, Vi/, where Wi = Xi + Ui, and Ui and Vi have the same distribution for i = 1, . . . , n.
In addition, we assume that Vi is independent of Yi, Ui, Xi and Zi. We also suppose that the
density pU.·/ is symmetric around zero.

For notational simplicity we drop the subscript i. The probability density function of a single
observation .W , Y , Z, V/ is given by

pW ,Y ,Z,V .W , Y , Z, V , β, pU , pZ, pX|Z/=
∫

pZ.Z/ pX|Z.X|Z/ pU.W −X/

×pY |X,Z.Y |X, Z, β/dμ.X/ pU.V/:

Recall that β is the parameter of interest, and that pU , pZ and pX|Z are the three infinite dimen-
sional nuisance parameters. In what follows, we treat the semiparametric model by using a
geometric approach, described by Bickel et al. (1993). We consider a Hilbert space H that con-
sists of all the q-dimensional mean 0 functions of .W , Y , Z, V/, with the inner product defined
by covariance. Here, q denotes the dimension of β. Two subspaces of H are considered: the
nuisance tangent space Λ and its orthogonal complement Λ⊥. The definition of Λ requires two
preliminary definitions. First, a parametric submodel is defined as a parametric model that is
contained in the semiparametric model. In addition, the parametric submodel also contains the
truth. Note that this is typically only a concept, since if we can actually find such a parametric
submodel it is no longer necessary to adopt a semiparametric model. Say that the parametric
submodel is pW ,Y ,Z,V .W , Y , Z, V , β, η/, where η is a finite dimensional parameter. Second, a
nuisance tangent space of a parametric submodel pW ,Y ,Z,V .W , Y , Z, V , β, η/ is defined as the
mean-squared closure of all A @ [log{pW ,Y ,Z,V .W , Y , Z, V , β, η/}]=@η, where A is an arbitrary
q× r matrix, and r denotes the dimension of η. The nuisance tangent space of the semiparamet-
ric model, Λ, is subsequently defined as the mean-squared closure of the sum of the nuisance
tangent spaces of each parametric submodel. The orthogonal complement of Λ in H is defined
as Λ⊥. The efficient semiparametric estimator is then defined as the solution of the estimating
equation

n∑
i=1

Seff .Wi, Yi, Zi, Vi, β/=0,

where Seff is the projection of the score vector Sβ onto Λ⊥: Seff =Π.Sβ |Λ⊥/ = Sβ −Π.Sβ |Λ/.
Here, the score vector is given by

Sβ = @[log{pW ,Y ,Z,V .W , Y , Z, V , β, pU , pZ, pX|Z/}]
@β

:

Following this description, we derive Seff in Appendix A and obtain the semiparametric
efficient estimator to be the solution of

n∑
i=1

[S1.wi, yi, zi/−E{f.W −X/|wi, yi, zi}−f.vi/]=0: .1/

Here,

S1 =Sβ.W , Y , Z/−E{a.X, Z/|W , Y , Z},
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a.X, Z/ satisfies

E.Sβ |X, Z/=E[E{a.X, Z/|W , Y , Z}],

and f satisfies

E[E{f.W −X/|W , Y , Z}|X, Z]=0,

E[S1 −E{f.W −X/|W , Y , Z}|W −X=u]−f.u/=0:
.2/

Calculation of the expectations in equation (1) requires a known form of pX|Z and pU . A
rich parametric model can be used for pU . As long as we can estimate pU at a faster rate than
n1=4, i.e. ‖pU − p̂U‖=op.n−1=4/, we can usep̂U in equation (1) and achieve the same asymptotic
estimation variance for β (see Newey (1990)). Often, non-parametric estimation of pU at the
rate op.n−1=4/ will guarantee this property as well.

The situation for pX|Z is even more optimistic; since E.Seff |X, Z/= 0, we can posit an arbi-
trary density pX|Z and proceed with the calculation in equation (1). If the posited model pÅ

X|Z
happens to be correct, we obtain the efficient estimator; in other cases we still obtain a consistent
estimator. Hence, the estimator is the so-called locally efficient estimator.

Implementing the efficient estimator in equation (1) also requires obtaining S1 and f. The
main method for calculating S1 is by solving for a from the integral equation before expression
(2). The integral equation can be solved by using, for example, discretization, which converts an
integral equation problem into a linear algebra problem. Although the same method could be
used to obtain f , the calculation there is very complex because of the multiple integrations that
are involved. In addition, typically, the purpose of using discretization is so that a small number
of discretization points will suffice for the calculation, whereas here at least the values of f at
each observed vi will be needed to implement the estimation equation (1). This will complicate
the numerical treatment significantly. Certainly other methods are possible, e.g. approximating
f by using a linear combination of truncated basis functions. However, expression (2) indicates
that f relies on S1, which itself is approximated; hence the resulting numerical error may over-
whelm the purported efficiency. Thus, instead of the locally efficient estimator, we propose a
simpler plug-in estimator.

3. Plug-in estimator

The estimator that we propose is derived in two steps. First, we estimate pU non-parametrically,
using the observations V1, . . . , Vn. Specifically, we employ a standard kernel estimator to obtain

p̂U.u/=n−1
n∑

i=1
Kh.Vi −u/,

where K is a kernel function and Kh.u/=h−1 K.u=h/. Next, we implement the estimator that
was developed by Tsiatis and Ma (2004) to construct a plug-in estimator, where the pU that is
required by the original estimator is replaced by the estimator p̂U . Note that this is a typical
plug-in estimator. Although the construction of our estimator is indeed a special case of general
plug-in estimators, the property that was derived by Tsiatis and Ma (2004) does not apply here.

The implementational details of the estimator are as follows.

(a) Estimate pU.u/ by using

n−1
n∑

i=1
Kh.Vi −u/,

and denote the result by p̂U.u/.
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(b) Posit a model for pX|Z.x|z/, and denote it by pÅ
X|Z.x|z/.

(c) Solve for β̂ from
n∑

i=1
Ŝ

Å
β .wi, yi, zi, β/− Ê

Å{â.X, Z/|wi, yi, zi}=0, .3/

where

Ŝ
Å
β = Ê

Å
(

@[log{pY |X,Z.Y |X, Z, β/}]
@β

∣∣∣∣W , Y , Z

)
.4/

is the estimated score vector and â.X, Z/ is a function that satisfies

Ê[Ê
Å{â.X, Z/|W , Y , Z}|X, Z]= Ê{Ŝ

Å
β .W , Y , Z/|X, Z}: .5/

Here and throughout the paper, a circumflex denotes an operation that is performed under
the estimatedp̂U , and the superscript asterisk denotes an operation that is calculated under the
posited pÅ

X|Z. We solve for â.X, Z/ from equation (5) through the following device. For each
observed value zi, i = 1, . . . , n, we discretize the function pÅ

X|Z.X|zi/ and convert the integral
equation (5) into a linear system, and then solve for the function â.X, zi/ on a set of discretization
points of X.

It is worth emphasizing that the plug-in estimator preserves the robustness property of the
original estimator in equation (1), which means that the estimators in equation (3) are consistent
even if the posited model pÅ

X|Z.x|z/ is wrong. At the same time, the plug-in estimator provides
an opportunity for achieving optimality with respect to pX|Z, i.e. if the posited model pÅ

X|Z.x|z/

happens to be correct, the resulting estimator will be efficient in dealing with the nuisance
parameter pX|Z.x|z/. Formula (3) is in the form of a traditional estimating equation; hence the
estimation variance can be computed by using the usual sandwich matrix A−1B.A−1/T, where
A is the average of the first derivative of each term on the left-hand side of equation (3) with
respect to β at its estimated value and B is the average of the square of each term on the left-hand
side; see Section 7 for a rigorous proof. Here, β enters each term in a complex fashion; hence
we recommend calculating the derivatives by using numerical difference approximations.

4. Multiple measurements

Unless instrumental variables are available, it is only hypothetical that we could observe the
measurement errors vi directly. In the absence of any instruments, a more realistic situation is
that multiple observations wi1, . . . , wim are available for each unobservable Xi. For simplicity,
we first assume the same replicates m for all the Xis. Although deconvolution is a common
method for extracting the information about pU , we can in fact form Wis and Vis from the Wijs.
Note that, contrary to the common notation, Wi here does not represent .Wi1, . . . , Wim/T. The
simplest case is that where m=2. We form Wi = .Wi1 +Wi2/=2 and Vi = .Wi1 −Wi2/=2. Because
of the symmetry of the measurement error distribution, it can be verified easily that Vi and
Ui = Wi − Xi have the same distribution. Thus, the plug-in estimator in Section 3 is directly
applicable. More generally, defining k =�m=2�, we construct

Wi =
k∑

j=1

Wij

2k
+

m∑
j=k+1

Wij

2m−2k
,

Vi =
k∑

j=1

Wij

2k
−

m∑
j=k+1

Wij

2m−2k
:
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Our construction is such that the resulting Wi has the same dimension as Xi and has the
smallest error variance among all linear combinations of the Wijs, j =1, . . . , m, that enable the
construction of Vi that has the same distribution as Ui = Wi − Xi. Keeping the dimension of
the Wis low has computational benefits, as the estimator involves calculating multiple integrals
with respect to W. A minimum error variance ensures that the information which is contained
in the multiple observations is retained maximally. We can certainly choose to manipulate the
multiple observations in other ways. As long as the measurement error distributions can be
appropriately estimated from data, the plug-in estimator can be implemented.

In practice, it might happen that the number of multiplications for each Xi is different from
each other, e.g. that mi measurements are available for each Xi in a subset Smi of size smi . In this
case, the above constructions of Vi and Wi are specific to each subset where the same multipli-
cation number mi is shared within the subset. Specifically, in the subset Smi with smi members,
where each member has mi measurements available, we take ki =�mi=2�, construct

Wi =
ki∑

j=1

Wij

2ki
+

mi∑
j=ki+1

Wij

2mi −2ki
,

Vi =
ki∑

j=1

Wij

2ki
−

mi∑
j=ki+1

Wij

2mi −2ki

and estimate pU,mi by using the constructed Vis. When a subset S1 of the Xis exists such that
only a single measurement Wi is available for each Xi, the deconvolution cannot be spared to
estimate the corresponding pU,1. The simplest way to carry out the estimation is to use only
two measurements for each Xi =∈S1, and to form

p̂U,1.u/= 1
2π

∫ [
.n− s1/−1 ∑

i=∈S1

exp{it.Wi1 −Wi2/}]1=2 exp.−itu/ dt: .6/

As a result, the estimation procedure in Section 3 will be changed to the following steps.

(a) For mi �1, estimate pU,mi.u/ by using

s−1
mi

∑
i∈Smi

Kh.Vi −u/

if mi > 1, and estimate pU,1.u/ by using equation (6) if mi = 1. Denote the result by
p̂U,mi.u/.

(b) Posit a model for pX|Z.x|z/, and denote it by pÅ
X|Z.x|z/.

(c) Solve for β̂ from∑
mi�1

∑
i∈Smi

Ŝ
Å
β .wi, yi, zi, β/− Ê

Å{â.X, Z/|wi, yi, zi}=0,

where the estimated score vector and the integral equation for â.Xi, Zi/ are the same as in
equations (4) and (5), except that the expectations are calculated under the corresponding
p̂U,mi

, where mi is the number of available measurements for Xi.

5. Simulations

To illustrate the method proposed we carried out a small simulation study. In the first simulation,
we generated data {.Wi, Yi/, i=1, . . . , n} from a quadratic logistic model

logit{p.Yi =1|Xi/}=β0 +β1Xi +β2X2
i ,
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with measurement error Wi =Xi +Ui, Ui ∼N.0, σ2/. We setσ=0:4, which represents a significant
amount of measurement error. Here, the underlying Xis are generated from a normal distribution
with mean −1 and variance 1, and the values for β are β0 =−1, β1 =1 and β2 =1. In addition, we
also generated {Vi, i=1, . . . , n} from the same distribution of Ui. In implementing the method
we adopted two different models for pÅ

X: a normal model, which corresponds to the truth, and a
uniform model on [−4, 2]. To study the performance of the method proposed we adopted three
different models for pU : the normal distribution, corresponding to the truth, the non-parametri-
cally estimated distribution and a Laplace distribution, corresponding to a misspecified model. In
implementing the Laplace distribution, we chose the parameter so that the 90% quantile matched
the truth. Sample sizes n = 500 and n = 1000 were used in the simulation, and 1000 data sets
were generated. The results of the simulation are included in Table 1. Note that the reported 95%
confidence interval was constructed by using ±1:96 times the estimated standard error.

The second simulation was almost identical to the first, except that the true measurement
error for the data was generated from a Laplace distribution with standard error 0.4. Hence, in
this study, the Laplace measurement error distribution model was the truth, whereas the normal
model was misspecified. The results of the simulation are included in Table 2.

From these results it is clear that posing an improper model for the measurement error struc-
ture can lead to biasedness, whereas estimating this distribution provides a protection against
biasedness. The consistency of the plug-in estimator proposed is preserved, whether or not the
model for pX is correctly specified.

In these examples, the efficiency of the plug-in estimator is almost as good as it would be if
we had known the error distribution precisely. Note that, owing to our inability to calculate the

Table 1. Simulation 1: true measurement error distribution is normal†

pU Parameter pÅ
X Results for n=500 Results for n=1000

Mean estvar empvar 95% Mean estvar empvar 95%
interval interval

Normal β1.−1/ Normal −1.012 0.031 0.032 0.950 −1.007 0.015 0.015 0.958
Uniform −1.012 0.031 0.033 0.953 −1.007 0.015 0.015 0.958

β2.1/ Normal 1.057 0.116 0.117 0.949 1.029 0.051 0.052 0.944
Uniform 1.059 0.125 0.121 0.955 1.030 0.053 0.052 0.951

β3.1/ Normal 1.048 0.045 0.045 0.959 1.026 0.020 0.020 0.953
Uniform 1.049 0.050 0.046 0.970 1.026 0.021 0.020 0.956

Non- β1.−1/ Normal −1.013 0.032 0.033 0.949 −1.008 0.015 0.015 0.959
parametric Uniform −0.997 0.032 0.034 0.951 −0.995 0.015 0.015 0.952

β2.1/ Normal 1.061 0.122 0.124 0.950 1.030 0.052 0.053 0.944
Uniform 1.089 0.135 0.131 0.959 1.051 0.056 0.055 0.954

β3.1/ Normal 1.051 0.048 0.048 0.956 1.027 0.020 0.021 0.953
Uniform 1.070 0.054 0.050 0.970 1.041 0.022 0.021 0.957

Laplace β1.−1/ Normal −1.008 0.035 0.036 0.953 −1.005 0.017 0.016 0.955
Uniform −1.007 0.034 0.037 0.945 −1.005 0.016 0.017 0.950

β2.1/ Normal 1.217 0.156 0.158 0.953 1.182 0.067 0.066 0.937
Uniform 1.260 0.173 0.164 0.959 1.224 0.075 0.070 0.921

β3.1/ Normal 1.158 0.063 0.064 0.958 1.131 0.026 0.026 0.935
Uniform 1.186 0.070 0.064 0.956 1.159 0.030 0.027 0.923

†Normal, non-parametric and Laplace distributions of pU are used, and the proposed models of pÅ
X are nor-

mal and uniform. The mean, average of the estimated variances (estvar), empirical variance (empvar) and 95%
confidence interval are reported.
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Table 2. Simulation 2: true measurement error distribution is Laplace†

pU Parameter pÅ
X Results for n=500 Results for n=1000

Mean estvar empvar 95% Mean estvar empvar 95%
interval interval

Laplace β1.−1/ Normal −1.004 0.031 0.032 0.950 −1.004 0.015 0.016 0.943
Uniform −1.009 0.031 0.032 0.948 −1.009 0.015 0.016 0.945

β2.1/ Normal 1.049 0.117 0.115 0.953 1.023 0.054 0.054 0.938
Uniform 1.040 0.117 0.112 0.951 1.013 0.055 0.053 0.941

β3.1/ Normal 1.036 0.043 0.042 0.953 1.020 0.020 0.020 0.945
Uniform 1.032 0.045 0.042 0.951 1.015 0.021 0.020 0.945

Non- β1.−1/ Normal −1.004 0.031 0.032 0.950 −1.004 0.015 0.016 0.944
parametric Uniform −1.002 0.030 0.032 0.947 −1.003 0.015 0.016 0.942

β2.1/ Normal 1.046 0.114 0.112 0.954 1.022 0.053 0.053 0.941
Uniform 1.046 0.117 0.113 0.950 1.019 0.055 0.054 0.941

β3.1/ Normal 1.033 0.043 0.042 0.954 1.017 0.020 0.020 0.946
Uniform 1.033 0.045 0.043 0.954 1.016 0.021 0.020 0.950

Normal β1.−1/ Normal −0.995 0.028 0.028 0.949 −0.992 0.014 0.014 0.944
Uniform −0.995 0.028 0.028 0.945 −0.993 0.014 0.014 0.943

β2.1/ Normal 0.891 0.084 0.089 0.887 0.867 0.040 0.041 0.862
Uniform 0.894 0.086 0.089 0.890 0.869 0.041 0.041 0.861

β3.1/ Normal 0.920 0.031 0.033 0.873 0.904 0.015 0.015 0.822
Uniform 0.922 0.032 0.033 0.876 0.905 0.015 0.015 0.832

†Normal, non-parametric and Laplace distributions of pU are used, and the proposed models of pÅ
X are normal

and uniform respectively. The mean, average of the estimated variances (estvar), empirical variance (empvar) and
95% confidence interval are reported.

efficient estimator, a direct analysis of the loss of efficiency that is caused by using the plug-in
estimator instead of the fully efficient estimator is not available. However, the loss of efficiency
is no greater than the difference in efficiency between the plug-in estimator and the estima-
tor under a known, correct model for pU . In our simulations, the latter difference is hardly
detectable. Therefore, we conclude that the loss of efficiency that is caused by using the plug-in
estimator is hardly detectable.

As is common in semiparametric modelling, the estimates are rather insensitive to the band-
width that is used for non-parametric estimation of pU . In our experiments we tried various
bandwidths, and the resulting estimates, as well as the variance, changed only slightly. For exam-
ple, in the first simulation study where the true pU was normal, we employed bandwidths in the
range from 0.144 to 0.289 for n=500 and from 0.126 to 0.251 for n=1000. Using bandwidths
in this range, β̂ changed by less than 2.5% for n=500, and by less than 2% for n=1000. This is
explained by the asymptotic result that is summarized in theorem 2. In practice, various band-
width selection procedures can be used. For example, we could use cross-validation to obtain
an optimal bandwidth h̃ for estimating pU , and then scale it to obtain h = h̃n−1=10 for final
implementation.

6. Example

In the setting of the Framingham heart study data (Kannel et al., 1986) we consider a logistic
regression of coronary heart disease Y on the true long-term average of systolic blood pressure
T , age Z1, smoking status Z2 and serum cholesterol Z3:
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pr.Y =1|T , Z1, Z2, Z3/=H.β0 +β1Z1 +β2Z2 +β3Z3 +β4T/,

where H.·/ is the logistic link function. Of course, in actuality the true long-term average of sys-
tolic blood pressure T is not observable, and instead we observe TM, measured blood pressure.
As described by Eckert et al. (1997), it is reasonable to assume a model

log.TM −50/θ −1
θ

= log.T −50/θ −1
θ

+U,

where θ=1:726 and U is symmetrically distributed with mean 0. Hence, we leave the distribution
for U unspecified and estimate pU non-parametrically.

In the Framingham data set, two measurements, TM1 and TM2, are available for each unob-
servable T. Thus, we form

V ={log.TM1 −50/θ −1}=θ − 1
2{log.TM1 −50/θ −1}=θ

for estimating the distribution of the measurement error and

W ={log.TM1 −50/θ −1}=θ + 1
2{log.TM1 −50/θ −1}=θ

as a new measurement. Reparameterizing X={log.T −50/θ −1}=θ, the model becomes

pr.Y =1|X, Z1, Z2, Z3/=H.β0 +β1Z1 +β2Z2 +β3Z3 +β4[exp{.θX+1/1=θ}+50]/,

W =X+U,

where v1, . . . , vn can be used to estimate pU .
The problem is now in a format that can be treated by using the method proposed. For

comparison, we also carried out estimation under the assumption that the measurement error
distribution is normal. Results are presented in Table 3.

Differences between estimates under the normal distribution measurement error assumption
and those derived by using a non-parametrically estimated distribution are detectable although
quite small. From Fig. 1, it is clear that the normal model fits the data vi reasonably well, and
in particular that the non-parametric density estimate is close to the estimated normal density.
This explains the similarities that we see in the results. (Eckert et al. (1997) noted that U does
not have exactly a normal distribution.) Considering the similarity of the density curves for the
vis, and the difference that is obtained in the estimation of β, it is perhaps surprising that the
distribution of pU plays a rather important role in estimating β.

Table 3. Framingham heart study†

Model β0 β1 β2 β3 β4

Naïve Estimate −9.1846 0.0531 0.7084 0.0063 0.0167
Normal Estimate −9.5868 0.0504 0.7275 0.0062 0.0208

Standard error 0.8356 0.0104 0.2957 0.0019 0.0046
Non-parametric Estimate −9.7585 0.0523 0.7170 0.0062 0.0213

Standard error 0.8497 0.0103 0.2982 0.0019 0.0047

†The estimates and their standard errors of β, under a normal measurement error distri-
bution model and a non-parametrically estimated measurement error distribution.
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Fig. 1. Framingham heart study: histogram, normal density (� – � – �) and non-parametrically estimated prob-
ability density function ( ) for V from the Framingham data

7. Asymptotic properties

Before analysing the asymptotic properties of the estimator proposed, we first justify the need
to derive a ‘correct’ model for pU . Theorem 1 states that a misspecified model for pU generally
leads to biasedness of the estimator of β.

Theorem 1. Assume that a misspecified model pm
U is adopted to construct an estimator of

the form Σn
i=1S1.Wi, Yi, Zi/=0, which is consistent under pm

U . Then the estimator is generally
biased.

The proof of theorem 1 is given in Appendix A.
The estimating equation (3) builds on the orthogonal projection of the score vector SÅ

β , cal-
culated under the posited pÅ

X|Z, onto the nuisance tangent space with respect to pÅ
X|Z, which is

denoted by ΛÅ
1 . The other nuisance parameter pU is estimated and ‘plugged in’. More detailed

explanation of these concepts is given in Section 2. Although it can be true that SÅ
β , ΛÅ

1 and
the orthogonal projection operator Π depend continuously on the error distribution pU , and
so the plug-in estimator is in general a continuous function of pU , the estimator may not be
smooth.

In fact, since calculation of the projection involves an inverse problem step in terms of solving
for â.X, Z/, there is no evidence that the dependence of the estimator on pU is also differentiable.
This possible lack of smoothness invalidates the direct application of general plug-in results.
However, under mild regularity conditions, root n consistency and asymptotic normality of β̂
still hold. We summarize these asymptotic results in theorem 2.

Theorem 2. Let M =E{@.SÅ
1 −b1/=@β}−1 and Σ=var.SÅ

1 −b1/. Under the regularity condi-
tions, when n→∞ the estimator β̂ that is given in equation (3) satisfies

n1=2.β̂ −β0/→N.0, MΣMT/



440 P. Hall and Y. Ma

in distribution, provided that h satisfies nh2 →∞ and nh4 →0. Here,

SÅ
1 .W , Y , Z/=SÅ

β .W , Y , Z/−EÅ{a.X, Z/|W , Y , Z},

where a.X, Z/ satisfies

E.SÅ
β |X, Z/=E[EÅ{a.X, Z/|W , Y , Z}|X, Z],

i.e. SÅ
1 is the locally efficient score function of the Tsiatis–Ma estimator, b1.W , Y , Z/ =

E{â.X, Z/−a.X, Z/|W , Y , Z}, and â.X, Z/ satisfies equation (5).

Theorem 2 indicates that the estimator of β is still root n consistent, even when non-paramet-
ric estimation of pU is involved. The regularity conditions in the theorem are mild, in that they
concern primarily the second-order differentiability and boundedness of several functions and
variances.

A proof of theorem 2 is rather tedious and lengthy, and so we present only a sketch in
Appendix A. A complete proof, along with a list of regularity conditions, is available from the
second author.

The plug-in estimator has the advantage of being computationally simple. However, reduced
asymptotic efficiency is a price to be paid for computational simplicity. In what follows, we first
give an intuitive explanation of why the estimator is inefficient, and then we provide a formal
proof of inefficiency of the estimator.

Consider a slightly different situation, where we have a parametric model for pU , say pU.U, γ/,
and we use the same plug-in estimator, i.e. we first estimate γ by using data v1, . . . , vn, then plug
pU.U, γ̂/ into the estimator for parametric model pU to obtain the final estimator. Thus, the
two estimating equations are

n∑
i=1

S̃
Å
1 .wi, yi, zi, β, γ/=0,

n∑
i=1

Sv.vi, γ/=0:

.7/

Here, Sv is a mean 0 function of V. For example, if we use maximum likelihood to estimate γ,
then Sv.V , γ/= @[log{pU.V , γ/}]=@γ; S̃

Å
1 = S̃

Å
β − Ẽ

Å
.ã|W , Y , Z/, where

S̃
Å
β = Ẽ

Å
(

@[log{pY |X,Z.Y |X, Z, β/}]
@β

∣∣∣∣W , Y , Z

)
,

and ã.X, Z, γ/ solves

Ẽ[Ẽ
Å{ã.X, Z, γ/|W , Y , Z}|X, Z]= Ẽ{S̃

Å
β .W , Y , Z, γ/|X, Z}:

Here, tildes denote an operation that is performed using the estimated pU.U, γ̂/.
Standard calculation shows that the variance of the estimator is of the form MΣMT, where

M =
(

E.SÅ
1 ST

1 / E.SÅ
1 ST

2 /

0 E.SvST
v /

)−1

,

Σ=
(

E.SÅ
1 SÅT

1 / 0
0 E.ST

v Sv/

)
,

and S1 and S2 +Sv are the two components of the efficient score function corresponding to β
and γ. Note that, for simplicity, we wrote the component corresponding to γ as S2 +Sv. Here Sv
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is defined as in expression (7), and S2 +Sv is the efficient score function of γ. The score vector
with respect to γ is

Sγ =E

(
@[log{pU.W −X, γ/}]

@γ

∣∣∣∣W , Y , Z

)
+Sv:

Using the same approach to obtain S1, we find that the efficient score vector for γ is Sγ −
E.b|W , Y , Z/, where b.X, Z/ solves

E[E{b.X, Z/|W , Y , Z}|X, Z]=E{Sγ.W , Y , Z/|X, Z}:

Hence, we have S2 =Sγ −E.b|W , Y , Z/−Sv.
It is worth noting that, because V is independent of X , W , Y and Z, E.Sv|X, Z/ = 0 and

E.SvST
1 /=0, E.SÅ

1 Sv/=0 and E.SvST
2 /=0. To assess local efficiency, we consider the case when

pÅ
X|Z is the truth, i.e. pÅ

X|Z = pX|Z; therefore, all the asterisks in the following derivations are
eliminated. We are interested only in the variance that is associated with β; hence we consider
only the .1, 1/ block of the MΣMT, which equals

E.S1ST
1 /−1 +E.S1ST

1 /−1 E.S1ST
2 / E.SvST

v /−1 E.S1ST
2 /T E.S1ST

1 /−1: .8/

Since the efficient estimator has its variance equal to the inverse of the variance of the efficient
score function, (

E.S1ST
1 / E.S1ST

2 /

E.S2ST
1 / E.S2ST

2 /+E.SvST
v /

)−1

,

its .1, 1/ block can be verified to be

E.S1ST
1 /−1 +E.S1ST

1 /−1 E.S1ST
2 /{E.S2ST

2 /+E.SvST
v /

−E.S1ST
2 /T E.S1ST

1 /−1 E.S1ST
2 /}−1 E.S1ST

2 /T E.S1ST
1 /−1: .9/

A comparison between expressions (8) and (9) reveals that, generally, the plug-in estimator
is not locally efficient in this situation. Note also that, when pU is completely known, the var-
iance of the efficient estimator is E.S1ST

1 /, which is strictly smaller than both expression (8)
and expression (9). This agrees with the intuition that extra unknown parameters in the model
generally cause a loss of efficiency.

The inefficiency of the plug-in estimator also holds for the non-parametric measurement error
model. We state this result in the following remark.

Remark 1. The plug-in estimator that was proposed in Section 3 is not necessarily locally
semiparametric efficient. That is, even if a correct model is posited for pX|Z, i.e. pÅ

X|Z = pX|Z,
the resulting estimator is not efficient.

Remark 1 can be shown by using the result that was obtained from the parametric mea-
surement error distribution case; we give an illustration in Appendix A. Although the plug-in
estimator is, in theory, not efficient, in practice its performance is very close to that of the optimal
estimator; see the simulation results in Section 5. Considering the complexity of implementation
of the efficient estimator that was presented in Section 2, we expect that the plug-in estimator
will be favoured in practice.

8. Conclusion

We derived a plug-in estimator for measurement error models, when the measurement error
distribution needs to be estimated from the data. This estimation can be either parametric or
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non-parametric, depending on the assumptions. We gave one way of non-parametrically esti-
mating this error distribution, using multiple measurements.

We also established the asymptotic normality and root n consistency of the resulting plug-in
estimator. We pointed out that the estimator is not efficient, although in practice the degree of
suboptimality is often so small that it is hardly noticeable.

The method was demonstrated in a simulation study as well as for the Framingham data.
Note that the method requires the availability of vis, either directly or through manipulating
the observations. Therefore, in practice, one could verify whether a parametric model for the
distribution of vis was applicable. Only when no suitable parametric model is found do we need
to resort to the non-parametric estimation procedure.

Implementation of the method is almost identical to that for its parametric counterpart, i.e.
when a parametric model pU is available. The non-parametric density estimation step hardly
increases computational complexity. However, computing the locally efficient estimator is sub-
stantially more complex. Hence, in practice, the plug-in estimator would be preferred.

Finally, construction of the vis and wis in the multiple-measurements case relies on the
assumption that the measurement error density pU is symmetric. Transformations to achieve
symmetry have been given by Eckert et al. (1997). When no transformation is available, and only
a general additive measurement error model can be obtained, pU is not identifiable on the basis
of the multiple measurements wij. In such cases a subjective model for pU seems unavoidable.
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Appendix A

A.1. Characterization of the efficient estimator
It can be verified easily that the nuisance tangent space Λ can be written as Λ=Λ1 +Λ2, where

Λ1 = [E{f.X, Z/|W , Y , Z} : E.f |Z/=0]

Λ2 = [E{f.W −X/|W , Y , Z}+f.V/ : E.f/=0]:

Hence, the nuisance tangent space orthogonal complement Λ⊥ can be written as Λ⊥ =Λ⊥
1 ∩Λ⊥

2 , where

Λ⊥
1 ={g.W , Y , Z, V/ : E.g|X, Z/=0},

Λ⊥
2 ={g.W , Y , Z, V/ : E.g|U =u/+E.g|V =u/=0}:

Using the results of Tsiatis and Ma (2004), we show that the projection of Sβ onto Λ⊥
1 is S1, i.e. Π.Sβ |Λ⊥

1 /=
S1. The projection of Sβ onto Λ⊥ can be obtained by further projecting S1 onto Λ⊥. Since Λ⊥

1 ∩Λ=Λ⊥
1 ∩Λ2,

we assume that

Π.S1|Λ⊥
1 ∩Λ/=E{f.W −X/|W , Y , Z}+f.V/,

where E.f/=0. Then,

S1 −E{f.W −X/|W , Y , Z}−f.V/∈Λ⊥:

Hence, defining U =W −X, we have

E[S1 −E{f.U/|W , Y , Z}−f.V/|X, Z]=0,

E[S1 −E{f.U/|W , Y , Z}−f.V/|U =u]+E[S1 −E{f.U/|W , Y , Z}−f.V/|V =u]=0:

In view of the independence between V and X , W , Y and Z, and the property E.S1|X, Z/=0, this simplifies
to expression (2). Therefore,
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Seff =S1.W , Y , Z/−E{f.W −X/|W , Y , Z}−f.V/,

where f satisfies the conditions in expression (2).

A.2. Outline proof of theorem 1
Define U = W − X, and let pt

U be the true probability density function of U. Under the conditions of
theorem 1, ∫

S1.X+U, Y , Z/ pm
U .U/ pY ,X,Z.Y , X, Z/ dμ.Y/ μ.X/ μ.Z/ μ.U/=0:

If the estimator is also consistent under the true model pt
U , then∫

S1.X+U, Y , Z/ pt
U.U/ pY ,X,Z.Y , X, Z/ dμ.Y/ μ.X/ μ.Z/ μ.U/=0:

Putting

δ.U/=
∫

S1.X+U, Y , Z/ pY ,X,Z.Y , X, Z/ dμ.Y/ μ.X/ μ.Z/,

we have
∫

δ.U/ pm
U .U/ dμ.U/=0 and

∫
δ.U/ pt

U.U/ dμ.U/=0. Because no special relationship between pm
U

and pt
I is assumed other than that both are symmetric, then the only case in which both equalities hold is

when δ.U/ is an odd function. The construction of S1 does not ensure that δ.U/ is odd, and so the estimator
is generally biased.

A.3. Outline of proof of theorem 2
We give only an outline of the proof of theorem 2. The full proof, as well as a list of regularity conditions,
can be obtained from the second author.

The proof of theorem 2 splits into seven steps. The first step analyses p̂U :

p̂U.u/−pU.u/=h2 p′′
U.u/C +n−1

n∑
i=1

f.Vi, u, h/+o.h2/,

where E{f.V , u, h/}=0 and

var{f.V , u, h/}=h−1 pU.u/D+o.h−1/:

Let r.·/= p̂U.·/−pU.·/ and

r̃.·/=n−1
n∑

i=1
f.Vi, · , h/:

Then,

Ŝ
Å
β =SÅ

β +R1.W , Y , Z/+O.r2 +h2/,

Ê.Ŝ
Å
β |X, Z/=E.SÅ

β |X, Z/+R2.X, Z/+O.h2 + r2/,

where

R1.W , Y , Z/=
n∑

i=1
[EÅ{SF*

β f.vi, U, h/=pU.U/|W , Y , Z}−SÅ
β EÅ{f.vi, U, h/=pU.U/|W , Y , Z}],

R2.X, Z/=
∫

SÅ
β r̃.U/ p.Y |X, Z/ dμ.W/ dμ.Y/+E.R1|X, Z/:

Next we study projection onto the nuisance tangent space. Assume that â.X, Z/ and a.X, Z/ satisfy
respectively

Ê[Ê
Å{â.X, Z/|W , Y , Z}|X, Z]= Ê.Ŝ

Å
β |X, Z/,

E[EÅ{a.X, Z/|W , Y , Z}|X, Z]=E.SÅ
β |X, Z/:
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Let

â.X, Z/=a.X, Z/+b0.X, Z/,

b1.W , Y , Z/=EÅ.b0|W , Y , Z/,

b2 =EÅ{b0 r̃.U/=pU.U/|W , Y , Z}
and b=b1 +b2. Then it can be shown that

Ê
Å{â.X, Z/|W , Y , Z}=EÅ.a|W , Y , Z/+b+B1.W , Y , Z/+O.h2 + r2/,

Ê[Ê
Å{â.X, Z/|W , Y , Z}|X, Z]=E{EÅ.a|W , Y , Z/|X, Z}+E.b|X, Z/+B2.X, Z/+O.h2 + r2/,

where

B1.W , Y , Z/=
n∑

i=1
[EÅ{a f.vi, U, h/=pU |W , Y , Z}−{EÅ.a|W , Y , Z/+b1}EÅ{f.vi, U, h/=pU |W , Y , Z}],

B2.X, Z/=E.B1|X, Z/+
∫

{EÅ.a|W , Y , Z/+b} r̃.U/ p.Y |X, Z/ dμ.W/ dμ.Y/:

Next we address the estimating equation. Define Ŝ = Ŝ
Å
β − Ê

Å
.â|W , Y , Z/, SÅ

1 =SÅ
β −EÅ.a|W , Y , Z/ and

SÅ
2 =B1 −R1 +b. The estimator is given by

n−1
n∑

i=1
Ŝ.Wi, Yi, Zi, β̂/=0,

where Ŝ =SÅ
1 −SÅ

2 +O.h2 + r2/.
The proof is completed by showing, in succession, that

n1=2.βÅ −β0/=O.n1=2h2/+Op{.n1=2h/−1}+Op.h3=2/,

var.n1=2β̂/=Q var{.SÅ
1 −SÅ

2 /.W , Y , Z, β0/}QT +o.1/,

n1=2.β̂ −β0/→N.0, [E{@.SÅ
1 −b1/=@β}]−1 var.SÅ

1 −b1/.E{@.SÅ
1 −b1/=@β}−1/T/

where the convergence is in distribution and holds provided that nh4 →0 and nh2 →∞.

A.4. Outline proof of remark 1
Assume the contrary, i.e. that the estimator is locally semiparametric efficient. Since theorem 2 already
establishes root n consistency of the estimator, this means that the estimator is efficient if pÅ

X|Z is correctly
specified. To emphasize that all the relevant calculations are under the true pX|Z, in the proof we eliminate
all asterisks.

Let c = E.S2/. Borrowing from the proof of theorem 2, we first show that c = op.1/. We have already
proved that E.S2/=E.b0/+op.1/. Now, b0 = â−a,

Ê{Ê.â|W , Y , Z/|X, Z}= Ê.Ŝβ |X, Z/

and

E{E.a|W , Y , Z/|X, Z}=E.Sβ |X, Z/,

so

Ê{Ê.â|W , Y , Z/|X, Z}−E{E.a|W , Y , Z/|X, Z}
= [Ê{Ê.â|W , Y , Z/|X, Z}−E{E.â|W , Y , Z/|X, Z}]+E{E.b0|W , Y , Z/|X, Z}
=E{E.b0|W , Y , Z/|X, Z}+op.1/

= Ê.Ŝβ |X, Z/−E.Sβ |X, Z/

= Ê.Ŝβ −Sβ |X, Z/+ Ê.Sβ |X, Z/−E.Sβ |X, Z/=op.1/:

Hence, E.b0/=op.1/, i.e. c=op.1/.
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Thus, theorem 2 implies that the first-order asymptotic properties of the proposed estimator are the
same as those for the estimator that is obtained by solving

n∑
i=1

{S1.Wi, Yi, Zi, Vi/−S2.Wi, Yi, Zi, Vi/+ c}=0:

The result in the proof of theorem 2 also shows that S1.Wi, Yi, Zi, Vi/−S2.Wi, Yi, Zi, Vi/+c is proportional
to a valid influence function. Hence, the efficiency results imply that it is proportional to the efficient score
function.

Using the results in the efficient estimator derivation, we obtain Π.S1|Λ⊥/=d.S1 −S2 + c/, where d is a
constant. This is equivalent to d.S1 −S2 + c/∈Λ⊥ and .1−d/S1 +d.S2 − c/∈Λ∩Λ⊥

1 . So, we can write

.1−d/S1 +d.S2 − c/=E{f1.X, Z/|W , Y , Z}+E{f2.W −X/|W , Y , Z}+f2.V/,

where E.f1|Z/=0, E.f2/=0 and

E[E{f1.X, Z/|W , Y , Z}+E{f2.W −X/|W , Y , Z}+f2.V/|X, Z]=0:

But S1 and S2 − c are not functions of V , so f2 =0. This means that

.1−d/S1 +d.S2 − c/∈Λ1 ∩Λ⊥
1 ;

hence

.1−d/S1 +d.S2 − c/=0:

We have therefore shown that the efficient score function is S1, the same as when the measurement error dis-
tribution is known; hence the optimal efficiency is the same as well. However, even when the measurement
error distribution is known parametrically, we have shown that, generally, the optimal efficiency of esti-
mation of β is less than when the measurement error distribution is completely known. This contradiction
means that the plug-in estimator is not necessarily efficient.
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