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Summary. Differential equations are customarily used to describe dynamic systems. Existing
methods for estimating unknown parameters in those systems include parameter cascade,
which is a spline-based technique, and pseudo-least-squares, which is a local-polynomial-based
two-step method. Parameter cascade is often referred to as a ‘one-step method’, although it in
fact involves at least two stages: one to choose the tuning parameter and another to select
model parameters. We propose a class of fast, easy-to-use, genuinely one-step procedures
for estimating unknown parameters in dynamic system models. This approach does not need
extraneous estimation of the tuning parameter; it selects that quantity, as well as all the model
parameters, in a single explicit step, and it produces root-n-consistent estimators of all the model
parameters. Although it is of course not as accurate as more complex methods, its speed and
ease of use make it particularly attractive for exploratory data analysis.
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1. Introduction

Dynamic system models have wide application, in areas including the biomedical sciences,
ecology and physics. In consequence they are often studied by statisticians, who are interested
particularly in estimating model parameters and in determining any smoothing, or tuning,
parameters that are needed to estimate the model. Conceptually this is a simple parametric
regression problem, with the inconvenience that the regression function is given implicitly as
the solution of a differential equation. However, in practice that aspect has a non-trivial con-
sequence: if we use a classical approach, such as least squares, we do not obtain a closed form
solution and instead must resort to iterative numerical methods. Unfortunately, each iteration
involves solving a differential equation at a candidate parameter value, as well as calculating
the derivative of the solution function with respect to the parameter. All of this makes statistical
inference, and particularly computation, quite challenging.

Indeed, the high computational cost of repeatedly solving differential equations has prompted
statisticians to seek alternative approaches to this problem, using non-parametric methods. The
best known technique is parameter cascade (Ramsay et al., 2007), where a linear combination
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of spline basis functions is employed to approximate the implicitly defined regression function,
and model parameters are estimated so that the approximation function satisfies the differential
equation, and fits the data, as well as possible. However, since the data are typically noisy then
these two tasks do not necessarily lead to the same parameter values. The parameter cascade
method balances these two conflicting requirements by minimizing the weighted average of two
respective criterion functions.

If the spline order, the number of knots, the knot positions and the balancing weights are
all predecided, estimation of the model parameters can be obtained together with the spline
coefficients in a single optimization procedure. Thus, parameter cascade is sometimes referred
to asa one-step estimation procedure, although of course the aforementioned tuning parameters,
particularly the number of knots, must be chosen in a second operation. Theoretical properties
of parameter cascade were not well appreciated until the work of Qi and Zhao (2010). So far,
parameter cascade is probably the most popular statistical method for parameter estimation in
dynamic systems and has enjoyed success in various applications. See, for example, Cao et al.
(2008), Hooker (2009) and Hooker ez al. (2011).

Encouraged by the success of spline-based non-parametric methods in these problems, kernel-
based non-parametric methods were explored by Liang and Wu (2008). Their basic idea was,
first, to estimate the regression function and its derivative by using kernel-based non-parametric
methods, e.g. techniques founded on local polynomials, and then to adjust the parameter
values so that the non-parametric estimators satisfied most closely the differential equation
requirement. This idea was later adapted to estimate time varying parameters in differential
equations (Chen and Wu, 2008a,b). Compared with the parameter cascade approach, these
kernel-based methods perform non-parametric estimation while completely ignoring the model,
and then derive the model parameters by minimizing the model discrepancy expressed in terms
of the estimated functions. Since the non-parametric regression and parameter estimation stages
are performed separately, these methods are referred to as two-step estimation procedures.

Compared with the ‘one-step’ parameter cascade procedure, the two-step kernel method is
somewhat less popular. This is partly because it does not take into account the model structure
while performing the non-parametric estimation step. One might think that, since the data
were generated from the model, it would still be appropriate to smooth them first and then to
treat model aspects by using the smoothed results. However, several issues conspire to make
this approach problematic. For example, choosing the tuning parameter to optimize for non-
parametric smoothing does not necessarily result in root-n-consistent parameter estimation.
(Here n denotes sample size.) In fact, in the context of kernel methods there is not yet a quick,
easy and attractive approach to tuning parameter choice that enjoys root n consistency.

Motivated by these drawbacks of existing one-step and two-step methods, in this paper
we introduce a competitive approach where model parameters and the tuning parameter are
estimated together, and the model parameter estimators are root n consistent. The method has
substantial advantages of speed and ease of use over alternative approaches. It is based on min-
imizing S(3, h), defined at expression (9), where 3 is the vector of model parameters and 4 is
the tuning parameter. It is completely automatic, involving only a single step; it is currently the
only available method of that type. There are no extraneous tuning parameters to select, and
the minimization step is performed with respect to only 3 and #, a fixed number of parameters,
regardless of sample size, even though the methodology involves non-parametric function esti-
mation. This is in contrast with methods based on classical non-parametric maximum likelihood
estimation or profile maximum likelihood estimation, where the optimization is typically with
respect to a number of parameters that diverges with sample size. The method has very good
performance and, although not matching the performance of other techniques when their tuning
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parameters are chosen optimally, it is much simpler. Its speed and ease of use make it particularly
attractive for exploratory data analysis.

2. A class of one-step kernel estimators

2.1. General differential equation models

We begin by considering a problem that is substantially more general than those that have
been considered previously, and then we specialize it to a more conventional setting so that our
methodology and its properties can be compared with those of other researchers. Let m denote
an [-dimensional function of a scalar variable x, and suppose that it satisfies

q .
g{m(x), 8} =3 7m" () e
j=1
for all x in an interval, where 3= (03, .. .,ﬁ,,)T and v=(v1,.. .,vq)T are vectors, g(-,3) is a

known [-dimensional functional of 3, m‘ denotes the jth derivative of m and it is assumed that
~ is constrained in such a way that 3 and - are identifiable from condition (1). (For example,
we might insist that ) =1, arguing that the size of -y; is accommodated by altering the scale on
which g is measured.) It is desired to estimate 3 and ~. We anticipate that the function g(-, 3)
will be smooth, and so the left-hand side of equation (1) represents a smooth transformation of
m, whereas the transformation on the right-hand side of equation (1) reduces the smoothness
of m.

In this problem we observe information about m coming from independent and identically
distributed data pairs (X;,Y;), fori=1,...,n, generated by a regression model,

Y=m(X)+e, 2

where E(e|X)=0 and cov(e|X) = X(X). Of course, there are many ways of estimating m from
these data; we shall discuss some of them shortly. Let m denote one such non-parametric esti-
mator. A simple approach to estimating 3 and -y is to choose them to minimize an integrated
squared norm,

g(im(). 8} — 30 7@ )| wend, 3)
=1

where w is an appropriate weight function. (Here and throughout the text, we use ||-|| to denote
the l,-norm of a vector or the Frobenius norm of a matrix.) However, this approach will not
always lead to root-n-consistent estimators of 3 and «y, because in general none of the estimators
m?, for j >0, is root n consistent.

To avoid this problem we suggest modifying expression (3) so that the quantity inside the norm
in the integrand can be estimated root n consistently. For this, for each x and each bounded
function b we let T, (b) denote a linear transformation of b that is tantamount to g-fold inte-
gration of that function, and consider the version of expression (3) that is obtained when this
transformation is applied to the quantity in expression (3):

/

e g - a0 | wwar @

We choose T, so that
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T,(m)=0 ®))

if condition (1) holds, and T, (th”) can be estimated root n consistently for j=0,...,q. Since
g(m, 3) is a smooth functional, this will generally mean that T, {g(h, 3) } can also be estimated
root n consistently.

2.2. Differential equations of degree 1
The particular version of condition (1) that is commonly investigated in practice, and is moti-
vated by real data sets, has g =1. In this case equation (1) has the form

m'(x) =g{m(x), 8}, (6)

where m’ =m. In the remainder of this paper we shall confine attention to this setting. Note
first that if the function m is supported on the interval [0, 1] then it is appropriate to take

T, (m)= / [¢(u, x, ) m(u) + ¢ (u, x, ¢) g{m(u), B}] du, (7

for any constant c € (0, 1) and for a function ¢ satisfying
o(x,x,¢)=¢(c,x,c)=0, forall c,xe(0,1). ®)

Observe also that T, is a linear transformation and that, for any bounded function ¢ satisfying
condition (8), property (5) holds.
If T, is given by equation (7) then expression (4) has the form

S(B,h)z/‘

where ¢(u, x,c) = (x —u)(u — ¢) and, in practice, we take w=1. The notation m(u, h) in expres-
sion (9) reflects the fact that the estimator m depends on a bandwidth 4. For a given & we choose
B= Bh to minimize S(3, k) in equation (9). As we shall show, this approach, in company with
property (8), ensures that the bandwidth that is selected together with 3, by minimizing S(3, h),
is one that enables B to be root n consistent for 3.

The quantity m(u, 2) can denote any standard kernel estimator of m with bandwidth 4. For
example, we might use m(u, h) = X1 icq wi(x, h)Y;, where

2

/x[gb/(u, x,c)m(u, h) + ¢(u, x,c)g{m(u, h), B} du|| wx)dx, 9)

w,-(x,h)=/" Ky (t—x)dt,
5i-1
Kp(X;—x)

> Kn(Xi—x)
1<i<n

Wi (X, h) =

in the case of Gasser—Miiller or Nadaraya—Watson estimators respectively, and

K (X; =0 { £ Kn(X; = 0(X; =07 = (X =0 X K (X -0 (X -0 }
J J

wi(x) =
5 Kn(Xk =0 52 Kn(X; = 0(X; =002 = (X =) £ K (X, = ) (X; =)}
k J J

if m is a local linear estimator. Here, K is a kernel function, Kj(u)=h"" K@/h) and s; =
(Xi+ Xir1)/2 fori=1,...,n—1, so =0 and s, = 1. For simplicity, we have used a common
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bandwidth 4 for estimating different components in m. This simplification does not affect
first-order asymptotic properties of the estimator of 3. When using either Gasser—Miiller or
Nadaraya—Watson estimators we suggest that ¢ is taken to be a small constant approaching 0,
but much larger than /. This has the effect of guarding against edge effects, and taking c =h!/2
is usually sufficient. However, using ¢ =0 causes no problems if the estimator m is robust against
boundary effects, e.g. if it is a local linear estimator.

2.3. Further generalizations
In addition to generalizations to more complex models, such as that at expression (1), we can
treat criteria that are intrinsically more general than S(3, k) at expression (9). This diversity can
reduce the variance of estimators 3. For simplicity we shall confine attention again to model
(6).

Assume that 0 <c¢ < %, let 41,12, ... be a sequence of functions supported on [c, | — ¢] and
satisfying 1;(c) =1 ;(1 — ¢) =0 for each j, and note that if model (6) holds then

1—c

1—c
0= [ 0ol 0~ g(me. Blldr=— [ [0 me0+ vy g{mer). B}1da

c
for each j. This motivates choosing (B3, h) to minimize
(10)

1—c
SiB.m =S| [ 5 0Gen) + 0,008l 811
j c

where wy, wy, ... are non-negative weights; compare with expression (9). Alternatively, if there
are just J weights ¢); then we can use either of the criteria

J I—c T
$2(B,h) = 2; (/ [¢}(X)ﬁ1(x,h)+1/{;(X)g{lf‘l(x,h),ﬁ}]dx>

J

2

=1k
(/ (Y () (x, B) + i () g{(x, h), B}]d ) QY

J T
S3(ﬂ,h)=zzl (/ ¢>-(M,X,C)ﬁl(x,h)+¢j(u,x,c)g{ﬁl(x,h),ﬁ}]du)

( (3 (u, x, ) in(u, h) + P (u, x, c)g{lil(u,h),ﬁ}]du)wjk(x)dx, (12)

where in equation (11) the weights w . are chosen so that the J x J matrix W = (w ) is non-
negative definite, and in equation (12) the weight functions w j; (x) have the property that W (x) =
(wjk(x)) is non-negative definite for all except at most a finite number of values of x.

3. Theoretical properties

Let gj3(m, 3) denote the first partial derivatives of g(m,3) with respect to the p-vector 3, an
[ x p matrix. Let g *(m, 3) denote the second partial derivatives of g(m, 3) with respect to 3,
written into a length I block row vector, with each block size p x p. Similarly, write g’'(m, 3), an
[ x [ matrix, and g”(m, 3), an [ x (2 matrix, for the first and second partial derivatives of g(m, 3)
with respect to m. Let ¢(u, x, c), and its derivatives ¢\ (u, x, ¢) = (3/0u)/ p(u, x, ¢) for j=1,2,
satisfy condition (8). With 3 representing the true value of 3, define
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bu,x,c)=¢ (u,x,c); + ¢(u, x,c) g'{m(u), By}, (13)

AG) = /0 61, ,0) g {m(w), By} du, (14)

denoting respectively an [ x / matrix and an / x p matrix, where I; is the size / identity matrix. If
v is a vector or a matrix, put v®2 =vvT.

We take m(u,h) to be a Gasser—Miiller, Nadaraya—Watson or local linear estimator; see
Section 2.2 for discussion. In the theorem below, (Bh, h) denotes the minimizer of S(3, k), in
expression (9), for any given h € H,,, where H,, is a large class of bandwidths, defined in condition
7; the regularity conditions 1-8 are those discussed in Appendix A; and the p x p matrices A
and B are given by

A:/)\T(x)®2 w(x)dx,

B—E{ </1b(X x,0) X (x) w(x)dx)T 2(X) (/1b(X X, 0) X(x) w(x) dx>} (15)
B x O\ T '

If we substitute (m, 3), satisfying condition (6), into expression (9) then expression (9) will
reach the minimum possible value 0. It is not difficult to verify the converse, i.e., if expression
(9) is 0 at a certain (m, 3) then that (m, 3) will automatically satisfy condition (6). This ensures
that minimizing expression (9) does not lead us to a problem which is different from that of
solving expression (6). In fact, under condition 7, m(x, 2) — m(x) when n — 0o; hence the above
observation also ensures that the estimator that minimizes expression (9) yields a consistent
estimator of 3.

The following theorem, which is derived in the on-line appendix, shows not only that the
limiting distribution of Bh i1s normal for each h € ‘H,, but also that, in a well-defined sense,
asymptotic normality can be asserted uniformly in & € H,,. In Appendix A we shall discuss
properties when h ¢ H,,.

Theorem 1. If conditions 1-8 hold then, for each i € H,,, n'/ Z(Bh — By) is asymptotically nor-
mally distributed with zero mean and covariance matrix X=A"'B(A~1)T. Indeed, n!/? (Bh -
Bo) =N, +0p(1), uniformly in 2 € H,,, where the random p-vectors N,,, for n > 1, all have the
N(0, ) distribution and do not depend on 4.

Theorem 1 is readily generalized to cases where, for given &, 3, minimizes one of the criteria
S1(8,h), S>(8, h) and S3(3, h), defined at expressions (10), (11) and (12) respectively. For exam-
ple, consider / = 1. If the criterion is S3 then, for /=1, the theorem holds with A and B redefined
by

A= / AX)W(x) AT (x)dx,

1 ®2 2
B:EH / A W@ b(X, x,0) dx} UZ(X)}
. F2(X)
where
b(u, x,¢) = @' (u, x,¢) + P, x,c)g'{m(u), By}, (16)

A= / g {m), Bo} " (u.x,c) du. (17)
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If the criterion is S, at expression (11), then theorem 1 is again obtained, this time with
A=A(1-c)WAT(1 —¢),

x)  ®2
B:E[{A(l —OWbX. 1 —c,0) 2 } }
fx(X)
where b(u, x, ¢) and A(x) are again as at equations (16) and (17). Still in the context of S, the
minimum variance is {A(1 — OWAT(1 - ¢)}~! and is obtained when

0_( X) }@2
Ix(X) '

An estimator with these weights has minimum variance in the class of estimators defined by
minimizing Sy, although it is apparently not optimal more widely for estimating 3. There appears
to be no estimator that retains the simplicity of our one-step approach and, at the same time,
has minimum variance in a wide sense.

w—1=E{b(x,1—c,0)

4. Numerical properties

Since S(3, h) is twice differentiable with respect to 3 and /&, minimization of expression (9) can
be performed by using the Newton—Raphson algorithm. In practice we restrict 4 to be at least
the maximum distance between two neighbouring observations, and at most n~!/3. This choice
works well in practice and also ensures condition 7 in Appendix A. The algorithm could stop at
a local minimum, but this problem is readily alleviated by starting with several different values
and evaluating S(3, k) at a set of grid points, to gain global knowledge of the function.

4.1. Simulated examples

We performed a series of simulation studies to investigate the finite sample performance of
our methodology. In our first set of simulations the true underlying model was a simple linear
ordinary differential equation of the form m’(x) = 3m(x). This equation has explicit solution
m(x, B) =exp(5x) + ¢, for any constant c. Of course, during the estimation procedure we did not
take advantage of the solution. We generated n observations from the model Y =exp(8X) +¢.
We took 3=1 and assumed that ¢ was normal N(0, o2), and we experimented with sample sizes
n =500 and n = 1000, in combination with standard deviations 0 =0.1,0.2,0.3. Here and below,
each experiment was repeated 1000 times.

The results are given in Table 1 and show that our methodology yields estimators with very
small biases and variances. Although the sample size n =250 seems too small to corroborate our
theoretical results, the conclusions of theorem 1 are reflected well for sample sizes n =500 and
n=1000, and in particular the averages of the empirical standard errors of the estimators are
close to their theoretical values. Indeed, when the sample size is small, a bootstrap procedure can
be performed in lieu of theorem 1 to assess the variability of the estimator. Specifically, one can
randomly sample (Xp1, Yp1), ..., (Xpn, Ypn) from the original observations and obtain (ﬁb, hp)
by minimizing expression (9) constructed by using the bootstrap data. Repeating this procedure
for b=1,..., B, and calculating the sample variance—covariance matrix from f)’l, B B, We
obtain a bootstrap estimator of the covariance matrix of 3.

In our second set of simulations we considered a second-order differential equation, m” (x) =
—3?m(x), which equivalently can be written as a set of two first-order ordinary differential
equations, m} (x) = 3ma(x) and m)(x) = —Fm1(x). We generated data from the model Y| =
cos(8X) + e and Y, = —sin(8X) + &2, which satisfies the set of equations for 3= 1. The errors
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Table 1. Simulation 1: average values of estimators of 3, 5 ngard deviations of estimators of 3,
sd(8), and average values of estimators of standard deviations of 3, sd(3), for n=250,500,1000 and ¢ = 0.1,
0.2,0.31

Values for n=250 Values for n =500 Values for n= 1000

o=0.1 c=0.2 o=0.3 o=0.1 c=0.2 oc=0.3 o=0.1 o=0.2 c=0.3

[; . 0.9999 0.9998 1.0001 0.9996 0.9994 0.9989 1.0001 1.0002 1.0004
sd(B) 0.0259 0.0487 0.0717 0.0166 0.0321 0.0478 0.0108 0.0213 0.0320
sd(B) 0.0283 0.0566 0.0849 0.0176 0.0351 0.0526 0.0113 0.0226 0.0338

1The true value of 3 was 1.

Table 2. Simulation 2: average values of estimators of 3, /5 standard deviations of estimators of 3,
sd(3), and average values of estimators of standard deviations of 3, sd(3), for n =250, 500, 1000, 1500
and 0 =0.1,0.2,0.3}

Values for n =250 Values for n =500 Values for n=1000 Values for n = 1500

0=0.1 0=02 0=03 0=0.1 0=0.2 0=03 0=01 0c=02 0=0.3 0c=0.1 0=0.2 0=03

5 1.0002 0.9989 0.9993 0.9995 0.9987 0.9991 0.9997 0.9994 0.9995 1.0001 1.0002 0.9999
sd(ﬂ) 0.0405 0.0781 0.1172 0.0264 0.0527 0.0786 0.0168 0.0336 0.0501 0.0134 0.0269 0.0405
sd(3) 0.0460 0.0921 0.1381 0.0285 0.0570 0.0855 0.0183 0.0366 0.0549 0.0143 0.0286 0.0429

+The true value of 3 was 1.

e1 and &, were taken to be normal N(0, 02). Results for various sample sizes and error variances
are summarized in Table 2. Again the procedure proposed produces estimators with small
biases and variances. However, the average estimated standard deviation does not match its
theoretical counterpart closely until the sample size becomes relatively large, reflecting the fact
that, as we shall see in subsequent simulation studies, for models of greater complexity the
asymptotic results in theorem 1 require larger sample sizes before they are fully apparent in
practice.

In the third set of simulations we experimented with estimating a bivariate parameter, 8=
(51, 5>)T, while keeping the number of equations, and their order, equal to 1. Specifically, the
differential equation was taken to be m’(x) = 31 m(x) + 3, and we generated data from the
model Y = ﬁl exp(B1X + (3») + &, where the mean function was a solution of the differential
equation, and & was normal N(0, 02) As can be seen from the results that are reported in Table
3, the methodology again performs well, and in this relatively complex model the asymptotic
theory in theorem 1 requires larger sample sizes before it is evident empirically.

In our fourth set of simulations we extended the previous three studies to cases where both
the number of differential equations and the number of parameters exceeded 1. Specifically, we
took the equations to be m' (x) = 81 B2 m(x) and m} (x) = -, ! Bim(x), and we generated data
from the models Y; =cos(81x) +¢; and Y, = 62_1 sin(f31x) 4+ &;. In Table 4 we report results for
various sample sizes and reach the same conclusions as before.

We also experimented with data drawn from the well-known FitzHugh—Nagumo equations
(FitzHugh, 1961; Nagumo et al., 1962). This set of equations involves three parameters and has
the form
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Table3. Simulation 3:average values of estimators of 3, B standard deviations
of estimators of 3, sd(8), and average values of estimators of standard
deviations of 3, sd(3), for n =250, 500, 1000, 1500,2000 and ¢ =0.1,0.2,0.31

Values for 0 =0.1 Values for 0 =0.2 Values for 0 =0.3
B B2 B B2 B B2
n=250
ﬁ 0.9958 1.0031 0.9926 1.0069 0.9918 1.0087

sd(ﬁ) 0.2675 0.1731 0.3781 0.2539 0.4520 0.3114
sd(B) 0.3187 0.2078 0.6383 0.4170 0.9611 0.6285

n=>500
3 1.0055 0.9968 1.0081 0.9959 1.0061 0.9977

B
sd(8) 0.1610 0.1042 0.2556 0.1684 0.3169 0.2135
sd(B) 0.1794 0.1174 0.3590 0.2352 0.5395 0.3536

n=1000

B . 1.0051  0.9971  1.0120 09938 10147  0.9928
sd(8) 0.0954  0.0622  0.1834  0.1206 02484  0.1654
sd(8) 0.1073  0.0705 02147  0.1411 03224 02118

n=1500
3 10010 09995  1.0033 09985  1.0062  0.9973

§Q(ﬁ:) 0.0756 0.0491 0.1481 0.0967 0.2103 0.1375
sd(B) 0.0811 0.0534 0.1622 0.1068 0.2435 0.1604

n=2000

B . 1.0026  0.9983  1.0054 09965  1.0063  0.9961
sd(B) 0.0618 00408 01221  0.0806  0.1785  0.1180
sd(8) 0.0670  0.0442 01340  0.0884 02011  0.1326

FThe true value of 3 was (1, I)T.

m(x)=B3{m1(x) — s m1(x)° + ma(0)},
mh(x) = —B5  {m1(x) — b1 + Bama(x)}.

We generated data from the noisy equations Y| =m(x) +¢&; and Y>» =m>(x) + &3, and in Table 5
we report results for various sample sizes and error variances. Again the method performs well,
and the greater complexity of this setting means that the asymptotic properties require large
sample sizes to be fully visible.

4.2. Data example

We applied our method to the famous lynx and hare data (Odum and Barrett (2004), page 191).
The data set contains the recorded numbers of Canadian lynx and snowshoe hares between 1845
and 1935, based on data collected by the Hudson Bay company. Because the two species have
a typical predator—prey relationship, we used the classical Lotka—Volterra model (Borrelli and
Coleman, 1996) to describe changes in the two population sizes. Specifically, if m (x) and m;(x)
represent the numbers of snowshoe hares and Canadian lynxes respectively, at time x, they satisfy

m’ (x) =exp(B1) m1(x) —exp(f2) my(x) ma(x),
mh(x) = — exp(33) ma(x) +exp(Bs) my (x) ma(x).
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Table 4. Simulation 4; average values of estimators of 3, B standard deviations
of estimators of 8, sd(3), and average values of estimators of standard deviations
of 3, sd(3), for n=250, 500, 1000, 1500,2000 and ¢ =0.1,0.2,0.3}

Values for c =0.1 Values for 0 =0.2 Values for 0 =0.3
B B2 B B2 B B2
n=250
Jé] . 1.0004 1.0019 0.9981 1.0030 0.9943 1.0055
sd(B8) 0.0496 0.0501 0.0982 0.1011 0.1454 0.1496
sd(8) 0.0578 0.0576 0.1168 0.1169 0.1778 0.1794
n=>500
¢} 1.0013 1.0009 1.0021 1.0020 1.0018 1.0031

s/d\(ﬁ:) 0.0324 0.0320 0.0638 0.0639 0.0954 0.0965
sd(B) 0.0360 0.0357 0.0721 0.0717 0.1088 0.1084

n=1000
B 1.0001 1.0002 0.9995 0.9998 0.9994 1.0003
sd(8) 0.0218 0.0216 0.0437 0.0432 0.0656 0.0652
sd(B) 0.0232 0.0230 0.0465 0.0462 0.0699 0.0695

n=1500
J¢] . 0.9996 1.0005 0.9986 1.0006 0.9977 1.0011
sd(B) 0.0164 0.0176 0.0328 0.0349 0.0491 0.0526
sd(B) 0.0181 0.0180 0.0363 0.0361 0.0545 0.0543
n=2000
Jé] 1.0002 1.0004 1.0001 1.0006 1.0002 1.0009

sd(ﬁ) 0.0149 0.0149 0.0297 0.0300 0.0447 0.0451
sd(B) 0.0153 0.0152 0.0306 0.0304 0.0460 0.0457

TThe true value of 38 was (1, DT,

We parameterized the coefficients on the right-hand side by using an exponential form, to
ensure that these coefficients are positive. Using the method proposed, the estimated parameter
valuesare B =(4.5273,1.4418,4.0914,0.4172)T, with associated standard errors (0.4452, 0.3365,
3.5567,3.0131)T. On the basis of these estimated values we plotted the solutions of the differen-
tial equations and graphed the estimated curves against the observations; Fig. 1. Here, either an
initial condition or a boundary condition needs to be given to determine uniquely the solution
of the differential equation system and the curves. Because our method does not involve these
aspects, we simply used a least squares criterion to pick an initial value that minimizes the total
distance between the differential equation predictions and the observations. From Fig. 1 we can
see that the method captures population fluctuations reasonably well, even though the fit is not
precise. This imprecision is due partly to the nature of the data, which are known to be inaccu-
rate because of the difficulty of determining empirically the size of a population, and partly to
limitations of the rather crude Lotka—Volterra model of the relationship between predator and

prey.

4.3. Comparison with competing methods
We applied our estimator in the setting of Ramsay ez al. (2007) and found that our estimation
standard errors for the three parameters were 0.0390, 0.1573 and 0.5522. Relative to their results



One-step Parameter Estimation in Differential Equations 745

Table 5. Simulation 5: average values of estimators of 3, 8, standard deviations of estimators of 3, sd(3),
and average values of estimators of standard deviations of 3, sd(3), for n =250, 500, 1000, 1500,2000 and
0=0.1,02,0.3%

Values for o =0.1 Values for 0 =0.2 Values for 0 =0.3

B J2) B3 B J5) B3 B B2 B3

B 4.9363 0.9851 0.4949 4.9222 0.9772 0.4903 4.7183 0.9392 0.4868
sd(B) 2.2596 0.5110 0.0218 3.3960 0.7688 0.0283 3.8731 0.8806 0.0323
sd(B8) 3.9317 0.8933 0.0116 7.8449 1.7930 0.0233 11.7125 2.6881 0.0351

n

J&; . 5.0006 1.0034 0.4984 4.9666 0.9946 0.4953 49124 0.9816 0.4928
sd(8) 0.9943 0.2258 0.0076 1.6072 0.3665 0.0125 1.9398 0.4437 0.0163
sd(B) 1.1844 0.2687 0.0059 2.2795 0.5215 0.0119 3.4008 0.7796 0.0179

n=1000
3 A 5.0050 1.0020 0.4991 4.9993 1.0006 0.4970 4.9886 0.9971 0.4956
sd(8) 0.4435 0.1016 0.0038 0.7755 0.1785 0.0071 1.0266 0.2371 0.0097
sd(B) 0.4322 0.0991 0.0035 0.8698 0.1998 0.0070 1.3179 0.3033 0.0105
n=1500
Jé; R 5.0005 1.0006 0.4991 4.9975 0.9992 0.4977 4.9974 0.9981 0.4963

sd(8) 0.2709 0.0624 0.0028 0.5033 0.1164 0.0052 0.7101 0.1646 0.0071
sd(B) 0.2726 0.0627 0.0026 0.5549 0.1279 0.0053 0.8477 0.1955 0.0080

B 4.9868 0.9962 0.4993 4.9485 0.9887 0.4981 4.9284 0.9837 0.4971
sd(8) 0.2104 0.0487 0.0022 0.3916 0.0909 0.0042 0.5699 0.1326 0.0058
sd(B8) 0.2084 0.0480 0.0022 0.4254 0.0982 0.0044 0.6471 0.1496 0.0066

TThe true value of 8 was (5, 1, 0.5)T.

of 0.0149, 0.0643 and 0.0264, ours are obviously worse. However, this is hardly surprising,
since the competing method is substantially more difficult to implement than ours and uses
a smoothing parameter that requires significantly more skill to compute. We also compared
our approach with the method of Liang and Wu (2008), in the same setting as theirs, and
obtained the estimation standard deviations 0.0541, 0.1446 and 0.4168. In comparison with the
corresponding results of 0.08, 0.12 and 0.17 in Liang and Wu (2008), our results are better for
some parameters but worse for others, and the method of Liang and Wu (2008) also requires a
delicate choice of tuning parameter.

5. Discussion

We have proposed a quick and easy-to-use one-step kernel method for parameter estimation in
differential-equation-based dynamic models. The method avoids bandwidth choice via cross-
validation or plug-in techniques. Instead, the bandwidth is treated as one of the parameters, and
they are chosen together by using a single optimization procedure. It is the only genuinely one-
step procedure available in the literature. Our proposal shows that it is possible to avoid solving
the differential equations and tuning the smoothing parameters simultaneously. Intuitively, this
results from the fact that the dynamic system provides much more information than a pure
non-parametric model.
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The straightforwardness of our one-step kernel method comes also with a cost, however.
Although our parameter estimators are root n consistent, they generally are not as accurate as
the optimal spline-based method of Ramsay et al. (2007).

Appendix A: Regularity conditions and discussion
The following regularity conditions were imposed in theorem 1.

Condition 1. The true regression function m and its first two derivatives are bounded on the
interval [0, 1].

Condition 2. The function g(m, 3) has two bounded derivatives with respect to m and two
bounded, Hoélder continuous derivatives with respect to 3, and g and m satisfy condition (6).

Condition 3. The data pairs (X;,Y;) are independent and identically distributed as (X,Y),
generated by the model (2), and the regression error e(x) =Y — E(Y|X =x) satisfies E{e(x)} =0
for each x, and Sup,epo, 11 Elle(x) € < oo for each C > 0.

Condition 4. The support of the distribution of X equals [0, 1], the density fx of X is bounded
away from 0 and oo on that interval, and the first two derivatives of fx, when that function is
viewed as restricted to [0, 1], are bounded there.

Condition 5. The kernel function K is a bounded, symmetric, compactly supported and Holder
continuous density function, and the weight function w is positive and uniformly bounded.

Condition 6. The function ¢ of three variables satisfies ¢(x, x, ¢) = ¢(c, x, ¢) =0 for each ¢ and
x, and ¢(u, x,c), 9¢(u, x,c)/ou and 82¢(u,x, c)/au2 are bounded functions of (u, x, ¢).

Condition 7. To define (Bh,h) we minimize S(3,h), at expression (9), over 3 € B for given
h € H,, where H,, is the set of & such that n~1/2 < h <n=1/4M e (0, %) is otherwise arbi-
trary, and B is the class of p-vectors 3 such that ||3 — B3| < 12, with 1, > 0 chosen sufficiently
small but not depending on n, and 3, denoting the unique value of 3 for which condition (6)
holds.

Condition 8. In expression (9) we take the unqualified outer integral on the right-hand side to
be over ¢ < x < 1—c, where ¢ =c(n) has the following properties. If local polynomial methods
are used, ¢ — 0 (in this case ¢ =0 is permitted) and, if Gasser—Miiller or Nadaraya—Watson
techniques are employed, ¢ — 0 and nc¢* is bounded away from 0.

In reference to condition 8§, if we take ¢ € (0, %) to be fixed then the variance of Bh is relatively
complex. In particular the assumption ¢ — 0 in condition 8 simplifies the expression for the
variance of 3,.

The class H,, of bandwidths, introduced in condition 7, has the property that Bh is asymptot-
ically normally distributed, with zero mean, for each h € H,,. However, if that were all that was
desired then the definition H,, = {h:n" “12<pgnV4-m } could be generalized to H,, =[h1, h3],
where hj=hj(n), for j=1 and j=2, should be chosen so that i <h, n'2h) — oo and
n'/4h, — 0 as n — oco. The extra restriction in the definition of H,, in condition 7 is imposed to
obtain the ‘uniform asymptotic normality’ result that is asserted in theorem 1.

Outside the range [h1, h2], if h converges to 0 at the same rate as n~ /% or n=1/2, or either more
slowly than n~!/% or more quickly than n~!/2 then ,éh is not necessarily normally distributed
with zero mean and asymptotic variance of order n~!. Using a lengthy argument it can be shown
that for relatively small or large 1 the value of inf 5 S(83, h) is relatively large, and that such values
of h are not selected by the algorithm that was suggested in Section 2.2.
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