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Summary

Motivated from a recent AIDS clinical trial study A5175, we propose a semi-
parametric framework to describe time to event data, where only the dependence
of the mean and variance of the time on the covariates are specified through a re-
stricted moment model. We use a second-order semiparametric efficient score com-
bined with a nonparametric imputation device for estimation. Compared with an im-
puted weighted least square method, the proposed approach improves the efficiency
of the parameter estimation whenever the third moment of the error distribution is
nonzero. We compare the method with a parametric survival regression method in
the A5175 study data analysis. In the data analysis, the proposed method shows
better fit to the data with smaller mean squared residuals. In summary, this work
provides a semiparametric framework in modeling and estimation of the survival data.
The framework has wide applications in data analysis.

Keywords: Censoring, Efficiency, Imputation, Kernel, Nonparametric, Restricted moments,
Semiparametrics, Two stage.
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1 Introduction

A new AIDS Clinical Trials Group study, A5175, was recently conducted to evaluate sev-

eral antiretroviral regimens in diverse populations. One primary goal of the study is to

investigate the safety of these regimens so as to maximize the efficiency of the antiretro-

viral delivery in various areas (Campbell et al. 2012). The primary safety endpoint of the

study is a patient’s time to one of the following three early adverse reactions: onset of a

grade ≥ 3 severity sign, a grade ≥ 3 laboratory abnormality and a change of the initial

treatment due to toxicity of the treatment. A patient’s event was considered to be censored

if he/she did not meet the primary endpoint criteria at the end of the study or at the final

medication dose. In addition, the study also collected patients’ CD4 counts at the baseline

and then at the weeks 8, 24, 72 and 96. Compared with the primary safety endpoint, the

CD4 counts information was obtained relatively easily in a shorter period of time. Al-

though the CD4 counts information is primarily used in inferring the treatment efficacy

(Campbell et al. 2012), it is also related to the safety of the antiretroviral regimens. For

example, Hirsch (2008) showed that using the same antiretroviral regimen at a higher CD4

counts level would lower the risk of toxicities. Thus, it is natural to expect that an analysis

on the primary safety endpoint would be more efficient if the short term information on

CD4 counts can be included. This motivates us to develop methods to analyze the relation

between CD4 counts and the primary safety endpoint, with the goal of ameliorating the

existing post-trial data analysis procedures. In addition, we also explore the usage of the

proposed methods in the clinical trial design stages so as to improve trial efficiency.

In the A5175 study, safety of a treatment is described by time to adverse events, and all

the subsequent decisions are made based on the inference on the event time. This motivates

us to model the time to the primary safety endpoint directly as a function of the covariates.

In contrast, traditional time to event models such as Cox proportional hazard model focus

on evaluating the covariate effect on the disease risk and do not provide direct inference

on the event time. Our preliminary analysis (Section 3.3) on the A5175 study data shows

that both the mean and variance of the primary safety endpoint depend on the short term

CD4 counts. To capture this relation while remain flexible, we use a semiparametric second

order restricted moment (RMM2) model to specify the mean and variance structures of
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the primary safety endpoint while leaving all other aspects of the model unspecified. The

model has the characteristics of capturing the central structure while remaining flexible

in non-crucial parts of the model. By modeling the variance in addition to the mean, the

RMM2 model enriches the structure of the classical restricted moment model.

To obtain accurate parameter estimation and to perform proper inference on time to the

primary safety endpoint, we devise a semiparametric estimation procedure for the RMM2

model used in fitting the A5175 data. To our best knowledge, such modeling and estimation

approaches have not been considered in survival models. In classical regression models,

parameter estimation is often performed using the ordinary least square (OLS) method,

which is efficient when the errors are normally distributed (Gallant 2009). However, the

additional variance structures in the A5175 study data implies that the OLS estimators

may not be optimal. Under the complete data settings, Wang & Leblanc (2008) proposed

a second order least square method when the error variances are constant. The method

was later generalized to covariate dependent error variances and shown to minimise the

variances of the estimators (Kim & Ma 2012).

The A5175 study data is further subject to censoring. This prevents the direct ap-

plication of the methods described above because without fully specifying the event time

distribution, the score functions of the censored subjects are difficult to obtain. In a com-

pletely different context, Wang et al. (2012) proposed a nonparametric score imputation

method to cope with censoring when covariates are discrete. The nonparametric score im-

putation method often performs competitively compared to the optimal augmented inverse

probability weighting method in terms of estimation variability in finite samples (Wang

et al. 2012), while the former has more intuitive form and is more interpretable. This

inspires us to examine the nonparametric imputation strategy and extend the method to

incorporate continuous covariates (CD4 counts in the A5175 study data). We then gener-

alize the semiparametric estimation method of Kim & Ma (2012) to handle survival data.

We develop an imputation based semiparametric efficient estimator for the RMM2 model

(RMM2-ISE), which combines the nonparametric score imputation with the second order

least square score function introduced in Kim & Ma (2012). We derive its asymptotic esti-

mation variance and establish its root-n consistency and asymptotic normality. We evaluate
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the finite sample properties of the RMM2-ISE estimator. We further compare the RMM2-

ISE estimation procedure with a simpler method, which we name the imputed weighted

least square (IWLS) method through simulation studies. We developed IWLS here to com-

bine nonparametric score imputation and weighted least square score functions. Similar

idea was used in Lipsitz et al. (1999) to handle missing covariates. Moreover, we apply

the RMM2-ISE method for analyzing the A5175 study data. The RMM2-ISE method also

shows better data fitting compared with the method combining the accelerated failure time

Weibull model and maximized likelihood estimation (AFT-Weibull-ML). Throughout the

paper, we choose the Weibull survival time model to fit the data for comparisons because

it is sufficiently flexible to accommodate the increasing, decreasing and constant hazard

rates (Klein & Moeschberger 2010).

The rest of the paper is structured as follows. In Section 2, we describe the RMM2

model and introduce a second-order semiparametric efficient estimator. We also describe

the nonparametric imputation method for treating censored observations, and study its

properties. In Section 3, we analyze the A5175 study data using our modeling and es-

timation methods, after examining them via simulation studies. We conclude the paper

with a discussion in Section 4, and relegate all the technical proofs to Appendix in the

supplementary document.

2 Modeling and methodological development

2.1 RMM2 model in complete data

We first introduce the RMM2 model under the general complete data settings, we then

define the specific model for the A5175 study data. Let Yi,Wi denote the i.i.d. response

random variables and covariates, respectively. In our paper, Yi is the survival time on

the logarithmic scale. Let β,γ denote the parameters associated with the mean and the

variance, respectively. A general RMM2 model has the form

g(Yi) = m(Wi,β) + ξi, (1)

where g(·) is a known link function, E(ξi|Wi) = 0 and E(ξ2
i |Wi) = σ2(Wi,γ). Here m(·)

is a generic function known up to the parameter β and σ2(·) is a generic positive function
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known up to the parameter γ. Note that different from the usual regression models, the

error variation is also specified as a function of Wi.

Based on Kim & Ma (2012), the semiparametric efficient estimator can be obtain by

solving estimating equations formed by the sum of the following efficient score functions

Sβ,eff(Wi, Yi) =
∂m(Wi,β)

∂β

{
ξi

σ2(Wi,γ)
− E(ξ3

i |Wi)Di

σ2(Wi,γ)E(D2
i |Wi)

}
Sγ,eff(Wi, Yi) =

Di

E(D2
i |Wi)

∂σ2(Wi,γ)

∂γ
, (2)

where

Di = ξ2
i − σ2(Wi,γ)− E(ξ3

i | Wi)ξi/σ
2(Wi,γ).

Note that when the third moment E(ξ3
i |Wi) = 0, the score function for β is the same as

that for the OLS estimator. This fact shows that in estimating β, the resulting estimator is

at least as efficient, and is often more efficient compared with the OLS estimator. Further,

if E(ξ3
i |Wi) 6= 0, the resulting estimator gains efficiency by making use of the additional

variance structure. We point out that although the true third and fourth moments of ξi

conditional on Wi are needed in the expression of (2), in practice, their parametrically

or nonparametrically estimated versions can be plugged in and the resulting estimation

efficiency of β and γ will not be affected (Kim & Ma 2012). In Section 3, we provide specific

estimators of E(ξ3
i | Wi) and E(ξ4

i | Wi) both parametrically and nonparametrically using

no additional data.

The above efficient score functions are derived under the complete data setting. In the

next section, we modify the efficient score functions and introduce the estimating equations

for censored survival data. We further derive the statistical properties of the resulting

estimators.

2.2 The imputation estimator

The A5175 study data is complicated by censoring. More specifically, let Ti, Ci be the

primary safety endpoint and the censoring time for the ith subject on the logarithmic scale.

We observe only Xi = min(Ti, Ci) and the censoring indicator ∆i = I(Ti ≤ Ci), for i =

1, . . . , n. A widely accepted method for handling censoring is the likelihood-based approach,
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such as that used for the AFT-Weibull model. Because of the full parameterization of the

survival time distribution in AFT-Weibull models, the probability that an event happens

after a certain time can be expressed as a function of a finite dimensional parameter.

The parameter estimation can then be performed through maximizing the likelihood of

the observed data. Although this method has long been known, its application is limited

due to its nonrobustness, in that as soon as the true population distribution deviates

from the AFT-Weibull model, the method leads to misleading results. In this paper, we

introduce a nonparametric score imputation method to deal with the censored primary

safety endpoints, which makes much less assumptions and is more robust. The method

extends Wang et al. (2012)’s approach under the discrete setting by including the CD4

counts as a continuous covariate. Combined with the RMM2 model and the semiparametric

efficient score equations, the method yields consistent estimators as long as the first two

moment assumptions are satisfied.

Throughout the text, we use capital letters to denote the random variable and small

letters to denote the corresponding realizations. For identifiability and simplicity, we as-

sume the censoring distribution is independent of the survival time and the covariates. We

consider the efficient score function Sθ,eff(wi, ti) = (Sβ,eff(wi, ti)
T,Sγ,eff(wi, ti)

T)T for the

parameter θ = (βT,γT)T, where wi, ti are the values of the CD4 counts, and the primary

safety endpoint, respectively. We define the RMM2-ISE estimating equation under the

survival settings as

n∑
i=1

δiSθ,eff(wi, ti) + (1− δi)E{Sθ,eff(wi, Ti) | Ti > Xi,Wi = wi, Xi = xi}, (3)

where δi is the realization of ∆i. Thus, if a subject has an observed primary safety endpoint,

we use the original efficient score function. However, if a subject is censored, we use the

expected value of the score function conditional on the CD4 counts, given that no adverse

reaction has happened before the censoring time.

Without specifying the population distribution of the primary safety endpoint, we eval-

uate the conditional expectation in model (3) nonparametrically via kernel method, which

has good asymptotic properties with properly chosen bandwidth (Devroye 1981). We define

Qθ,i(wi, xi) = E {Sθ,eff(wi, Ti) | Ti > Xi,Wi = wi, Xi = xi}
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= E {Sθ,eff(wi, Ti) | Ti > xi,Wi = wi, Ci = xi}

=
E {Sθ,eff(wi, Ti)I(Ti > xi) | Wi = wi, Ci = xi}

E {I(Ti > xi) | Wi = wi, Ci = xi}

=
E {Sθ,eff(wi, Ti)I(Ti > xi) | Wi = wi}

E {I(Ti > xi) | Wi = wi}
,

where the last equality is because Ci and Ti are independent given Wi. If Ti’s are ob-

served, we would simply use the nonparametric kernel regressions to approximate the two

conditional expectations above. However, because Ti’s are only observed when ∆i = 1, we

need to further modify the two averages with the inverse probability weighted averages,

where the weights are the probability of censoring time after event time, i.e. the survival

function of the censoring process G(· | W ) = G(·) under the assumption that censoring is

independent of the covariate. The kernel estimator of Q̂θ,i is thus written as

Q̂θ,i(wi, xi) =

∑n
j=1 δjSθ,eff(wj, xj)I(xj > xi)Kh(wj − wi)/Ĝ(xj)∑n

j=1 δjI(xj > xi)Kh(wj − wi)/Ĝ(xj)
, (4)

where

Ĝ(tj) ≡
∏
xi≤tj

{
1− (1−∆i)∑n

k=1 I(xk ≥ xi)

}
.

is the Kaplan-Meier estimator for the survival function of the censoring distribution G(·),

and Kh(·) ≡ K(·/h)/h, where K is a kernel function and h is a bandwidth. When h→ 0,

the imputed score functions reduce to the ones introduced in Wang et al. (2012) in the

discrete covariate settings.

Specifically, to obtain Q̂θ,i(wi, xi), we use the product limit estimator to estimate G.

We choose the Gaussian kernel with bandwidth h = n−2/15hs, where hs = 1.06σn−1/5 is

Silverman’s rule-of-thumb bandwidth (page 45, Silverman (1986)), and σ is the standard

deviation of Wi. Because hs has the order of n−1/5, the proposed bandwidth, h, satisfies

nh4 → 0 and nh2 → ∞ when n → ∞. Note that because of the indicators δj and

I(xj > xi), only the uncensored data from the individuals who have not met the safety event

criteria at xi contribute to the summations in Q̂θ,i(wi, xi). After computing Sθ,eff(wj, tj)

and Q̂θ,i(wi, xi) for the uncensored and censored observations respectively, we obtain the

RMM2-ISE estimators θ̂ through solving the estimating equation

n∑
i=1

δiSθ,eff(wi, ti) + (1− δi)Q̂θ,i(wi, xi) = 0. (5)

7



Under the Assumptions A1–A8 listed in Appendix A.1, we rigorously establish the

consistency and asymptotic properties of the estimator, i.e. we obtain θ̂− θ0 = op(1), and

n1/2(θ̂−θ0)→ N{0, A−1Ω(A−1)T} in distribution, where A,Ω are defined in Theorem 2 of

the Appendix. We elaborate the consistency and asymptotic normality of the RMM2-ISE

in Theorems 1 and 2 followed by their detailed proofs in Appendix in the supplementary

document.

3 Analysis of the A5175 Study Data

We are now ready to analyze the A5175 study data using the RMM2-ISE method. Before

the analysis, we first perform a numerical evaluation of the estimation procedure on sim-

ulated samples and compare the estimation results with the IWLS method introduced in

Section 1. The IWLS estimator is obtained by solving (5), but with Sθ,eff in it replaced by

σ−2(Wi)ξi∂m(Wi,β)/∂β, which is the score function associated with weighted least square

method. Here σ2(Wi) is the conditional variance of ξi given Wi, which can be replaced by its

consistent estimator. The consistent estimator can be obtained by using the non-censored

observations, because our score function is first constructed for the fully observed samples

which only relies on the σ2(Wi) for the non-censored observation. We discuss several dif-

ferent ways of estimating σ2(Wi) later in this section. Note that the same replacement of

Sθ,eff is needed in calculating Q̂θ,i(wi, xi) in (5). The asymptotic variance of the IWLS

estimator can be shown to be the same as Ω in Theorem 2, except that Sθ,eff needs to

be replaced by σ−2(Wi)ξi∂m(Wi,β)/∂β and Qθ0,i is also adapted correspondingly. It is

readily seen that the asymptotic estimation variances of the RMM2-ISE and the IWLS

methods have the same structure except for the different forms of Sθ,eff . This suggests

that, intuitively the RMM2-ISE method would have better asymptotic efficiency, because

the score function for RMM2-ISE is more efficient than that for IWLS (Wang & Leblanc

2008, Kim & Ma 2012) in the complete data settings, and the kernel imputation induces

the same type of asymptotic variance inflation for both methods when the data is subject

to censoring. We explore the required sample sizes and censoring rates for implementing

the RMM2-ISE procedure, and show that the procedure yields accurate estimators under

reasonable uncensored sample sizes. Moreover, we show via simulation that the RMM2-ISE
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method gains efficiency compare with the simpler IWLS method when the third moment of

the error distribution does not vanish. These conclusions are crucial, because they support

the applications of the RMM2-ISE method to the A5175 study data.

3.1 Evaluation of methods

We illustrate the relative performance of the RMM2-ISE estimator and the IWLS estimator

through demonstrating that the former is more efficient than the latter. Note that we use

the same imputation method in both estimation procedures.

In the complete data setting, the RMM2-ISE estimator is shown to be more efficient

than the IWLS estimator when the conditional third moment of the error distribution is

nonzero (Wang & Leblanc 2008, Kim & Ma 2012). To illustrate this point as well as the

consistency of the estimators under the setting with censoring, we generate the data as

the following. The covariate Wi is the logarithm of a random variable generated from the

Uniform (0, 5) distribution. The error term ξi = χ2(ki)−ki, where χ2(ki) is generated from

the chi-squared distribution with the degree of freedom ki = (γ0 + γ1W
2
i )/2. Note that the

variance of ξi is σ2(Wi,γ) = 2ki, which depends on the covariate, and E(ξ3
i |Wi) does not

vanish. We generate the time to safety endpoint Ti from the exponential model

logTi = β0 exp(β1Wi) + ξi. (6)

We further generate the censoring time from exponential distributions. We vary the expo-

nential rate parameters to obtain various censoring rates. We assess the performances of

the RMM2-ISE estimator and the IWLS estimator at the different censoring rates.

Following model (2), we obtain the semiparametric efficient score functions for the above

model as

Sβ,eff(W,T ) = {exp(β1W ), β0 exp(β1W )W}T

{
ξ

σ2(W,γ)
− E(ξ3 | W )D

σ2(W,γ)E(D2 | W )

}
Sγ,eff(W,T ) = (1,W 2)T D

E(D2 | W )
.

We then impute the above score functions as described in Section 2 to estimate the param-

eters.
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We use the true E(ξ3
i |Wi), E(ξ4

i |Wi) to obtain the RMM2-ISE estimator, and use the

true E(ξ2
i |Wi) to form the optimal weights 1/σ2(Wi,γ0) to obtain the IWLS estimator. This

guarantees that both estimators achieve their optimal performance in the complete data

setting. In other words, we avoid the hidden efficiency loss due to possible misspecification

of moment functions in both estimators to keep the comparison fair. We compare the

biases and variances of the resulting RMM2-ISE and IWLS estimators in all the numerical

experiments.

3.2 Numerical results for the estimation procedures

We use a sample size of n = 400 and generate 1000 data sets from model (6), with β0 = 1,

γ = (1, 0.1). In Table 1, we present the performance of the RMM2-ISE estimator and the

IWLS estimator under different specifications of β1 and censoring rates. Here E(ξ3
i |Wi) is

estimated through fitting a linear model between ξ̂3
i and the covariates, and E(ξ4

i |Wi) is

estimated through fitting a quadratic model between ξ̂4
i and the covariates. Here ξ̂i’s are

the residuals after fitting a linear regression for the non-censored observations. The linear

model is simple and the most common regression model in practice, while the quadratic

model ensures the nonnegativeness of the regression function. We first fit the working model

based on the non-censored residuals and covariates, then use the fitted model to impute

the additional censored moments. Note that neither the linear nor the quadratic model is

the true model of these conditional moments. However, for the IWLS method, we used

E(ξ2
i |Wi) under the true model. This means that we compared a sub-optimal RMM2-ISE

method with the optimal IWLS method. Hence theoretically there is no guarantee that the

RMM2-ISE estimator should outperform the IWLS estimator. We used this particularly

harsh setting for the RMM2-ISE estimator to test its performance stability and robustness

to the working models. As we can see, if no observation is censored (the censoring rate

is 0%), both estimates are close to the true values. This illustrates the consistency of

the estimators when no observation is censored. Further, the RMM2-ISE estimator has

smaller biases and variances compared with the IWLS estimator, which illustrates the better

accuracy and efficiency of the RMM2-ISE estimator compared to the IWLS estimator.

When the censoring rate is greater than 0, the RMM2-ISE estimator continues to perform
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well. In fact, even when the censoring rate is moderately large (25%), the RMM2-ISE

estimation is still close to the truth (with less than 0.1 absolute biases). Because censoring

reduces the information contained in the sample for inferring the population distributions,

both the RMM2-ISE and IWLS estimators start to deteriorate when the censoring rates

further increase. However, the RMM2-ISE estimator has smaller deterioration compared

with the IWLS estimator under all situations. For example, the IWLS estimator for β0

shows more than 0.1 absolute biases when the censoring rate is 15%, while the corresponding

RMM2-ISE estimator keeps the absolute biases within 0.1 until the censoring rate reaches

50%. Compared to the estimation of β0, the RMM2-ISE and IWLS methods perform better

in estimating the parameter of clinical interest β1. Nevertheless, the IWLS estimator has

biases greater than 0.1 when the censoring rate is 50%, while this occurs for the RMM2-

ISE estimator only when the censoring rate reaches 75%. Overall, compared with the

IWLS estimator, the RMM2-ISE estimator generally has smaller biases in estimating β.

The standard deviations of the RMM2-ISE estimator are smaller than those of the IWLS

estimator on average. In conclusion, the RMM2-ISE method performs better than the

IWLS method in terms of smaller biases and variations of the resulting estimation. In

the simulation studies, we see that the bias increases when the censoring rate increases.

Compared with β̂, γ̂ has larger bias and variance. However, this does not indicate that

the estimator is inconsistent. In fact, when we further increase the sample size, we observe

a clear reduction in the biases. Thus, the relatively large bias at high censoring rate we

observe here is a finite sample phenomenon.

In Table 2, we compare the estimated asymptotic standard deviation derived in Theorem

2 with the empirical estimation standard deviation summarized from the simulated samples.

The results show that when the censoring rate is small (≤ 25%), the asymptotic standard

deviation estimators are close to the empirical ones, while their performance deteriorates

when the censoring rate increases. In the latter case, it may be preferable to use the

bootstrap method to assess the estimation variability, as suggested in Ma & Yin (2010)

and Wang et al. (2012). For example, we performed additional bootstrap method for the

50% censoring rate case in Table 2. The resulting bootstrap standard deviation is (0.046

0.079 0.122 0.065), which is much closer to the empirical standard deviation (0.062, 0.071,
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0.137, 0.071) than the estimated asymptotic standard deviation (0.028, 0.028, 0.102, 0.075).

In the above evaluations, we demonstrate that the RMM2-ISE method can accurately

estimate the covariate effect when the sample size is more than 400 and censoring rate

is less than 50%. Further, the RMM2-ISE estimator has better efficiency and smaller

mean squared errors than the IWLS estimator. This encourages us to use the RMM2-

ISE method to analyze the A5175 study data, as we demonstrate in the next section.

Moreover, we show that the asymptotic standard deviations are close to the true ones

when the observed sample size is sufficient. Finally, we show that the misspecification of

E(ξ3
i |Wi) and E(ξ4

i |Wi) does not affect the estimations for the parameters β0, β1. Thus, in

practice, we can estimate the conditional moments roughly by constructing simple models

between W and the power functions of the residuals, such as the linear models. This is

also justified in Wang et al. (2008), which shows that the estimation procedures using the

true and the estimated moment functions have similar performance.

Finally, we also perform the simulation studies when E(ξ2
i |Wi) in the IWLS method,

and E(ξ3
i |Wi), E(ξ4

i |Wi) in the RMM2-ISE method are estimated using the nonparametric

Nadaraya–Watson kernel method for sample size 800. Compared with IWLS, RMM2-

ISE gives less biased result and has smaller variation for estimating the covariate effect. In

general, the estimators in Table 3 show larger biases and variations compared to the results

in Table 1.

3.3 Analysis of the A5175 study data

We apply the RMM2-ISE method to the A5175 study data, which aims to evaluate the

safety of the antiretroviral regimens. We find that the RMM2-ISE gives a better fit to the

A5175 study data compared with the commonly used AFT-Weibull-ML method.

We use a total of 1008 patients who have been assigned to the open-label antiretrovi-

ral therapy with efavirenz plus lamivudine-zidovudine (EFV+3TC-ZDV) and atazanavir

plus didanosine-EC plus emtricitabine (ATV+DDI+FTC) treatment arms. A total of 460

patients have their safety events censored, resulting in a censoring rate of 46%. For each

patient, we compute the mean of the CD4 counts before his/her safety event occurs. To sta-

bilize the numerical computations, we standardize the event times and mean CD4 counts
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by their sample standard deviations, which are approximately 40 and 160, respectively.

The transformation is monotone so that it does not affect the following inference.

We denote the standardized event time as Ti, the logarithm of the standardized mean

CD4 counts as Wi. We first fit the complete data with the linear model

logTi = β0 + β1Wi + ξi,

such that E(ξi|Wi) = 0. Note that, here we only use the non-censored cases to do the

initial analysis because our score functions in (2) is only constructed for the non-censored

cases. Further, the data set contains 548 observed survival times, it is sufficient to reveal

the general pattern of the error distribution. We plot the residuals ξ̂i = logTi − β̂0 − β̂1Wi

versus the covariate in Figure 1(A), where β̂0 and β̂1 are the least square estimators of β0, β1,

respectively. The residuals are centered at zero which suggests the model is adequate to

capture the mean structure. Further, the error variation becomes larger when the covariate

value increases, which implies a dependency of the error variance on the covariate. To

explore this dependency, we plot the residual squares ξ̂2
i versus the covariates in Figure 1(B).

The plot shows that the variation has a nonlinear relation with Wi. We therefore enrich

the linear mean model by further modeling the variance σ2(Wi,γ). We considered various

nonlinear forms of σ2(Wi,γ) and found the form σ2(Wi,γ) = (γ0 + γ1Wi)
2 both adequate

and parsimonious, in that it captures the variability pattern well, and it is simple and yields

the smallest estimation variability for β̂, and this β̂ is closest to the one from the IWLS

method among all the nonlinear models we experimented. Because the misspecification of

σ2 may lead to inconsistent estimators, in practice, we suggest to first use proper variance

modeling tools, such as graphical tools, to determine suitable functional forms for σ2(Wi,γ).

After that, we can select the resulting β̂ from RMM2-ISE which are reasonably close to

the one from IWLS, because IWLS is always a consistent method regardless of whether the

variance form is correctly specified. Finally, we can refine our choices by comparing the

variances of β̂ among the possible candidate variance models.

We implement the RMM2-ISE estimation on this specific model, and obtained the esti-

mates (β̂0, β̂1, γ̂0, γ̂1) = (−0.75, 1.00, 1.25,−0.047), with associated standard errors {sd(β̂0),

sd(β̂1), sd(γ̂0), sd(γ̂1)} = (0.047, 0.056, 0.021, 0.049). The 95% confidence intervals for the

parameters (β0, β1, γ0, γ1) are {(−0.84,−0.66), (0.89, 1.11), (1.20, 1.29), (−0.14, 0.049)},
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which show significant effect of the CD4 cell counts on the primary safety endpoint. The

covariate effect, γ1, is not significant, which coincides with the local regression line we

added in Figure 1(B). The local regression technique was proposed by Cleveland (1979).

It uses local segments of data to build a function nonparametrically to describe the rela-

tion between the response and the covariate. It can be seen that, the local regression line

is nearly flat, which suggests there is no statistically significant effect from the covariate.

We also perform IWLS estimation and obtain (β̂0, β̂1) = (−0.74, 0.99), with associated

standard errors {sd(β̂0), sd(β̂1)} = (0.052, 0.056). Note that to obtain the second moment

σ2(Wi) as the weight, we first form the regression residuals. Then we propose a working

model for σ2(Wi) the same as the second moment model used in the RMM-ISE method,

i.e., let σ2(Wi) = (γ0 + γ1Wi)
2, and then perform the usual regression analysis to estimate

the parameters in the model and hence obtain the second moment. The results show that

the RMM2-ISE estimation is as efficient as the IWLS method. The similar efficiency is not

unexpected, because as shown in Figure 1(C), the estimated conditional third moments of

the error terms, i.e. E(ξ̂3
i |Wi), are nearly 0. In fact, when we regress ξ̂3

i on Wi, the resulting

intercept is 0.0036 with confidence interval (-0.02, 0.020), and the resulting covariate ef-

fect is 0.0004 with the confidence interval (-0.0044, 0.011). However, from another aspect,

the analysis does demonstrate that the RMM2-ISE method is at least as efficient as the

IWLS method. Therefore we employ the RMM2-ISE method for the subsequent analyses

which ensures the estimators have variances no greater than those resulting from the IWLS

method.

To compare the performance of the RMM2-ISE method with that of the commonly

used AFT-Weibull-ML method for the Weibull model, we calculated the mean squared

residuals on the logarithmic scale based on the 548 fully observed samples, and obtained the

values 1.93 for the RMM2-ISE and 4.69 for the AFT-Weibull-ML method respectively. The

comparison based on the observed samples was justified and suggested by Little (1992) in

the missing at random framework, which is the setting that the non–informative censoring

belongs. To avoid overfitting, we performed an additional 2-fold cross validation. The

cross validation errors (mean squared predictive error) for the proposed method and AFT-

Weibull-ML method are 1.89 and 4.23 respectively, indicating that the proposed method
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outperforms the AFT-Weibull-ML method. The RMM2-ISE method provides a much

better fit to the data than the AFT-Weibull-ML method, which also implies that the

survival time distribution deviates from Weibull.

After demonstrating the better performance of RMM2-ISE in fitting the A5175 study

data, we continue to explore the relation between the CD4 counts and the time to primary

safety endpoint in subgroups. We further divided the sample by gender and analyze the

CD4 counts effects for 479 females and 529 males separately. The estimated β in the fe-

male group is (β̂0, β̂1) = (0.14, 0.16), the standard errors {sd(β̂0), sd(β̂1))} = (0.14, 0.21),

which gives the confidence intervals {(−0.13, 0.41), (−0.25, 0.57)}. The estimated β in the

male group is (β̂0, β̂1) = (−0.36, 0.31), the standard errors {sd(β̂0), sd(β̂1))} = (0.12, 0.14),

which gives the confidence intervals {(−0.60,−0.12), (0.04, 0.58)}. In the female group,

the CD4 counts do not have a significant positive effect on the primary safety endpoints,

while the effect is significant in the male group. Further, the CD4 counts effect is higher

in the male patients than in the female patients. It is worth mentioning that when the

AFT-Weibull model is used, no difference between female and male patients can be discov-

ered. In this case, the estimator are (0.91, 0.32), (0.96, 0.31), the standard deviations are

(0.100, 0.09), (0.109, 0.112) and the 95% confident intervals are {(0.69, 1.13), (0.11, 0.55)},

{(0.76, 1.16), (0.13, 0.49)} for the females and males, respectively. In practice, because the

CD4 counts are positively related to time to adverse events, we suggest giving the an-

tiretroviral regimens at higher CD4 counts level to prevent severe side-effects from the

drugs. Further, because the CD4 counts effects are different in the two genders, we suggest

differentiating the drug scheduling for men and women.

Using the RMM2-ISE method, we develop a strategy to personalize the drug scheduling

based on the A5175 data, where the patients are all enrolled at the beginning of the trial

and continuously monitored in the trial, as we now describe. We first define a safety cut-off

value regarding the primary safety endpoint. The drug usage is considered to be safe for

a patient if the patient’s estimated primary safety endpoint is later than the cut-off value.

A patient’s CD4 counts are taken at the beginning of the trial (baseline), week 8, week 48,

week 72, etc. At a measurement time, say at week 48, we collect the CD4 counts information

on each patient, and collect his/her primary safety event time or his/her censoring time
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if either has happened. For the patient who has not experienced primary safety time and

who has not been censored, we use the measurement time as censoring time. We then use

the average observed CD4 counts and the event/censoring time to obtain the estimator

for the coefficients, i.e., β. Then for any patient who has not experienced the primary

safety event at the 48th week, we use the estimate β̂ and his/her average observed CD4

counts to predict his/her primary safety event time. If the predicted primary safety event

time is to the right of the safety cut-off value, the treatment is considered safe for the

patient. This patient is eliminated from the current trial and move to the next treatment

phase. We perform this estimation and prediction procedure at weeks 8, 48, 72 and make

corresponding decisions at each measurement time based on the remaining patients in the

trial.

We use the 75% sample quantile of the standardized primary safety endpoints, 2 (cor-

responding to 79.14 in the original data), as a sample cut-off value. In practice, differ-

ent and possibly more meaningful cut-off values can be chosen based on existing med-

ical knowledge. We choose to start to treat a patient with the antiretroviral regimens

when the lower bound of the estimated confidence interval for the mean of logTi, i.e.,

β̂0 + β̂1Wi−1.96
{

(1,Wi)
TΣ̂(1,Wi)

}1/2

is greater log(2), where Σ̂ is the estimated variance-

covariance matrix for β̂. We perform the analysis in the following three groups of patients.

Group 1 contains patients who only have baseline CD4 counts recorded. Groups 2 contains

patients who have the CD4 counts measured at and before the 48th week. Group 3 contains

patients who have the CD4 counts measured at and before the 96th week. The results show

that in Group 1, 95 out of 188 (50.5%) patients have the lower bound of the estimated

confidence interval smaller than log(2). Further in Group 2 and Group 3, the ratios are 132

out of 201 (66%) and 94 out of 131 (72%), respectively. Therefore, in these three groups,

we can start to treat 50.5%, 66%, 72% of the patients at the baseline randomization time,

48th week, or the 96th week, respectively. Since the CD4 counts are obtained prior to

the primary safety endpoints, the strategy allows the patients to be treated earlier when

the evidences of the treatment safety are sufficient, and thus improves the efficiency of

delivering the safe treatments to the patients.

In conclusion, we compared the RMM2-ISE method with the AFT-Weibull-ML method.
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The RMM2-ISE outperforms the AFT-Weibull-ML method in giving smaller fitted mean

of the squared residuals. Further, we discovered that the positive CD4 counts effect in men

are higher than that in women on average, while this pattern is not captured by the AFT-

Weibull-ML method. Finally, we propose a strategy for personalizing drug scheduling based

on the mean of the repeatedly measured CD4 counts. The strategy allows early treatment

delivery to the patients based on their CD4 counts information, and ultimately enhance

the treat efficiency.

4 Discussion

This work is motivated by the A5175 study (Campbell et al. 2012). We intend to use

the short term CD4 counts to infer the primary safety endpoints. The complex data

configuration motivates us to construct the RMM2 model which models the additional

variance structures observed from the data. We propose the nonparametric imputed version

of the semiparametric efficient method for parameter estimations to handle censoring. The

theoretical derivations show that the resulting estimators are consistent and asymptotically

normally distributed. The efficiency of the RMM2-ISE estimators is demonstrated to be

better than that of the IWLS estimators. When fitting the A5175 study data, the RMM2-

ISE method outperforms the AFT-Weibull-ML method in terms of having smaller mean

squared residuals.

In the A5175 data analysis, due to the limitation of the univariate kernel specification,

we did not include multiple covariates in the regression function. The method can be ex-

tended to include multiple covariates through utilizing multivariate kernels. Such extension

will enhance the applicability of the model in more general situations.

In conclusion, to analyze the A5175 data, the RMM2 model avoids the model assump-

tions on the full likelihood and is more flexible than the parametric models. Further, in

terms of parameter estimation, the RMM2-ISE method takes advantage of the additional

information in the variance structure and has better efficiency than the imputed weighted

least squares method. In general, the RMM2-ISE approach provides a more robust and

efficient way in analyzing post-trial data.

We have assumed that the censoring process is independent of the covariates and the
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survival process for simplicity. This assumption can be relaxed to allow the censoring time

to depend on the covariates wj. In this case, we can use a nonparametric kernel based

Kaplan-Meier estimator

Ĝ(tj | Wj = wj) =
∏
xi≤tj

{
1− (1−∆i)Kh(wi − wj)∑n

k=1 I(xk ≥ xi)Kh(wk − wj)

}

in (4). However, the subsequent development will also need to be adapted to reflect the

covariate-dependent nature of the censoring process and the analysis will be more complex.
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Table 1: Comparisons of the optimal imputed weighted least squares (IWLS) esti-

mator and the imputation-based semiparametric efficient (RMM2-ISE) estimator.

Sample size, n = 400, β0 = 1, γ = (1, 0.1)T. SD represents the sample empirical

standard deviation based on 1000 simulations.

Truth IWLS RMM2-ISE

β0 β1 β̂0 β̂1 SD(β̂0) SD(β̂1) β̂0 β̂1 SD(β̂0) SD(β̂1) γ̂0 γ̂1

0% censoring rate

1.0 -0.2 0.954 -0.195 0.053 0.041 0.972 -0.196 0.048 0.036 0.802 0.071

1.0 -0.4 0.958 -0.393 0.056 0.033 0.974 -0.399 0.046 0.030 0.794 0.078

1.0 -0.6 0.966 -0.593 0.060 0.034 0.980 -0.598 0.049 0.030 0.797 0.091

1.0 -0.8 0.970 -0.790 0.070 0.040 0.988 -0.793 0.054 0.037 0.840 0.097

15% censoring rate

1.0 -0.2 0.895 -0.187 0.053 0.045 0.951 -0.190 0.042 0.041 0.728 0.068

1.0 -0.4 0.894 -0.391 0.057 0.043 0.951 -0.392 0.045 0.037 0.730 0.078

1.0 -0.6 0.897 -0.595 0.067 0.047 0.956 -0.588 0.048 0.041 0.742 0.084

1.0 -0.8 0.894 -0.803 0.074 0.061 0.957 -0.786 0.055 0.048 0.751 0.093

25% censoring rate

1.0 -0.2 0.851 -0.184 0.057 0.049 0.925 -0.180 0.046 0.049 0.744 0.063

1.0 -0.4 0.850 -0.396 0.059 0.047 0.926 -0.385 0.047 0.044 0.742 0.067

1.0 -0.6 0.849 -0.607 0.066 0.057 0.929 -0.587 0.055 0.053 0.755 0.068

1.0 -0.8 0.842 -0.823 0.073 0.073 0.927 -0.787 0.059 0.062 0.768 0.078

50% censoring rate

1.0 -0.2 0.736 -0.193 0.057 0.053 0.848 -0.185 0.054 0.054 0.794 0.042

1.0 -0.4 0.729 -0.425 0.065 0.057 0.855 -0.386 0.055 0.059 0.776 0.059

1.0 -0.6 0.722 -0.665 0.075 0.082 0.853 -0.605 0.063 0.073 0.787 0.067

1.0 -0.8 0.709 -0.912 0.088 0.122 0.848 -0.814 0.071 0.097 0.792 0.070

75% censoring rate

1.0 -0.2 0.581 -0.248 0.055 0.074 0.739 -0.218 0.061 0.073 0.843 0.034

1.0 -0.4 0.577 -0.558 0.063 0.123 0.741 -0.465 0.058 0.092 0.838 0.033

1.0 -0.6 0.567 -0.889 0.072 0.200 0.736 -0.711 0.072 0.138 0.818 0.048

1.0 -0.8 0.556 -1.245 0.080 0.309 0.724 -0.953 0.076 0.191 0.795 0.069
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Table 2: Estimation variations when β0 = 1, β1 = −0.6, γ0 = 1, γ1 = 0.1: SD

represents the empirical standard deviation from the 1000 simulation runs. ŜD

represents the theoretic asymptotic standard derivation.

Censoring rate SD(β̂0) SD(β̂1) ŜD(β̂0) ŜD(β̂1) SD(γ̂0) SD(γ̂1) ŜD(γ̂0) ŜD(γ̂1)

0% 0.049 0.030 0.045 0.031 0.171 0.095 0.254 0.118

15% 0.048 0.041 0.054 0.039 0.128 0.100 0.174 0.124

25% 0.055 0.053 0.045 0.036 0.127 0.088 0.161 0.123

50% 0.063 0.073 0.028 0.028 0.137 0.071 0.102 0.075

Table 3: Estimation results from 1000 simulation runs when n = 800, β0 = 1, β1 =

−0.6, γ0 = 1, γ1 = 0.1. E(ξ2|W ), E(ξ3|W ), E(ξ4|W ) are estimated by the nonpara-

metric kernel regression method.

IWLS RMM2-ISE

Censoring rate β̂0 β̂1 SD(β̂0) SD(β̂1) β̂0 β̂1 SD(β̂0) SD(β̂1) γ̂0 γ̂1

0% 0.979 -0.638 0.089 0.094 0.978 -0.595 0.067 0.054 0.896 0.070

15% 0.908 -0.654 0.075 0.100 0.948 -0.598 0.072 0.061 0.598 0.066

25% 0.848 -0.671 0.084 0.129 0.902 -0.616 0.067 0.054 0.418 0.073

50% 0.754 -0.710 0.072 0.101 0.806 -0.651 0.071 0.061 0.226 0.062
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Figure 1: The preliminary analysis results for the A5175 study data. (A) the

residual versus the covariate, (B) the residual squared versus the covariate and a

local regression line describing the relation between ξ2 and the covariate, (C) the

scatter plot of the covariate–residual cubed and the estimated third moment of the

error distribution as a function of the covariate.
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Appendix

A.1 Assumptions

We first state the regularity conditions under which the RMM2-ISE estimator has good

asymptotic properties.

A1: The kernel functionK(·) is nonnegative, has compact support, and satisfies
∫
K(s)ds =

1,
∫
K(s)sds = 0 and

∫
K(s)s2ds <∞,

∫
K2(s)ds <∞.

A2: The bandwidth for the kernel function satisfies nh4 → 0, nh2 →∞ as n→∞.

A3: The cumulative hazard function for the censoring time Λc(t) <∞, for all t.

A4: Let B(h, u) = E{hI(T ≥ u)}/S(u−). Then B [Sθ,eff(Wi, Ti){1−G(Ti)}, u]2 <∞,

B{Qθ,i(Wi, Ci)I(Ti > Ci), u}2 <∞ where S(u−) = Pr(T > u).

A5: τ ≡ inf{t : G(t) = 0} <∞.

A6: Let a⊗2 ≡ aa
T

throughout the text, then E{Sθ,eff(Wi, Ti)
⊗2} <∞ and E{Qθ,i(Wi, Xi)

⊗2}

<∞, for all θ.

A7: There exists an open set Θ that contains the true parameter θ0. In Θ, E{Sθ,eff(wi, ti)} =

0 has a unique solution at θ0.

A8: Let

U0(θ) = E[Sθ,eff(Wi, Ti)− E{Qθ,i(Wi, Ci)I(Ci < Ti)|Wi, Xi}]

+E{(1−∆i)Qθ,i(Wi, Xi)}.

U0 is continuous in θ ∈ Θ, and has derivative bounded away from 0 and ∞.

Assumptions (A1) and (A2) ensure the consistency of the kernel estimator Q̂θ,i(wi, xi).

Assumptions (A3) and (A4) guarantee the consistency of Ĝ in approximating G, the cen-

soring time distribution function. Assumption (A5) ensures that at any finite time, there is

a positive chance that safety endpoint can be observed. Finally, Assumption (A6) ensures

the boundedness of the asymptotic estimation variances. Assumption (A7) is the usual

condition for identifiability of parameters. Assumption (A8) is usually to ensure the score

function is continuous and differentiable.
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A.2 Notations

We accept that assumptions A1-A5 hold throughout the text. Here, we define the following

notations used in the proofs.

f(wi) ≡ density of W at wi,

Ri(t) ≡ I(Xi ≥ t),

R(t) =
∑

iRi(t),

T, tj ≡ overall survival time,

C, cj ≡ censoring time,

X, xj ≡ min(T,C) and min(tj, cj), respectively

Un: U− statistics,

S(u) = Pr(T > u),

B(h, u) = E{hI(T≥u)}
S(u−)

,

vi = (wi, ti, δi)
T.

We first list several equalities that are used during the derivation:

R(t) = nĜ(t−)Ŝ(t−)

Ĝ(t)−G(t)

G(t)
= −

∫ t

0

Ĝ(u−)

G(u)

dM c(u)

R(u)

δi
G(xi)

= 1−
∫
dM c

i (u)

G(u)

(A.1)

These equations are given on page 37 in Gill (1980), page 313 in Robins & Rotnitzky (1992)

and in Ma & Yin (2010), hence we do not give the detailed derivations here.
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A.3 Lemmas

Lemma 1 Letting

Q̂θ,i(wi, xi) =

∑n
j=1 δjSθ,eff(wj, tj)I(xj > xi)Kh(wj − wi)/Ĝ(tj)∑n

j=1 δjI(xj > xi)Kh(wj − wi)/Ĝ(tj)

and

Qθ,i(wi, xi) = E {Sθ,eff(wi, Ti) | Ti > Xi,Wi = wi, Xi}

=
E {Sθ,eff(wi, Ti)I(Ti > xi) | Wi = wi, xi}

E {I(Ti > xi) | Wi = wi, xi}
,

we have

Q̂θ,i(wi, xi)−Qθ,i(wi, xi)

=
f−1(wi)

1
n

∑n
j=1 δjSθ,eff(wj, tj)I(xj > xi)Kh(wj − wi)/Ĝ(tj)

f−1(wi)
1
n

∑n
j=1 δjI(xj > xi)Kh(wj − wi)/Ĝ(tj)

−E {Sθ,eff(wi, Ti)I(Ti > xi) | wi, xi}
E {I(Ti > xi) | wi, xi}

= [f−1(wi)
1

n

n∑
j=1

δjSθ,eff(wj, tj)I(xj > xi)Kh(wj − wi)/Ĝ(tj)

−E {Sθ,eff(wi, Ti)I(Ti > xi) | wi, xi}]E {I(Ti > xi) | wi, xi}−1

−Qθ,i(wi, xi)[f
−1(wi)

1

n

n∑
j=1

δjI(xj > xi)Kh(wj − wi)/Ĝ(tj)

−E {I(Ti > xi) | wi, xi}]E {I(Ti > xi) | wi, xi}−1 + op(n
−1/2).

Proof: Letting

Â = f−1(wi)
1

n

n∑
j=1

δjSθ,eff(wj, tj)I(xj > xi)Kh(wj − wi)/Ĝ(tj),

B̂ = f−1(wi)
1

n

n∑
j=1

δjI(xj > xi)Kh(wj − wi)/Ĝ(tj),

A = E {Sθ,eff(wi, Ti)I(Ti > xi) | wi, xi},

B = E {I(Ti > xi) | wi, xi},

then by Taylor expansion,

Â

B̂
− A

B
=

1

B
(Â− A)− A

B2
(B̂ −B) + A∗(B̂ −B)2/(B∗3)− (Â− A)(B̂ −B)/(B∗2),

3



where (A∗T, B∗)T is a point on the line connecting (ÂT, B̂)T and (AT, B)T. Note that Â

and B̂ are the kernel regression estimators of A and B respectively, hence Â−A and B̂−B

are both of order Op{h2 + (nh)−1/2}. Thus, the last two terms of the above display are of

order Op{h4 + (nh)−1} = op(n
−1/2) under the assumption that nh4 → 0 and nh2 → ∞.

This proves the results.

Lemma 2

n−1/2

n∑
i=1

(1− δi)(Q̂θ,i(wi, xi)−Qθ,i(wi, xi)) = n−1/2

n∑
i=1

ρi(θ) + op(1),

where

ρi(θ) =
δiSθ,eff(wi, xi)

G(ti)
{1−G(ti)}

− δi
G(ti)

E {I(ti > Cj)Qθ,j(wi, Cj) | vi}

+

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u).

Proof: We first derive the asymptotic expansion of Â and B̂. Since Â and B̂ have a common

form, in the following, we first derive the general asymptotic expansion

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

for an arbitrary f̃(wj, xj, xi) function.

n∑
j=1

δjKh(wj − wi)
Ĝ(tj)

f̃(wj, xj, xi)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

{
1− Ĝ(tj)

G(tj)

}

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

∫ tj

0

Ĝ(u−)dM c(u)

G(u)R(u)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

1

n

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

4



×
∫ tj

0

nŜ(u−)Ĝ(u−)dM c(u)

G(u)Ŝ(u−)R(u)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

1

n

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

×
∫ tj

0

R(u)dM c(u)

G(u)Ŝ(u−)R(u)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

1

n

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

Ĝ(tj)

∫ ∞
0

Rj(u)dM c(u)

G(u)Ŝ(u−)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+

1

n

∫ ∞
0

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)Rj(u)dM c(u)

Ĝ(tj)G(u)Ŝ(u−)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+
nf(wi)

n

∫ ∞
0

n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)Rj(u)

nf(wi)Ĝ(tj)G(u)Ŝ(u−)

×dM c(u)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+ f(wi)

∫ ∞
0

E
{
f̃(wi, Ti, xi)I(Ti ≥ u) | wi, xi

}
G(u)S(u−)

dM c(u)

+f(wi)
n∑
i=1

∫ ∞
0

ψn(u)dM c
i (u)

=
n∑
j=1

δjKh(wj − wi)f̃(wj, xj, xi)

G(tj)
+ f(wi)

∫ ∞
0

E
{
f̃(wi, Ti, xi)I(Ti ≥ u) | wi, xi

}
G(u)S(u−)

dM c(u)

+op(
√
n),

where

ψn(t) = −
E
{
f̃(wi, Ti, xi)I(Ti ≥ u) | wi, xi

}
G(u)S∗2(u−)

{Ŝ(u−)− S(u−)}+ op(1),

and S∗ is a point on the line connecting Ŝ(u−) and S(u−). Note that the residual term

in the above equation is op(1) because the kernel estimator and the estimator Ĝ(tj) are

consistent. Further {Ŝ(u−)− S(u−)} = op(1) and
E{f̃(wi,Ti)I(Ti≥u)|wi,xi}

G(u)S∗2(u−)
= O(1), and thus

ψn(t) = op(1). Also, Ŝ(u−)− S(u−) is Ft-adapted and the residual term does not depend

on the u in the integrand. Hence, ψn(t) are predictable processes. Thus, the martingale

central limit theorem gives us the results that
∑n

i=1

∫∞
0
ψn(u)dM c

i (u) is of op(n
1/2).

Letting f̃(wj, xj, xi) = Sθ,eff(wj, tj)I(xj > xi) in Â and = I(xj > xi) in B̂, we have

Â− A

5



= f−1(wi)
1

n

n∑
j=1

δjSθ,eff(wj, xj)I(xj > xi)Kh(wj − wi)/G(tj)

−E {Sθ,eff(wi, Ti)I(Ti > xi) | wi, xi}

+
1

n

∫
E {Sθ,eff(wi, Ti)I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)
dM c(u) + op(n

−1/2),

and

B̂ −B

= f−1(wi)
1

n

n∑
j=1

δjI(xj > xi)Kh(wj − wi)/G(tj)− E {I(Ti > xi) | wi, xi}

+
1

n

∫
E {I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)
dM c(u) + op(n

−1/2).

Plugging in the two equations, we have

Q̂θ,i(wi, xi)−Qθ,i(wi, xi)

=
f−1(wi)

1
n

∑n
j=1 δjSθ,eff(wj, tj)I(xj > xi)Kh(wj − wi)/G(tj)

E {I(Ti > xi) | wi, xi}
(A.2)

−
f−1(wi)

1
n

∑n
j=1 δjQθ,i(xi)I(xj > xi)Kh(wj − wi)/G(tj)

E {I(Ti > xi) | wi, xi}
(A.3)

+
1

nE {I(ti > xi) | wi, xi}

∫
E {Sθ,eff(wi, Ti)I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)
dM c(u)

(A.4)

− Qθ,i(wi, xi)

nE {I(Ti > xi) | wi, xi}

∫
E {I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)
dM c(u)

(A.5)

+op(n
−1/2).

We then have to obtain the asymptotic properties for

n−1/2

n∑
i=1

(1− δi)
{

Q̂θ,i(wi, xi)−Qθ,i(wi, xi)
}
.

We conduct separate computations for the assumptions (A.2) to (A.5).

For (A.2): We let

Πj =
δjSθ,eff(wj, xj)I(xj > xi)

G(tj)
,

6



vi = (δi, xi, wi),

Vi = (∆i, Xi,Wi),

ĝ(vi) =
1

n

n∑
j=1

ΠjKh(wj − wi),

r(wi) = E(Πi | W = wi),

g(wi) = r(wi)f(wi),

H(vi) =
f−1(wi)(1− δi)

E {I(Ti > xi) | wi, xi}
.

1√
n

n∑
i=1

H(vi)ĝ(vi)

=
1√
n

n∑
i=1

f−1(wi)(1− δi)
E {I(Ti > xi) | wi, xi}

ĝ(vi)

=
1√
n

n∑
i=1

f−1(wi)(1− δi)
E {I(Ti > xi) | wi, xi}

1

n

n∑
j=1

ΠjKh(wj − wi)

= (n− 1)/n
√
n

1(
n
2

)∑
i<j

{
f−1(wi)(1− δi)δjSθ,eff(wj, xj)I(xj > xi)Kh(wj − wi)

2E {I(Ti > xi) | wi, xi}G(tj)

+
f−1(wj)(1− δj)δiSθ,eff(wi, xi)I(xi > xj)Kh(wi − wj)

2E {I(Tj > xj) | wj, xj}G(ti)

}
.

We note that the remaining terms in the above equation are equal to 0 since δi(1− δi) = 0.

Letting

uh1(vi,vj) =
f−1(wi)(1− δi)δjSθ,eff(wj, xj)I(xj > xi)Kh(wj − wi)

E {I(Ti > xi) | wi, xi}G(tj)

uh2(vi,vj) = uh1(vj,vi),

then uh(vi,vj) = {uh1(vi,vj) + uh2(vi,vj)} /2 is the kernel of the U−statistic,

Un =
1(
n
2

)∑
i<j

uh(vi,vj).

We then compute

E {uh(Vi,vj) | vj} = [E {uh1(Vi,vj) | vj}+ E {uh2(Vi,vj) | vj}]/2.

E {uh1(Vi,vj) | vj}

7



=
δjSθ,eff(wj, xj)

G(tj)
E

[
f−1(Wi)(1−∆i)I(xj > Xi)Kh(wj −Wi)

E {I(Ti > Xi) | Wi, Xi}
| vj
]

=
δjSθ,eff(wj, xj)

G(tj)
E
[
f−1(Wi)Kh(wj −Wi)E {(1−∆i)I(xj > Xi) | Ti > Xi,Wi, Xi,vj} | vj

]
=

δjSθ,eff(wj, xj)

G(tj)
E
[
f−1(Wi)Kh(wj −Wi)I(xj > Ci) | vj

]
=

δjSθ,eff(wj, xj)

G(tj)
E
[
f−1(Wi)Kh(wj −Wi)E {I(xj > Ci) | Wi,vj} | vj

]
=

δjSθ,eff(wj, xj)

G(tj)
E
[
f−1(Wi)Kh(wj −Wi) {1−G(xj)} | vj

]
=

δjSθ,eff(wj, xj)

G(tj)
{1−G(tj)}+Op(h

2)

= ũh1(vj) +Op(h
2).

We note that in the above derivation, we assume the censoring time distribution is contin-

uous.

In addition,

E {uh2(Vi,vj) | vj}

=
f−1(wj)(1− δj)

E {I(Tj > xj) | wj, xj}
E

{
∆iSθ,eff(Wi, Ti)

G(Ti)
I(Xi > xj)Kh(wj −Wi) | vj

}
=

f−1(wj)(1− δj)
E {I(Tj > xj) | wj, xj}

E

[
Kh(wj −Wi)E

{
∆iSθ,eff(Wi, Ti)I(Xi > xj)

G(Ti)
| wi,vj

}
| vj
]

=
f−1(wj)(1− δj)

E {I(Tj > xj) | wj, xj}
E [Kh(wj −Wi)E {Sθ,eff(Wi, Ti)I(Ti > xj) | wi,vj} | vj]

=
f−1(wj)(1− δj)

E {I(Tj > xj) | wj, xj}
E {Sθ,eff(wj, Ti)I(Ti > xj) | Wi = wj,vj} f(wj) +Op(h

2)

=
(1− δj)

E {I(Tj > xj) | wj, xj}
E {Sθ,eff(wj, Ti)I(Ti > xj) | vj}+Op(h

2)

= ũh2(vj) +Op(h
2).

So, we have

1√
n

n∑
i=1

H(vi)ĝ(vi) =
1√
n

n∑
j=1

{ũh1(vj) + ũh2(vj)} −
√
nE {uh1(Vi,Vj)}+ op(1),

where

E {uh1(Vi,Vj)} = E [Sθ,eff(Wj, Tj)I(Tj > Ci)] = E [Sθ,eff(Wj, Tj){1−G(Tj)}] .
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For (A.3): We let

Πj =
δjI(xj > xi)

G(tj)

H(vi) =
f−1(wi)Qθ,i(xi)(1− δi)
E {I(Ti > xi) | wi, xi}

and

1√
n

n∑
i=1

H(vi)ĝ(vi) =
√
n

1(
n
2

)∑
i<j

1/2 {uh1(vi,vj) + uh2(vi,vj)} ,

where

uh1(vi,vj) = uh2(vj,vi) =
f−1(wi)(1− δi)Qθ,i(wi, xi)δjI(xj > xi)

E {I(Ti > xi) | wi, xi}G(tj)
Kh(wj − wi).

E {uh1(Vi,vj) | vj}

=
δj

G(tj)
E [E {I(xj > Ci)Qθ,i(Wi, Ci) | Wi = wj, xj} | vj] +Op(h

2)

=
δj

G(tj)
E [E {I(tj > Ci)Qθ,i(Wi, Ci) | Wi = wj, tj} | vj] +Op(h

2)

=
δj

G(tj)
E {I(tj > Ci)Qθ,i(Wi = wj, Ci) | vj}+Op(h

2)

=
δj

G(tj)
E {I(tj > Ci)Qθ,i(wj, Ci) | vj}+Op(h

2)

= ũh1(vj) +Op(h
2),

and

E {uh2(Vi,vj) | vj}

=
f−1(wj)(1− δj)Qθ,j(wj, xj)

E {I(Tj > xj) | wj, xj}
E

{
∆iI(Xi > xj)Kh(Wi − wj)

G(Ti)
| vj
}

=
f−1(wj)(1− δj)Qθ,j(wj, xj)

E {I(Tj > xj) | wj, xj}
E {I(Ti > xj)Kh(Wi − wj) | vj}

=
f−1(wj)(1− δj)Qθ,j(wj, xj)

E {I(Tj > xj) | wj, xj}
E {I(Ti > xj) | Wi = wj,vj} f(wj) +Op(h

2)

=
(1− δj)Qθ,j(wj, xj)

E {I(Tj > xj) | wj, xj}
E {I(Ti > xj) | Wi = wj,vj}+Op(h

2)

= ũh2(vj) +Op(h
2).
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Further, we have

E {uh1(Vi,Vj)}

= E

(
δj

G(Tj)
E [E {I(Tj > Ci)Qθ,i(Wi, Ci) | Wi = Wj, Ci, Tj} | Vj]

)
+Op(h

2)

= E (E [E {I(Tj > Ci)Qθ,i(Wi, Ci) | Wi = Wj, Ci, Tj} | Vj]) +Op(h
2)

= E {I(Tj > Ci)Qθ,i(Wi, Ci)}+Op(h
2).

The last equation holds because Wi are i.i.d. Therefore, the same as before, we have

1√
n

n∑
i=1

H(vi)ĝ(vi) =
1√
n

n∑
i=1

{ũh1(vj) + ũh2(vj)} −
√
nE {uh1(Vi,Vj)}+ op(1).

For (A.4):

n−1/2

n∑
i=1

(1− δi)
1

E {I(Ti > xi) | wi, xi}n

∫
E {Sθ,eff(wi, Ti)I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)

×dM c(u)

= n−1/2

∫
E [Sθ,eff(Wi, Ti) {1−G(Ti)} I(Ti ≥ u)]

G(u)S(u−)
dM c(u) + op(1)

= n−1/2

n∑
j=1

∫
B [Sθ,eff(Wi, Ti) {1−G(Ti)} , u]

G(u)
dM c

j (u) + op(1).

For (A.5):

n−1/2

n∑
i=1

(1− δi)
Qθ,i(wi, xi)

E {I(Ti > xi) | wi, xi}n

∫
E {I(Ti > xi)I(Ti ≥ u) | wi, xi}

G(u)S(u−)
dM c(u)

+op(1)

= n−1/2

n∑
j=1

∫
B {Qθ,i(Wi, Ci)I(Ti > Ci), u}

G(u)
dM c

j (u) + op(1),

where B(h, u) = E{hI(T ≥ u)}/S(u−).

By combining the results from the above derivations, we have

ρi(θ) =
δiSθ,eff(wi, xi)

G(ti)
{1−G(ti)}+

(1− δi)E {Sθ,eff(wi, Tj)I(Tj > xi) | Wj = wi,vi}
E {I(Ti > xi) | wi, xi}

− E [Sθ,eff(Wi, Ti)I(Ti > Cj)]

− δi
G(ti)

E {I(ti > Cj)Qθ,j(wi, Cj) | vi}
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− (1− δi)Qθ,i(wi, xi)

E {I(Ti > xi) | wi, xi}
E {I(Tj > xi) | Wj = Wi,vi}

+E {I(Ti > Cj)Qθ,j(Wj, Cj)}

+

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u).

We can further simplify ρi. We show that

E {Sθ,eff(wi, Tj)I(Tj > xi) | Wj = Wi,vi} = Qθ,i(wi, xi)E {I(Tj > xi) | Wj = Wi,vi}(A.6)

because

Qθ,i(wi, xi)E {(Tj > xi) | Wj = Wi,vi}

= E{Sθ,eff|Ti > xi, wi, xi}E{I(Tj > xi)|Wj = Wi,vi}

=
E{Sθ,eff(wi, Ti)I(Ti > xi)|wi, xi}

E{I(Ti > xi)|wi, xi}
E{I(Tj > xi)|Wj = Wi,vi}

(since (Ti,Wi), (Tj,Wj) are i.i.d)

= E{Sθ,eff(wi, Ti)I(Ti > xi)|wi, xi}

= E{Sθ,eff(wi, Tj)I(Tj > xi)|Wj = Wi,vi}.

Further, by taking the expectation on both sides of the equation in (A.6), we have

E [Sθ,eff(Wi, Ti)I(Ti > Cj)] = E {I(Ti > Cj)Qθ,j(Wj, Cj)} .

As a result, we can write ρi(θ) as follows because the terms leading with 1− δi and the

above two expectations are cancelled in the original form.

ρi(θ) =
δiSθ,eff(wi, xi)

G(ti)
{1−G(ti)}

− δi
G(ti)

E {I(ti > Cj)Qθ,j(wi, Cj) | vi}

+

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u).

This proves the results.

11



A.4 Proofs of theorems

Theorem 1 Let Ûn(θ) = n−1
∑n

i=1{δiSθ,eff(wi, ti) + (1 − δi)Q̂θ,i(wi, xi)}. Under assump-

tions A1-A8,

θ̂ − θ0 = op(1),

where θ̂ solves Ûn(θ) = 0 and θ0 is the true parameter value.

Proof: Letting

U0(θ) = E[Sθ,eff(Wi, Ti)− E{Qθ,i(Wi, Ci)I(Ci < Ti)|Wi, Xi}] + E{(1−∆i)Qθ,i(Wi, Xi)},

Ûn(θ) =
1

n

n∑
i=1

δiSθ,eff(wi, ti) + (1− δi)Qθ,i(wi, xi),

we show that

sup
θ∈Θ
|Û2

n(θ)− U2
0 (θ)| p−→ 0.

Since

|Û2
n(θ)− U2

0 (θ)| ≤ |Ûn(θ) + U0(θ)||Ûn(θ)− U0(θ)|,

and

sup
θ∈Θ
|Ûn(θ) + U0(θ)| <∞,

in probability, it is sufficient to show that

sup
θ∈Θ
|Ûn(θ)− U0(θ)| p−→ 0.

Since

Ûn(θ)− U0(θ)

= Ûn(θ)− Un(θ) + Un(θ)− U0(θ)

=
1

n

n∑
i=1

ρi(θ)

+
1

n

∑
δiSθ,eff(wi, ti)− E[Sθ,eff(Wi, Ti)− E{Qθ,i(Wi, Ci)I(Ci < Ti)|Wi, Xi}]

+
1

n

n∑
i=1

(1− δi)Qθ,i(wi, xi)− E{(1−∆i)Qθ,i(wi, xi)},
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= L1 + L2 + L3,

we show that

sup
θ∈Θ
|Li|

p−→ 0 for i = 1, 2, 3.

Clearly,

sup
θ∈Θ
|L3|

p−→ 0

by the law of large numbers.

For L2 : Since

E[E{Qθ,i(Wi, Ci)I(Ci < Ti)|Wi, Xi}]

= E[E{E(Si,eff(Wi, Ti)|Ti > Ci,Wi, Xi)I(Ci < Ti)|Wi, Xi}]

= E[E{Sθ,eff(Wi, Ti)(1−∆i)|Wi, Xi}]

= E{Sθ,eff(Wi, Ti)(1−∆i)},

therefore

E[Sθ,eff(Wi, Ti)− E{Qθ,i(Wi, Ci)I(Ci < Ti)|Wi, Xi}] = E{Sθ,eff(Wi, Ti)∆i},

which implies that

sup
θ∈Θ
|L2|

p−→ 0

by the law of large numbers.

For L1 :

L1 =
1

n

n∑
j=1

ρj(θ)

=
1

n

[
n∑
j=1

δjSθ,eff(wj, xj)

G(tj)
{1−G(tj)} −

n∑
j=1

δj
G(tj)

E {I(tj > Ci)Qθ,i(wj, Ci) | vj}

]

+

[
1

n

n∑
j=1

∫ τ

0

B [Sθ,eff(Wi, Ti) {1−G(Ti)} , u]

G(u)
dM c

j (u)

]

−

[
1

n

n∑
j=1

∫ τ

0

B {Qθ,i(Wi, Ci)I(Ti > Ci), u}
G(u)

dM c
j (u)

]
= e1 + e2 − e3 + op(1).
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For e1 : We have

E

[
∆iSθ,eff(Wj, Tj)

G(Tj)
{1−G(Tj)}

]
= E[Sθ,eff(Wj, Tj){1−G(Tj)}],

and

E

[
∆j

G(Tj)
E{Qθ,j(Wj, Ci)I(Ci < Tj)|Wj, Tj}

]
= E{I(Tj > Ci)Qθ,j(Wj, Ci)}

= E[I(Tj > Ci)E{Sθ,eff(Wi, Ti)|Ti > Ci,Wi = Wj, Ci}]

= E[E{Sθ,eff(Wi, Ti)|Ti > Ci,Wi = Wj, Ci}E{I(Tj > Ci)|Wj, Ci}]

= E[E{Sθ,eff(Wi, Ti)I(Ti > Ci)|Wi = Wj, Ci}]

= E[Sθ,eff(Wi, Ti)I(Ti > Ci)]

= E[Sθ,eff(Wi, Ti)E{I(Ci < Ti)|Ti,Wi}]

= E{Sθ,eff(Wi, Ti)(1−G(Ti))}.

Because the two terms in the summations in e1 have the same expectation, and the sum-

mands are i.i.d., from the central limit theorem, we have

e1 = Op(n
−1/2), thus sup

θ∈Θ
|e1|

p−→ 0.

For e2, e3 :

SinceB(h, u) ≡ E{hI(T>u)}
S(u−)

, B [Sθ,eff(Wi, Ti) {1−G(Ti)} , u] andB {Qθ,i(Wi, Ci)I(Ti > Ci), u}

are predicable, they are continuous, as is G(u), and hence locally bounded. By Corollary

3.4.1 in Fleming & Harrington (1991), we can show the uniform convergence on a bounded

time interval [0, τ ]. We let H̃(u) stand for
B[Sθ,eff(Wi,Ti){1−G(Ti)},u]

G(u)
or

B{Qθ,i(Wi,Ci)I(Ti>Ci),u}
G(u)

.

Then, from Langlart’s inequality, for any given η, ξ > 0, and 0 ≤ τ <∞,

Pr

[
sup

0≤t≤τ

{∫ t

0

1

n
H̃(u)dM c(u)

}2

≥ ξ

]
≤ η

ξ
+ Pr

∫ τ

0

{
H̃(u)

n

}2

λc(u)R(u)du ≥ η

 ,
where

M c(u) =
n∑
i=1

M c
i (u),
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and λc(u) is the hazard function for the censoring time and R(u) is the number of patients

at risk at time u.

By Assumptions (A3), (A4), (A6) that the cumulative hazard function Λc(u) <∞ and

H̃2(u) <∞, together with the fact that ‖R(u)
n
‖ < 1, we have

Pr

∫ τ

0

{
H̃(u)

n

}2

λc(u)R(u) ≥ η

→ 0.

Since η, ξ are arbitrary, we have

sup
t≤τ
|
∫ t

0

1

n
H̃(u)dM c(u)| p−→ 0,

which implies

sup
θ∈Θ
|ej|

p−→ 0, j = 2, 3,

by the martingale convergence theorem.

Therefore,

sup
θ∈Θ
|Ûn(θ)− U0(θ)| p−→ 0,

and in turn

Ûn(θ̂)− U0(θ̂)
p−→ 0.

It is known that U0(θ0) = 0. Therefore, under Assumption (A8), we can use the Taylor

expansion to expand U0 at θ0 to obtain θ̂ − θ0
p−→ 0. This proves the results.

Theorem 2 Under assumptions A1-A8, we have the asymptotic expansion

−{A+ op(1)}n1/2(θ̂ − θ0) (A.7)

= n−1/2

n∑
i=1

{δiSθ0,eff(wi, xi) + (1− δi)Qθ0,i(wi, xi)

+ρi(θ0)}+ op(1),

where

A = E

{
∆i
∂Sθ0,eff(Wi, Xi)

∂θT
+ (1−∆i)

∂Qθ0,i(Wi, Xi)

∂θT

}
,
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and

ρi(θ) =
δiSθ,eff(wi, xi)

G(ti)
{1−G(ti)} −

δi
G(ti)

E {I(ti > Cj)Qθ,j(wi, Cj) | vi}

+

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u).

Consequently, when n→∞,

n1/2(θ̂ − θ0)→ N{0, A−1Ω(A−1)T}

in distribution, where

Ω = E

(
J1(θ0)⊗2 +

∫
E
[
{Ω1(θ0, u) + Ω2(θ0, u) + Ω3(θ0, u)}⊗2]λcRi(u)du

)
,

and

J1(θ) ≡ Sθ,eff(Wi, Xi)− E {I(Xi > Cj)Qθ,j(Wi, Cj) | Vi}+ {1−G(Xi)}Qθ,i(Wi, Xi),

Ω1(θ, u) ≡ −Sθ,eff(Wi, Xi)− E {I(Xi > Cj)Qθ,j(Wi, Cj) | Vi}+G(Xi)Qθ,i(Wi, Xi)

G(u)
,

Ω2(θ, u) ≡ B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
,

Ω3(θ, u) ≡ −B {Qθ,j(Wj, Cj)I(Tj > Cj), u}
G(u)

.

Here, vi = (wi, ti, δi)
T is the observation of the ith individual, M c

i and λc denote the

martingale representation and hazard rate for the censoring time respectively and Ri(t) ≡

I(Xi ≥ t).

In practice, we approximate the matrix A by using the numeric derivatives of the

estimating equations. To obtain Ω, we first estimate E{J1(θ0)⊗2} and

E
[
{Ω1(θ0, u) + Ω2(θ0, u) + Ω3(θ0, u)}⊗2]

via their empirical counterparts, which are respectively denoted by ÊJ and Ê(θ0, u). We

then approximate

E

(∫
E
[
{Ω1(θ0, u) + Ω2(θ0, u) + Ω3(θ0, u)}⊗2]λcRi(u)du

)
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using

1

n

n∑
i=1

Ê(θ0, Xi)(1−∆i).

Proof:

θ̂ − θ0 = −

{
∂Ûn(θ̃)

∂θT

}−1

Ûn(θ0),

where θ̃ is the point on the line connecting θ0 and θ̂. First, we have

∂Ûn(θ̃)

∂θT

=

[
n−1

n∑
i=1

δi
∂Sθ,eff(wi, ti)

∂θT
+ (1− δi)

∂Q̂θ,i(wi, xi)

∂θT

]
θ̃

p−→ E

{
∆i

∂Sθ̃,eff(wi, xi)

∂θT
+ (1−∆i)

∂Qθ̃n,i
(wi, xi)

∂θT

}

−→ E

{
∆i
∂Sθ0,eff(wi, xi)

∂θT
+ (1−∆i)

∂Qθ0,i(wi, xi)

∂θT

}
.

The first convergence follows the weak law of large numbers. Further, because θ̂ is a

consistent estimator for θ0, while |θ̃ − θ0| ≤ |θ̂ − θ0|, hence |θ̃ − θ0| = op(1). Note that θ̃

and θ̂ depend on the sample size n, and the inequality holds for any n. By the continuous

mapping theorem, the second convergence follows. Second, by the central limit theorem,

we have
√
nÛn(θ0)

D−→ N(µ,Ω),

where

µ = lim
n
E{∆iSθ0,eff(Wi, Xi) + (1−∆i)Q̂θ0,i(Wi, Xi)}

= lim
n
E{Un(θ0) + L1} = 0,

where

Ω = E[{∆iSθ0,eff(Wi, Ti) + (1−∆i)Q̂θ0,i(Wi, Xi)}⊗2]− µ2

= E[{∆iSθ0,eff(Wi, Ti) + (1−∆i)Qθ0,i(Wi, Xi) + ρi(θ)}⊗2].

Plugging in the expression for ρi(θ), we define

J(θ) ≡ ∆iSθ0,eff(Wi, Xi) + (1−∆i)Qθ0,i(Wi, Xi) + ρi(θ)
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=
∆iSθ,eff(Wi, Xi)

G(Xi)
− ∆i

G(Xi)
E {I(Xi > Cj)Qθ0,j(Wi, Cj) | Vi}

+(1−∆i)Qθ0,i(Wi, Xi)

+

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u).

By (A.1), in which
∆i

G(Xi)
= 1−

∫
dM c

i (u)

G(u)

and

(1−∆i) = 1−G(Xi) +G(Xi)

∫
dM c

i (u)

G(u)
,

we have

∆iSθ,eff(Wi, Xi)

G(Xi)
− ∆i

G(Xi)
E {I(Xi > Cj)Qθ0,j(Wi, Cj) | Vi}

=

{
Sθ,eff(Wi, Xi)−

∫
Sθ,eff(Wi, Xi)

G(u)
dM c

i (u)

}
−
{
E {I(Xi > Cj)Qθ0,j(Wi, Cj) | Vi} −

∫
E {I(Xi > Cj)Qθ0,j(Wi, Cj) | Vi}

G(u)
dM c

i (u)

}
and

(1−∆i)Qθ0,i(Wi, Xi)

= {1−G(Xi)}Qθ0,i(Wi, Xi) +G(Xi)

∫
Qθ0,i(Wi, Xi)

G(u)
dM c

i (u).

Therefore, J(θ) can be written as

J(θ) = Sθ,eff(Wi, Xi)− E {I(Xi > Cj)Qθ,j(Wi, Cj) | Vi}+ {1−G(Xi)}Qθ,i(Wi, Xi)

−
∫
{Sθ,eff(Wi, Xi)− E {I(Xi > Cj)Qθ,j(Wi, Cj) | Vi}+G(Xi)Qθ,i(Wi, Xi)}

G(u)

×dM c
i (u) +

∫
B [Sθ,eff(Wj, Tj) {1−G(Tj)} , u]

G(u)
dM c

i (u)

−
∫
B {Qθ,j(Wj, Cj)I(Tj > Cj), u}

G(u)
dM c

i (u)

= J1(θ) + J2(θ) + J3(θ) + J4(θ).

As shown in Ma & Yin (2010), J1(θ) is uncorrelated with the rest of the terms. Letting

Ω1,Ω2,Ω3 be defined as in the theorem, then

{∆iSθ0,eff(Wi, Xi) + (1−∆i)Qθ,i(Wi, Xi) + ρi(θ)}⊗2
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= J1(θ)⊗2 +

{∫
Ω1(θ0, u) + Ω2(θ0, u) + Ω3(θ0, u)dM c

i (u)

}⊗2

.

Further, we know that

E

([∫
{Ω1(θ, u) + Ω2(θ, u) + Ω3(θ, u)} dM c

i (u)

]⊗2
)

= E

[∫
{Ω1(θ, u) + Ω2(θ, u) + Ω3(θ, u)}⊗2 λc(u)Ri(u)du

]
,

therefore, we have

Ω = E

(
J1(θ0)⊗2 + E

[∫
{Ω1(θ0, u) + Ω2(θ0, u) + Ω3(θ0, u)}⊗2 λcRi(u)du

])
.

This proves the results.
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