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Abstract

Covariate balance among different treatment arms is critical in clinical trials, as

confounding effects can be effectively eliminated when patients in different arms are

alike. To balance the prognostic factors across different arms, we propose a new

dynamic scheme for patient allocation. Our approach does not require discretizing

continuous covariates to multiple categories, and can handle both continuous and

discrete covariates naturally. This is achieved through devising a statistical measure

to characterize the similarity between a new patient and all the existing patients in the

trial. Under the similarity weighting scheme, we develop a covariate-adaptive biased

coin design and establish its theoretical properties, as well as improving the original

Pocock–Simon design. We conduct extensive simulation studies to examine the design

operating characteristics and illustrate our method with a real data example. The

new approach is demonstrated to be superior to other existing methods in terms of

performance.

Keywords: Biased coin design; Clinical trial; Covariate–adaptive randomization; Covariate

balance; Pocock and Simon design; Similarity measure; Stratification.
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1 Introduction

Peter Hall was one of the most influential and prolific researchers in modern statistics.

His contributions are broad and cover many important areas. From interactions with

him, the authors have been greatly influenced by his statistical thinking, especially in

how to use “smoothing” methods to increase modeling flexibility and reduce estimation

error. One of the nonparametric devices, called kernel smoothing, is widely used in density

estimation and nonparametric regression. In density estimation, Hall (1981) derived the

law of the iterated logarithm for the kernel estimator, discussed the choice on the order

of kernels (Hall & Marron 1988), and addressed the issues on constructing confidence

intervals (Hall 1992). In nonparametric regression, Hall (1984) investigated the asymptotic

properties of the kernel regression estimator. A series of his follow-up works focused on

the confidence intervals and confidence bands for kernel estimators, which include Hall

& Marron (1988), Hall (1992), Hall (1993), and Hall & Horowitz (2013). Motivated by

kernel estimation, we propose a kernel-based covariate-adaptive randomization design. In

addition, we apply the martingale convergence theorem in Hall & Heyde (1980) extensively

in deriving the asymptotic properties of the proposed design, which reinforces Peter Hall’s

impact, especially in the area of sequential analysis.

The primary goals of randomized clinical trials are to differentiate the treatment effects

efficiently as well as to treat patients effectively. If the treatment effects of different drugs

can be quickly discriminated, then patients outside of the trial would benefit from the

more effective therapy sooner. To achieve this goal, allocation of patients is random to

balance out both known and unknown prognostic factors that may affect the response of

interest, and the numbers of patients should also be balanced across different treatment

arms to achieve high statistical power. For discrete covariates, various approaches have

been developed for patient allocation to achieve covariate balancing (Hu & Hu 2012). These
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include the biased coin covariate-adaptive randomization design (Wei 1978, Antognini &

Giovagnoli 2004), which is an extension of the biased coin design (Efron 1971) for balancing

the sample size, and the Pocock–Simon design which is based on a minimization method

for sequential treatment assignment (Taves 1974, Pocock & Simon 1975). Despite their

popularity, the main drawbacks of the these designs are that continuous covariates must

be categorized into several groups, while clinical trials often collect a large number of

continuous covariates and different ways of categorization may lead to different imbalanced

structures. In addition, breaking down continuous covariates into sub-categories often

changes the nature of the covariates and makes distributional balance unattainable (Ma &

Hu 2013). If the sub-categories are not appropriately defined, it can even lead to error and

loss of efficiency in the randomization procedure (Stigsby & Taves 2010).

Such a problem has arisen in many clinical trials, which is illustrated with an AIDS

Clinical Trials Group study (Campbell et al. 2012). To evaluate several antiretroviral reg-

imens in diverse populations, patients in the A5175 trial were randomly assigned to the

antiretroviral therapies with efavirenz plus lamivudine-zidovudine (arm 1) and atazanavir,

didanosine-EC plus emtricitabine (arm 2). The study endpoint was the CD4 count at week

96. The baseline covariate CD4 cell count at screening was found to be strongly associated

with the endpoint with a p-value less than 2× 10−16 in a simple linear regression analysis.

To balance the CD4 cell count at screening, there was a controversy on the choice of the

cutoffs, either the clinically meaningful low CD4 count 200 or the sample average 169. In a

simulated clinical trial study, we compared the performances of using these two cutoffs un-

der the same covariate–adaptive procedure. The resulting absolute mean difference between

the two groups was 71.76 for the cutoff 200, and 43.73 for the cutoff 169 with corresponding

p-values of 0.002 and 0.06 for the two sample t-test of the mean differences. This suggested

that a slight variation in the cutoff may lead to substantially different allocation results. To
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handle continuous covariates, Frane (1998) proposed to calculate the p-value for the mean

difference of each covariate, presuming that a new patient is assigned to each treatment

group. Using the minimal p-value as a representation of the imbalance of assigning a new

patient to a specific treatment, the new patient is then assigned to the treatment with the

largest minimal p-value. Stigsby & Taves (2010) considered the rank-sum based covariate

adaptive procedure, and Su (2011) discussed a method using quantiles of the covariate dif-

ferences. Ma & Hu (2013) proposed a randomization procedure by defining the imbalance

of the covariates through kernel density estimators, which summarize all the information

in the covariate distributions.

To improve the overall balance among both continuous and discrete covariates, we

develop a kernel-based adaptive randomization framework that can simultaneously handle

a large number of continuous covariates in a single step. In particular, we define a similarity

measure between each incoming patient and all the existing patients, and then allocate the

new patient with the largest probability to the arm that has the least overall similarity to the

new patient. Through weighing each observation by taking into account his/her similarity

with the new patient, the proposed method handles both discrete and continuous covariates

in a natural way and further broadens the traditional counting from integer values to all

nonnegative values.

The rest of the paper is organized as follows. Section 2 describes our covariate–adaptive

randomization procedure via introducing the similarity measure and modifying the biased

coin design. In Section 3, we cast the Pocock–Simon design in our new framework so

as to accommodate continuous covariates. We carry out simulation studies and a real

data example to illustrate the performance of the new designs in Section 4. Section 5

concludes with some remarks. Theoretical results are delineated in the Appendix and the

corresponding technical proofs are presented in the supplementary materials.

4



2 Similarity Weighted Biased Coin Design

In a randomized clinical trial with m treatments, suppose that we have already assigned n

patients to different arms, and a new patient arrives and is ready for treatment assignment.

Let Xi be the p-dimensional covariate vector for the ith patient, and Iiu be the indicator

of assigning the ith patient to treatment arm u, u = 1, . . . ,m.

We define a similarity measure wi between the ith existing patient and the incoming

(n+1)th patient, whose covariate vector is Xn+1 with X(n+1)k denoting the kth component.

For ease of exposition, we standardize all the covariate values to be within the range of

[−1, 1]. The similarity measure between the new patient and the ith patient in the trial is

defined as

wi =

p∏
k=1

wik, i = 1, . . . , n. (1)

where

wik = Khn(Xik −X(n+1)k), (2)

Khn(x) = K(x/hn)/hn, and K(·) is a kernel function satisfying K(·) ≥ 0, and K(0) = 1,

and hn > 0 is a bandwidth. The classical kernel functions include the triangular kernel

K(x) = (1 − |x|)I(|x| ≤ 1), the Epanechnikov kernel K(x) = (1 − x2)I(|x| ≤ 1), the

Gaussian kernel K(x) = exp(−x2/2), and so on. Although the selection of kernels does not

affect the large sample properties of our allocation procedure, in practice we recommend to

use the Epanechnikov kernel for the bounded covariates, which is the most efficient one in

minimizing the averaged mean squared error (Epanechnikov 1969). The similarity measure

wik indicates a higher level of similarity for patients whose kth covariate values are closer

to X(n+1)k, and the similarity decreases to zero as the difference between Xik and X(n+1)k

reaches the bandwidth hn, for k = 1, . . . , p. The higher the value of hn, the kernel opts to

take into account more Xik’s with larger distances from X(n+1)k.
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We propose the similarity weighted biased coin design for balancing covariates, which

is described as follows.

1. Calculate the similarity measure of the new patient with each of the existing n patients

in the trial to obtain w1, . . . , wn using (1).

2. For u = 1, . . . ,m, calculate the weighted total number of patients in treatment arm

u,

nu =
n∑
i=1

wiIiu, (3)

and obtain the imbalance measure of arm u as gnu = nu/(
∑m

u=1 nu).

3. Define the allocation probability πu to be a function of gn = (gn1, . . . , gn(m−1))
T that

is decreasing with respect to each component gnu. We assign the new patient to

treatment arm u with probability πu(gn), u = 1, . . . ,m.

In the construction of the similarity weighted biased coin design, a patient who is more

similar to the new patient receives a larger weight, and is counted more towards the total

number of patients in a specific arm. Compared with the biased coin design where nu =∑n
i=1 Iiu, our definition of nu in (3) is a weighted sum of the treatment indicators Iiu. If

the covariate vector Xi contains only discrete variables, our method reduces to the existing

discrete covariate–adaptive randomization by choosing hn to be smaller than the smallest

difference in different categories, i.e., hn < minXik 6=Xi′k |Xik − Xi′k|. Such a construction

leads to wi = 0 whenever Xik 6= X(n+1)k for at least one k, and wi reaches its maximum if

Xi = Xn+1. As a result, our method reduces to the biased coin randomization procedure

within each stratum defined by the discrete covariates.

We highlight several advantages of the proposed similarity weighting scheme. First, it

overcomes the difficulties caused by the high dimensionality of the covariates. To accommo-

date high-dimensional covariates, Yuan et al. (2011) resorted to a linear model structure,
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which is unfortunately subject to model misspecification. Second, even when all the covari-

ates are discrete, we can choose the bandwidth hn sufficiently large to avoid the situation

of too many strata and too few or even zero observations within some strata. Finally, the

procedure is automatic and flexible as reflected in the various ways of constructing the

similarity measure.

To study the asymptotic properties of the imbalance measure Dnu =
∑n

i=1(Iiu−κu)Xi,

we explore the properties of DT
nuz =

∑n
i=1(Iiu − κu)XT

i z, u = 1, . . . ,m − 1, where z is an

arbitrary p dimensional vector. We show that the allocation achieves the target ratio in

the long run as follows.

Theorem 1. Assume that Conditions (C1) – (C6) hold and let Qz = E(zTXiX
T
i z). Then

in the similarity weighted biased coin design with an allocation probability πu{Un(Xn+1)},

n−1/2(DT
n1z, . . . ,D

T
n(m−1)z)T converges to a zero-mean multivariate Gaussian distribution,

with the variance–covariance matrix having the uth diagonal element (1+2ρ)−1(1−κu)κuQz

and the (u, v) entry −(1 + 2ρ)−1κuκvQz, for u, v = 1, . . . ,m− 1, u 6= v.

Obviously, due to the arbitrariness of z, we readily obtain the asymptotic normality of

Dn. The proof relies heavily on the martingale convergence theorem (Hall & Heyde 1980),

which is provided in the supplementary material.

3 Similarity Weighted Pocock–Simon Design

The proposed similarity measure can also be incorporated into the Pocock–Simon design

(Pocock & Simon 1975), namely the similarity weighted Pocock–Simon design, so that

continuous covariates no longer need to be discretized. Consider the hypothetical situation

where we assign the new patient to treatment 1, the similarity weighted Pocock–Simon

design can be implemented as follows.
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1. For the kth covariate, let nku =
∑n

i=1wikIiu be the weighted total number of subjects

assigned to treatment arm u, where wik is defined in (2).

2. Calculate the aggregated variation in the form of

dk = 1/2
∑

u,v∈1,...,m

(nku − nkv)2

for the kth covariate.

3. Sum over the dk’s across all the covariates, leading to the imbalance measure gn1 =∑p
k=1 dk.

4. Similarly, we can calculate gn2, . . . , gnm by presuming that the new patient is assigned

to treatment arms 2, . . . ,m, respectively.

5. We order the gnu’s, e.g., gn1 ≤ · · · ≤ gnm, create the randomization probabilities

satisfying π(n+1)1 ≥ · · · ≥ π(n+1)m, and assign the new patient to the m treatment

arms with probabilities π(n+1)1, . . . , π(n+1)m.

The selection of dk is not unique; for example, the sum of absolute differences, dk =

1/2
∑

u,v∈1,...,m |nku − nkv|, can also be used to measure the total imbalance among the

treatment arms for the kth covariate. Our modified procedure can be viewed as a general-

ized version of the original Pocock–Simon design procedure: the former calculates the nku’s

using a similarity weight wik, while the latter sets the weight wik = 1 if the ith patient has

the same kth covariate value as the new patient, and wik = 0 otherwise. Our approach

handles continuous covariates through a similarity-based weighting scheme and does not

require discretization.
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4 Numerical Studies

4.1 Simulation Study

To evaluate the finite sample properties of the proposed similarity weighted biased coin

design and the similarity weighted Pocock–Simon design, we simulate 1000 two-arm clinical

trials, each containing n = 50 subjects. We generate covariates in the form of

Xik =
2 exp(ξik)

1 + exp(ξik)
− 1, k = 1, . . . , p, (4)

where the dimension p of covariates range from 1 to 8, and ξik is a normal random variable

with mean k/2 and standard deviation 5. To implement the biased coin design and the

Pocock–Simon design, we discretize the Xik’s to be 0 or 1 according to the negative or

positive signs of the covariates. We use the allocation probability function φu(y) = (y−1u −

1)/
∑m

u=1(y
−1
u − 1) in Atkinson (1982), which satisfies Conditions (C1) and (C2) as shown

in Smith (1984). In all the numerical studies, we take the bandwidth to be 2.1, so that the

support of the kernel could completely cover all the covariates. We also experiment with

other bandwidths between 2 and 2.5, and the results turned out to be similar as long as

the bandwidth was chosen to be slightly larger than the covariate range.

We first make comparisons from two aspects: the imbalance of the sample sizes and

the imbalance of the covariates between the two arms. To quantify the former, let nu

denote the sample size in arm u, u = 1, 2, and we obtain |n1 − n2| averaged over the

1000 simulated trials for all four methods: similarity weighted biased coin design, biased

coin design, similarity weighted Pocock–Simon design and Pocock–Simon design. Table

1 summarizes the imbalance measure on sample sizes, which demonstrates the similarity

weighted designs tend to induce more balanced numbers of subjects between the two arms.

Figure 1 shows the survival function, i.e., one minus the empirical cumulative distribution

function (CDF), of |n1 − n2| over the 1000 replicated data sets. A sharper decline of the
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survival function of the imbalance measure indicates a more effective procedure, and clearly

the similarity weighted designs outperform their counterparts. To compare the covariate

imbalance, we borrow the idea from the analysis of variance to construct an F test statistic

for each covariate,

Fk =
SSBk/(m− 1)

(SSTk − SSBk)/(n−m)
, k = 1, . . . , p (5)

where the between-arm sum of squared errors (SSBk) is given by

SSBk = n1

(
n−11

n∑
i=1

Ii1Xik − n−1
n∑
i=1

Xik

)2

+ n2

(
n−12

n∑
i=1

Ii2Xik − n−1
n∑
i=1

Xik

)2

,

and the total sum of squared errors (SSTk) is given by

SSTk ≡
n∑
i=1

(
Xik − n−1

n∑
i=1

Xik

)2

.

As the F statistic has the same distribution across all the covariates, we summarize the

overall mean of the F statistics for all the covariates in Table 2, and plot the survival

functions of the F statistics in Figure 2. Both the similarity weighted biased coin design

and similarity weighted Pocock–Simon design outperform their counterparts in terms of

balancing the covariates. For the biased coin designs, the improvement by using similarity

weights enhances as the dimension p increases, while the opposite is true for the Pocock–

Simon designs. Figure 2 further demonstrates the advantages of the proposed methods,

and particularly the similarity weighted Pocock–Simon design performs the best in terms

of reducing the imbalance in both the sample size and covariates.

To explore the estimation of the treatment effect under the four designs, we consider a

two-arm trial, where Ii = 1 indicates that the ith patient is allocated to arm 1, and Ii = 0

otherwise. We simulate 1000 clinical trials with response Yi generated as

Yi = µIi + exp(βTXi/2) + εi
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where the true parameter values are µ = −5 and β = (p/3, . . . , p/3)T, εi is a zero-mean

normal random error with standard deviation 0.1, and Xi is generated in the same way as

before. We choose p = 1, . . . , 8 and sample size n = 30. We allocate the first patient with

equal probability to each arm, and started the adaptive allocation from the second patient.

Table 3 shows the estimated treatment effect µ̂ =
∑n

i=1 IiYi/n1 −
∑n

i=1(1 − Ii)Yi/n2

and its empirical standard deviation and mean squared error for p = 1, . . . , 8. Note that µ̂

is always a consistent estimator of µ regardless of the regression form (Shao et al. 2010).

The biases of the estimates of µ are negligible under all four designs, while the empirical

standard deviations and mean squared errors deteriorate as p grows. Again, both the

similarity weighted biased coin design and the similarity weighted Pocock–Simon design

outperform the unweighted counterparts, respectively, in terms of the mean squared errors.

4.2 Real Data Example

We apply all the four methods, namely the biased coin design, the Pocock–Simon design,

and the corresponding similarity weighted versions, to the data from the AIDS trial A5175.

To study the treatment effect, seven covariates were considered important, which should

be balanced between the two arms at randomization: CD4 cell count and percentage (at

screening), Karnofsky score, Hepatitis-B surface antigen reactivity, the laboratory test

values including platelets, white blood cell count, absolute neutrophil count, and albumin.

In the original trial, there are n = 370 patients with complete observations, and they are

allocated to the two arms with equal probability. We take the standardized CD4 count at

week 96 as the outcome, and transformed the standardized covariates via 2 exp(x)/{1 +

exp(x)} − 1 to ensure that all the covariate values were within [−1, 1]. Let Xiu and Yiu

denote the covariates and response respectively for the ith patient in arm u, u = 1, 2. We
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build separate models for each arm,

Yiu = β0u + βT
uXiu + eiu, u = 1, 2,

with eiu ∼ N(0, σ2
u). We obtain the least squared estimators (β̂0u, β̂

T

u ) for each arm, and

use these parameter estimates as the true values to generate the outcomes in different

randomization procedures.

For illustration, we select the first 50 samples to evaluate and compare the four designs.

The observed difference of the mean outcomes between the two arms over these 50 samples

is 0.39, which is substantially different from that using the full 370 samples, 0.22. Since the

trial data are balanced in covariates for n = 370, we used 0.22 as a benchmark to approx-

imate the true underlying mean difference between the two arms. Using each of the four

randomization procedures, we re-randomized the 50 patients and each procedure is repli-

cated 1000 times to obtain the average effect. The means of |n1 − n2| under the similarity

weighted biased coin design, biased coin design, similarity weighted Pocock–Simon design

and Pocock–Simon design are 1.30, 1.49, 0.17 and 0.32, respectively, and the corresponding

means of the F statistics in (5) summing over all the covariates are 3.24, 5.41, 2.29 and 2.56.

The results show that the similarity weighted procedures outperform the original counter-

parts in reducing both the sample size and covariate imbalance, and overall the similarity

weighted Pocock–Simon design performs the best among the four designs. In addition, the

estimates of the difference of the mean responses are 0.306, 0.306, 0.306 and 0.313 using

the similarity weighted biased coin design, biased coin design, similarity weighted Pocock–

Simon design and Pocock–Simon design, respectively. Compared with the observed mean

difference in the first 50 samples, the estimates from the four covariate–adaptive designs are

closer to the benchmark value 0.22, indicating that covariates adaptation helps to improve

the balance.
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5 Discussion

To accommodate continuous covariates in the biased coin design and Pocock–Simon design,

we develop a kernel-based similarity measure and its associated imbalance assessment cri-

terion. We define the allocation probability function based on the new imbalance measure

and show that the covariate equilibrium measure Dnu of the proposed similarity weighted

biased coin design asymptotically follows a normal distribution. We choose the continuous

allocation function π instead of a discrete one, because discrete allocation functions can

neither discriminate between large versus small values of |gn1 − gn2| nor discriminate be-

tween large versus small numbers of subjects, hence typically yield designs with poor small

sample properties (Wei 1978, Smith 1984, Hu & Zhang 2004). In terms of the bandwidth

requirement, we find that as long as the bandwidth is chosen to be slightly larger than

the covariate range, the results are not sensitive to the bandwidth choice. Not only does

the asymptotic property of the covariate equilibrium Dnu explain the covariate discrepancy

between the arms, but it is also an essential component for analyzing the hypothesis test-

ing procedures in the linear regression problem (Shao et al. 2010, Ma et al. 2015). Our

theoretical results are essential for constructing inference procedures under the similarity

weighted biased coin design.
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Appendix

A.1 Allocation Probability Function

Suppose that n samples have been enrolled in the trial. The allocation probability πu is a

function of the imbalance measure vector gn = (gn1, . . . , gn(m−1))
T. Let π = (π1, . . . , πm−1)

T.

Furthermore, let κ = (κ1, . . . , κm−1)
T. We show that π drives gn towards κ under the fol-

lowing conditions. For notational simplicity, we surpress the subindex n in these conditions.

(C1) πu(g) is a nonnegative and monotonically decreasing function with respect to the

uth element gu. Define | · | to be the L1 norm of a vector; the vector π(g) satisfies

|π(g)| ≤ 1, for any component-wise nonnegative m − 1 dimensional vector g with

|g| ≤ 1. Moreover, πm(g) = 1− |π(g)|, gm = 1− |g|, κm = 1− |κ|. If gu ≥ κu, then

πu(g) ≤ κu; and if gu < κu, then πu(g) > κu, u = 1, . . . ,m.

(C2) πu(g) is a twice continuously differentiable function of g with a uniformly bounded

Hessian matrix.

Let π′u(g) = ∂πu(g)/∂g, π′ur(g) be the partial derivative of πu(g) with respect to its rth

argument, and π
′′
u be the (m− 1)× (m− 1) Hessian matrix.

Remark 1. Conditions (C1) and (C2) are also used in Smith (1984) to establish the

properties of the biased coin design. Condition (C1) implies πu(κ) ≤ κu. If the inequality

is strict for any u, summing both sides over u = 1, . . . ,m, we obtain 1 < 1, which is a

contradiction. Therefore, we have πu(κ) = κu for u = 1, . . . ,m.

Remark 2. For an arbitrary δ,

πm(κ1 + δ, κ2 − δ, κ3, . . . , κm−1) = κm + δ{π′m1(κ)− π′m2(κ)}+O(δ2).

Note that πm(κ1 + δ, κ2 − δ, κ3, . . . , κm−1) is at most κm regardless of the sign of δ. As

δ → 0, O(δ2) goes to 0 faster than the leading terms. This gives δ{π′m1(κ)− π′m2(κ)} ≤ 0

14



and −δ{π′m1(κ) − π′m2(κ)} ≤ 0. Therefore, π′m1(κ) = π′m2(κ). Similarly, for each u =

1, . . . ,m − 1, π′mu(κ) = ρ, a constant that does not depend on u. Following the same

argument, for any u < m, u 6= 1,

πu(κ1 + δ, κ2, . . . , κm−1) = κu + δπ′u1(κ) +O(δ2) ≤ κu

for all δ, which implies π′u1(κ) = 0 and in turn π′ur(κ) = 0 for r < m, r 6= u.

Remark 3. Because
∑m

u=1 πu(g) = 1 for all g,
∑m

u=1 π
′
ur(g) = 0 for any r = 1, . . . ,m− 1,

we have

m∑
u=1

π′ur(g) = π′rr(g) +
m∑

u=1,u6=r

π′ur(g) = π′rr(g) + π′mr(g) = 0,

which implies

π′rr(κ) = −π′mr(g) = −ρ ≤ 0,

for r = 1, . . . ,m− 1. The last inequality holds due to the fact that πr(g) is non-increasing

at gr = κr.

Remark 4. Combining the results in Remarks 1 to 3, we have that πu(κ) = κu for all

u = 1, . . . ,m; π′ur(κ) = 0 for u, r = 1, . . . ,m−1 and u 6= r; and π′mr(κ) = −π′rr(κ) = ρ ≥ 0

for r = 1, . . . ,m− 1.

Recall the definition of the imbalance measure,

gnu = Unu(X(n+1)) =

∑n
i=1

∏p
k=1Khn(Xik −X(n+1)k)Iiu∑n

i=1

∏p
k=1Khn(Xik −X(n+1)k)

. (A.1)

Let Un = (Un1, . . . , Un(m−1))
T, and then the allocation probability is πu(gn) = πu{Un(X(n+1))},

where πu satisfies Conditions (C1) and (C2).
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A.2 Asymptotic Properties

We describe additional conditions for the theoretical development as follows.

(C3) In the kernel function Khn(t) = K(t/hn)/hn, K is a second order symmetric kernel

function that satisfies
∫
K(t)dt = 1,

∫
K(t)2dt < ∞, and

∫
t2K(t)2dt < ∞. hn

satisfies nh2n →∞, and nh4n → 0.

(C4) The density function fk(Xk) is bounded away from zero and infinity almost surely on

the support for all k.

(C5) X2
k is a uniformly integrable random variable.

(C6) Let n0 > ρ ≥ 0. Assume the first n0 patients are randomized to arms 1, . . . ,m with

probabilities κ1, . . . , κm, respectively, and the adaptive allocation process starts from

the (n0 + 1)th patient.

Let I0u = 0. Under the situation where the desired allocation ratio in the long run is

κu, u = 1, . . . ,m, we show that the covariate equilibrium of the similarity weighted biased

coin design, defined by Dnu ≡
∑n

i=1(Iiu − κu)Xi, has mean zero and is asymptotically

normally distributed. We first state the asymptotic property for similarity weighted biased

coin design with one covariate.

Lemma 1. Assume that Conditions (C1) – (C6) hold. Let Q = E(X2
i ), Dnu =

∑n
i=1(Iiu−

κu)Xi,

Ω =

 (1 + 2ρ)−1(1− κ1)κ1 . . . −(1 + 2ρ)−1κ1κm−1
...

. . .
...

−(1 + 2ρ)−1κ1κm−1 . . . (1 + 2ρ)−1(1− κm−1)κm−1

Q

and Dn = (Dn1, . . . , Dn(m−1))
T. Then in the similarity weighted biased coin design with the

allocation probability πu{Un(Xn+1)}, n−1/2Ω−1/2Dn converges to a standard multivariate

normal distribution.
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The proof of Lemma 1 is given in the supplementary material.
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Tables and Figures

Table 1: Comparison of the sample size imbalance, |n1 − n2|, among the similarity weighted biased coin

design, biased coin design, similarity weighted Pocock–Simon design and Pocock–Simon design for different

dimensions (p) of covariates.

Dimension of covariates p

Design 1 2 3 4 5 6 7 8

Weighted biased coin 1.277 1.289 1.265 1.219 1.325 1.343 1.286 1.411

Biased coin 1.279 1.276 1.334 1.687 2.047 2.247 2.456 2.605

Weighted Pocock–Simon 0.122 0.159 0.159 0.183 0.199 0.211 0.233 0.246

Pocock–Simon 0.387 0.241 0.221 0.262 0.288 0.294 0.354 0.351

Table 2: Comparison of the covariate imbalance using the F statistics, among the similarity weighted

biased coin design, biased coin design, similarity weighted Pocock–Simon design and Pocock–Simon design

for different dimensions (p) of covariates.

Dimension of covariates p

Design 1 2 3 4 5 6 7 8

Weighted biased coin 0.278 0.297 0.299 0.311 0.326 0.345 0.373 0.389

Biased coin 0.280 0.299 0.312 0.402 0.525 0.663 0.809 0.872

Weighted Pocock–Simon 0.028 0.053 0.085 0.128 0.166 0.207 0.256 0.308

Pocock–Simon 0.149 0.145 0.162 0.193 0.225 0.271 0.322 0.358



Table 3: Comparison of the estimated treatment effect under the similarity weighted biased coin design,

biased coin design, similarity weighted Pocock–Simon design and Pocock–Simon design, where µ̂ is the

estimate of µ = −5, and SD and MSE are the corresponding empirical standard deviation and mean

squared error, respectively.

p µ̂ SD MSE µ̂ SD MSE

Weighted biased coin Weighted Pocock–Simon

1 -4.983 0.314 0.332 -4.992 0.134 0.141

2 -5.030 0.830 0.860 -4.999 0.686 0.687

3 -5.022 1.723 1.745 -4.949 1.698 1.749

4 -4.864 3.050 3.186 -5.058 3.164 3.223

5 -4.924 4.776 4.852 -4.726 5.169 5.442

6 -5.130 6.778 6.909 -4.573 7.328 7.755

7 -4.997 8.224 8.227 -4.959 9.401 9.442

8 -5.153 9.482 9.636 -5.016 10.582 10.598

Biased coin Pocock–Simon

1 -4.996 0.332 0.335 -4.996 0.268 0.272

2 -5.028 0.822 0.850 -4.994 0.865 0.871

3 -4.989 1.783 1.794 -5.039 1.899 1.938

4 -5.025 3.201 3.225 -5.063 3.660 3.723

5 -5.015 5.328 5.343 -4.956 5.821 5.865

6 -5.167 7.930 8.098 -5.239 7.921 8.161

7 -5.353 9.787 10.140 -5.372 10.015 10.387

8 -5.253 11.797 12.050 -5.169 12.011 12.181
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Figure 1: Survival functions (or one minus the empirical CDF) of sample size imbalance for the similarity

weighted biased coin design (dotted line), biased coin design (dot-dashed line), similarity weighted Pocock–

Simon design (solid line), and Pocock–Simon design (dashed line).

23



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p =  1

Covariate imbalance statistics

1 
−

 E
m

pi
rc

al
 C

D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p =  3

Covariate imbalance statistics

1 
−

 E
m

pi
rc

al
 C

D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p =  5

Covariate imbalance statistics

1 
−

 E
m

pi
rc

al
 C

D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p =  7

Covariate imbalance statistics

1 
−

 E
m

pi
rc

al
 C

D
F

Figure 2: Survival functions (or one minus the empirical CDF) of sample size imbalance for the similarity

weighted biased coin design (dotted line), biased coin design (dot-dashed line), similarity weighted Pocock–

Simon design (solid line), and Pocock–Simon design (dashed line).
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Supplementary Material

S.1 Necessary results for Lemma 1

For a new data point Xn+1, (A.1) reduces to

Unu(Xn+1) =

∑n
i=1Khn(Xi −Xn+1)Iiu∑n
i=1Khn(Xi −Xn+1)

,

and Un(Xn+1) = {Un1(Xn+1), . . . , Un(m−1)(Xn+1)}T. We set πu{Un(Xn+1)} to be the prob-

ability of assigning the new observation to arm u. To derive the asymptotic property of

Dnu =
∑n

i=1(Iiu − κu)Xi, we first state useful lemmas that support Lemma 1.

Lemma 2. Suppose that n subjects have been enrolled in a clinical trial. For a new data

point Xn+1 and arms u and v, we have

E

{
n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)

}2

= O(nh−1n )

and ∣∣ n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)Xn+1

∣∣ = Op(n
1/2h−1/2n ).

Proof: Let Fj be a sigma field generated by all the event history up to stage j. Suppose

that a new participant with covariate Xn+1 = x0 is to be allocated. We define a function

η(x, y) = I(x 6= y)(x− y) + I(x = y)x, then

E

[ j+1∑
i=1

Khn{η(Xi, x0)}(Iiu − κu)

]2 ∣∣∣∣Fj, Xj+1 = x0


= E

([
j∑
i=1

Khn{η(Xi, x0)}(Iiu − κu)

]2 ∣∣∣∣Fj, Xj+1 = x0

)

+2

[ j∑
i=1

Khn{η(Xi, x0)}(Iiu − κu)
]

×E
[
Khn{η(x0, x0)}(I(j+1)u − κu)

∣∣∣∣Fj, Xj+1 = x0

]
+E

[{
Khn(x0)(I(j+1)u − κu)

}2 ∣∣∣∣Fj, Xj+1 = x0

]
1



≤ E

([
j∑
i=1

Khn{η(Xi, x0)}(Iiu − κu)

]2 ∣∣∣∣Fj, Xj+1 = x0

)

+E

[{
Khn(x0)(I(j+1)u − κu)

}2 ∣∣∣∣Fj, Xj+1 = x0

]
a.s. (S.1)

The last equality holds almost surely, because for any fixed value x0, Xi 6= x0(i =

1, . . . , j) a.s., which implies η(Xi, x0) = Xi − x0 a.s. Further, with probability one,[ j∑
i=1

Khn{η(Xi, x0)}(Iiu − κu)
]
E

[
Khn{η(x0, x0)}(I(j+1)u − κu)

∣∣∣∣Fj, Xj+1 = x0

]

=

{
j∑
i=1

Khn(Xi − x0)(Iiu − κu)

}
E

{
Khn(x0)(I(j+1)u − κu)

∣∣∣∣Fj, Xj+1 = x0

}

=

{
j∑
i=1

Khn(Xi − x0)

}
{Uj(x0)− κu}[πu{Uj(x0)} − κu]Khn(x0)

≤ 0

by the fact that Unu−κu and πu{Un(X0)}−κu have opposite signs according to Condition

(C1). By taking the expectation on both sides of (S.1), we have

E

[
j+1∑
i=1

Khn{η(Xi, Xj+1)}(Iiu − κu)

]2

≤ E

[
j∑
i=1

Khn{η(Xi, Xj+1)}(Iiu − κu)

]2
+ E

{
Khn(Xj+1)(I(j+1)u − κu)

}2
.

Summing over j from 1 to n,

n∑
j=1

E

[
j+1∑
i=1

Khn{η(Xi, Xj+1)}(Iiu − κu)Xj+1

]2

≤
n∑
j=1

E

[
j∑
i=1

Khn{η(Xi, Xj+1)}(Iiu − κu)Xj+1

]2

+
n∑
j=1

E
{
Khn(Xj+1)(I(j+1)u − κu)Xj+1

}2
,

and it is readily seen that the (j − 1)th summand on the left-hand side agrees with the

jth summand in the first term on the right-hand side. Further, Xn+1 6= Xi a.s., so

2



Khn{η(Xi, Xn+1)} = Khn(Xi −Xn+1), (i = 1, . . . , n), a.s. As a result, we obtain

E

[
n+1∑
i=1

Khn{η(Xi, Xn+1)}(Iiu − κu)

]2
≤

n+1∑
j

E
[
{Khn(Xj)(Iju − κu)}2

]
≤

n+1∑
j

E
[
{Khn(Xj)}2

]
=

n+1∑
j

h−1n

∫
{K(t)}2 dt sup |f(x)|

= nOp(h
−1
n ).

Also by the Minkowski triangle inequality on the L2 space, we have

E

[ n∑
i=1

Khn{η(Xi, Xn+1)}(Iiu − κu)

]21/2

≤ E

[n+1∑
i=1

Khn{η(Xi, Xn+1)}(Iiu − κu)

]21/2

+ E
[
{Khn(Xn+1)(Iiu − κu)}2

]1/2
= n1/2Op(h

−1/2
n ),

which implies

E

{ n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)

}2
 = nOp(h

−1
n ),

and as a result, by Condition (A6), we have{
n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)

}
Xn+1 = Op(n

1/2h−1/2n ).

This proves the result.

Corollary 1.
∑n

i=1(Iiu − κu)Xi = Op(nh
2
n + n1/2h

−1/2
n ).

Proof: First we can write∣∣∣∣ n∑
i=1

(Iiu − κu)Xi

∣∣∣∣
3



=

∣∣∣∣ n∑
j=1

n∑
i=1

{nf(Xj)}−1Khn(Xi −Xj)(Iiu − κu)Xj

∣∣∣∣
+

∣∣∣∣ n∑
i=1

(Iiu − κu)Xi

∣∣∣∣− ∣∣∣∣ n∑
j=1

n∑
i=1

{nf(Xj)}−1Khn(Xi −Xj)(Iiu − κu)Xj

∣∣∣∣.
Note that

E

[∣∣∣∣ n∑
j=1

n∑
i=1

{nf(Xj)}−1Khn(Xi −Xj)(Iiu − κu)Xj

∣∣∣∣
]

≤ n−1
n∑
j=1

E{∣∣∣∣ n∑
i=1

f(Xj)
−1Khn(Xi −Xj)(Iiu − κu)

∣∣∣∣
}2
1/2

{E(X2
j )}1/2

= Op(n
1/2h−1/2n )

by Lemma 2.

As a result, we have∣∣∣∣ n∑
j=1

n∑
i=1

{nf(Xj)}−1Khn(Xi −Xj)(Iiu − κu)Xj

∣∣∣∣ = Op(n
1/2h−1/2n ). (S.2)

Also note that∣∣∣∣∣
∣∣∣∣ n∑
i=1

(Iiu − κu)Xi

∣∣∣∣− ∣∣∣∣ n∑
j=1

n∑
i=1

{nf(Xj)}−1Khn(Xi −Xj)(Iiu − κu)Xj

∣∣∣∣
∣∣∣∣∣

≤
n∑
i=1

∣∣∣∣∣(Iiu − κu)
[
Xi −

n∑
j=1

{nf(Xj)}−1Khn(Xi −Xj)Xj

] ∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣Xi −
n∑
j=1

{nf(Xj)}−1Khn(Xi −Xj)Xj

∣∣∣∣∣.
The last equation is of order Op(nh

2
n + n1/2h

−1/2
n ), because

n∑
j=1

{nf(Xj)}−1Khn(Xi −Xj)Xj

= f(Xi)
n∑
j=1

f(Xi)
−1 {nf(Xj)}−1Khn(Xi −Xj)Xj

= f(Xi)E
[
{f(Xj)}−1Xj | Xj = Xi

]
+Op{h2n + (nhn)−1/2}

= Xi +Op{h2n + (nhn)−1/2}.

4



The second to the last equality holds because
∑n

j=1 f(Xi)
−1 {nf(Xj)}−1Khn(Xi −Xj)Xj

is a fixed design kernel estimator of Xif(Xi)
−1 = E

[
{f(Xj)}−1Xj | Xj = Xi

]
, while its

mean squared error is of order O{h4n + (nhn)−1} (Härdle 2004).

In conjunction with (S.2), we have∣∣∣∣ n∑
i=1

(Iiu − κu)Xi

∣∣∣∣ = Op(nh
2
n + n1/2h−1/2).

This proves the result.

Remark 5. In the above derivations, Xi in
∑n

i=1(Iiu−κu)Xi does not affect the convergence

rates. Therefore, the convergence rates are the same when considering
∑n

i=1(Iiu − κu)Zi

for any other integrable random variable Zi.

Lemma 3. Let f(·) be the density of X, then we have∣∣∣∣ ∫ ∑n
i=1Khn(Xi −Xn+1)(Iiu − κu)∑n

i=1Khn(Xi −Xn+1)
Xn+1f(Xn+1)dXn+1

−
∫ ∑n

i=1Khn(Xi −Xn+1)(Iiu − κu)Xn+1

nf(Xn+1)
f(Xn+1)dXn+1

∣∣∣∣ = Op{(nhn)−1}.

Proof: We have that∣∣∣∣ ∫ ∑n
i=1Khn(Xi −Xn+1)(Iiu − κu)∑n

i=1Khn(Xi −Xn+1)
f(Xn+1)dXn+1

−
∫ ∑n

i=1Khn(Xi −Xn+1)(Iiu − κu)
nf(Xn+1)

f(Xn+1)dXn+1

∣∣∣∣
≤

{∫ ∣∣∣∣ n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)
∣∣∣∣2f(Xn+1)dXn+1

}1/2

×

{∫ ∣∣∣∣f(Xn+1)− n−1
∑n

i=1Khn(Xi −Xn+1)∑n
i=1Khn(Xi −Xn+1)f(Xn+1)

∣∣∣∣2f(Xn+1)dXn+1

}1/2

= Op(n
1/2h−1/2n )

{∫ ∣∣∣∣f(Xn+1)− n−1
∑n

i=1Khn(Xi −Xn+1)∑n
i=1Khn(Xi −Xn+1)f(Xn+1)

∣∣∣∣2f(Xn+1)dXn+1

}1/2

= Op(n
1/2h−1/2n )Op(h

2
n + n−1/2h−1/2n )Op(n

−1)

= Op(n
−1/2hn + n−1h−1n )

5



= Op(n
−1h−1n ).

The first equality is a result from Lemma 2. The second equality holds because for each

Xi, i = 1, . . . , n, ∣∣∣∣ n∑
i=1

Khn(Xi −Xn+1)

∣∣∣∣ = Op(n)

and ∣∣∣∣f(Xn+1)− n−1
n∑
i=1

Khn(Xi −Xn+1)

∣∣∣∣ = Op{h2n + (nhn)−1/2},

which follows the uniform convergence of the kernel density estimator (Silverman 1978).

With Condition (A6), we obtain the desired result.

Lemma 4. For a constant ρ0 and n > n0 > ρ0, we define An =
∏n

l=n0
(1 − ρ0/l)−1, then

we have lim
n→∞

n−ρ0An = A0, where A0 = n−ρ00 .

Proof: The limiting result shown below follows the convergence of the product integral.

We define tl = l/n, l = n0 − 1, . . . , n, n(t) = l, for tl ≤ t < tl+1. For t ≥ tn0 , let

P (t) =
∑

tn0≤tl≤t
1/n(tl) =

∫
s∈[tn0 ,t]

n(s)−1dn(s). For t < tn0 , define P (t) = 0. Note that

n(s) changes its values only when s = tl, so dn(s) is nonzero only at s = tl, l = n0, . . . , n.

Therefore, we can write

lim
n→∞

A−1n = lim
supn0≤l≤n |tl−tl−1|→0

A−1n(tn)

= lim
supn0≤l≤n |tl−tl−1|→0

tn∏
tl=tn0

{1− ρ0P ′(tl)dtl}

= lim
supn0≤l≤n |tl−tl−1|→0

tn∏
tl=tn0

{1− ρ0
∫ tl

tl−1

P ′(t)dt}.

As n→∞, or supn0≤l≤n |tl− tl−1| → 0, the above form is a product limit in Definition 1 in

Gill & Johansen (1990). Similar to Example 2.5.6 in Slav́ık & Karlova (2007), this product

limit can be written as

exp

(
−ρ0

∫
t∈[tn0 ,tn]

dP (t)

)

6



= exp

(
−ρ0

∫
s∈[tn0 ,tn]

n(t)−1dn(t)

)
= exp (−ρ0[log{n(tn)} − log{n(tn0)}])

= exp[−ρ0{log(n)− log(n0)}]

= nρ00 n
−ρ0 .

Therefore, limn→∞ n
−ρ0An = A0. This proves the result.

S.2 Proof of Lemma 1

To assess the properties of Dnu, we first note that for n > n0 and u < m,

E(I(n+1)u|Fn, Xn+1)− κu

= πu{Un(Xn+1)} − κu

= πu(κ) + π
′

u(κ){Un(Xn+1)− κ}+ 1/2{Un(Xn+1)− κ}Tπ′′u(κ){Un(Xn+1)− κ}({1 + op(1)} − κu

= π′uu(κ){Unu(Xn+1)− κu}+
m−1∑

r 6=u,r=1

π′ur(κ){Unr(Xn+1)− κr}

+1/2{Un(Xn+1)− κ}Tπ′′u(κ){Un(Xn+1)− κ}{1 + op(1)}

= −ρ{Unu(Xn+1)− κu}+ 1/2{Un(Xn+1)− κ}Tπ′′u(κ){Un(Xn+1)− κ}{1 + op(1)}.

The third equality holds by Remark 1 that πu(κ) = κu. The last equality holds because

by Remark 2, π′ur(κ) = 0 when r = 1, . . . ,m− 1, r 6= u, and by Remark 3, π′uu = −ρ.

Multiplying the above equation by Xn+1 and taking expectation with respect to Xn+1,

we have

E{(I(n+1)u − κu)Xn+1|Fn} = −ρE[{Unu(Xn+1)− κu}Xn+1|Fn] + γ1nu,

where

γ1nu ≡ E

[
1/2{Un(Xn+1)− κ}Tπ′′u(κ){Un(Xn+1)− κ}Xn+1

∣∣∣∣Fn] {1 + op(1)}.
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Also, for u = 1, . . . ,m− 1, we have

E[{Unu(Xn+1)− κu}Xn+1|Fn]

=

∫
{Unu(Xn+1)− κu}Xn+1f(Xn+1)dXn+1

= n−1
n∑
i=1

∫
Khn(Xi −Xn+1)(Iiu − κu)Xn+1dXn+1 + γ2nu

= n−1
n∑
i=1

(Iiu − κu)Xi + γ2nu,

where

γ2nu ≡
∫ ∑n

i=1Khn(Xi −Xn+1)(Iiu − κu)∑n
i=1Khn(Xi −Xn+1)

Xn+1f(Xn+1)dXn+1

−
∫ ∑n

i=1Khn(Xi −Xn+1)(Iiu − κu)Xn+1

nf(Xn+1)
f(Xn+1)dXn+1.

This gives

E{(I(n+1)u − κu)Xn+1|Fn} = −ρn−1
n∑
i=1

(Iiu − κu)Xi + γ1nu − ργ2nu,

for u = 1, . . . ,m− 1.

Define αnu = 1− ρ/n for n ≥ n0, and αnu = 1 otherwise, and let βnu = γ1nu− ργ2nu for

n ≥ n0, and βnu = 0 otherwise, for u = 1, . . . ,m− 1. We have

E(D(n+1)u|Fn) = αnuDnu + βnu.

Combining the results of D(n+1)u, u = 1, . . . ,m− 1, we have

E(Dn+1|Fn) = αnDn + βn,

where αn = diag{αn1, . . . , αn(m−1)} and βn = (βn1, . . . , βn(m−1))
T. Let Anu =

∏n−1
l=1 α

−1
lu =∏n−1

l=n0
α−1lu , Bnu =

∑n−1
l=1 A(l+1)uβlu =

∑n−1
l=n0

A(l+1)uβlu, and define Mnu = AnuDnu−Bnu. It

is easy to verify that Miu = Diu for i ≤ n0. For n > n0, we have

E(M(n+1)u|Fn) = A(n+1)u(αnuDnu + βnu)−
n∑

l=n0

A(l+1)uβlu

8



= AnuDnu −
n−1∑
l=n0

A(l+1)uβlu

= Mnu.

Further, Xi and Ii, i = 1, . . . , n, and their continuous functions, Dnu and Bnu, have finite

second moments by Condition (A6). Therefore, E(|Mnu|) < ∞, which implies Mnu is

a martingale. We further define ∆Mnu = Mnu −M(n−1)u to be a martingale difference.

Combining the results for arm u, the vector Mn = (Mn1, . . . ,Mn(m−1))
T is a martingale

vector, and ∆Mn = (∆Mn1, . . . ,∆Mn(m−1))
T is a vector of martingale differences. We

further define An = diag(An1, . . . , An(m−1)), and Bn = (Bn1, . . . , Bn(m−1))
T.

Now we assess the asymptotic properties of Dn through Mn by utilizing martingale

techniques. We first derive the asymptotic properties of zTMn, where z is an arbitrary m−1

dimensional vector, and then we show that the term Bn is ignorable because it converges

faster to 0 than Mn. Note that zTMn is a martingale while zT∆Mn is a martingale

difference, because the linear function does not alter the expectation and boundedness

properties.

Let sn = E(MnM
T
n ), according to the martingale invariance principle introduced on

page 99 in Hall & Heyde (1980), if we have

(zTsnz)−1
n∑
i=1

zT∆Mi(∆Mi)
Tz

p−→ 1 (S.3)

(zTsnz)−1
n∑
i=1

E[zT∆Mi(∆Mi)
Tz I{|zT∆Mi| > ε(zTsnz)1/2}]→ 0,∀ε > 0 (S.4)

as n→∞, then (zTsnz)−1/2zTMn converges weakly to a standard normal random variable,

and in turn s
−1/2
n Mn converges to a multivariate standard normal vector. Thus, (S.3)

readily holds by Chebyshev’s inequality for the uncorrelated random variables and

zTsnz

= E(zTMnM
T
nz)

9



= E

zT


∑n

i=1(∆Mi1)
2 . . .

∑n
i=1(∆Mi1∆Mi(m−1))

...
. . .

...∑n
i=1(∆Mi1∆Mi(m−1)) . . .

∑n
i=1(∆Mi(m−1))

2

 z


=

n∑
i=1

E{zT∆Mi(∆Mi)
Tz}.

The second equality holds because for i < j and arms u and v, we have E(∆Miu∆Mjv) =

E{∆MiuE(∆Mjv|Fj−1)} = 0.

If (S.4) holds, then the martingale invariance principle allows us to show the asymptotic

properties of zTMn through accessing the convergence of sn. Therefore, in the following,

we proceed to find the exact form of sn and verify (S.4).

Let snuu =
∑n

i=1E{(∆Miu)
2} and snuv =

∑n
i=1E(∆M iu∆M ju), and we examine the

convergence of each term snuv in the matrix ∆Mi(∆Mi)
T. Note that for n > n0,

A−1nu∆Mnu = (Inu − κu)Xn + ρD(n−1)u/(n− 1)− β(n−1)u. (S.5)

By Corollary 1 and Condition (A4) that nh2n →∞, we have

ρD(n−1)u/(n− 1) = Op(h
2
n + n−1/2h−1n ) = op(1).

Next, γ2nu = Op{(nhn)−1} = op(1) by Lemma 3. In addition, from

γ1nu = E

[
1/2{Un(Xn+1)− κ}Tπ′′u(κ){Un(Xn+1)− κ}Xn+1

∣∣∣∣Fn] {1 + op(1)},

by the boundedness of π
′′
u, γ1nu has the same order as

E

{ n∑
i=1

Khn(Xi −Xn+1)

}−2{ n∑
i=1

Khn(Xi −Xn+1)(Iiu − κu)

}2

Xn+1

∣∣∣∣Fn


= Op(n
−2)Op(nh

−1
n )

= Op{(nhn)−1}

by Lemma 2, and the fact that
∑n

i=1Khn(Xi −Xn+1) = Op(n).
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These together with Lemma 3 imply |βnu| = op(1). Therefore,

A−1nu∆Mnu = (Inu − κu)Xn + op(1). (S.6)

Further note that

n−1−2ρ
n∑
i=1

(∆Miu)
2

= n−1−2ρ
n∑
i=1

A2
iu(A

−1
iu ∆Mi)

2

= n−1−2ρ
n∑
i=1

A2
iu{(Iiu − κu)Xi + op(1)}2

=

[
n−1−2ρ

n∑
i=1

A2
iu

{
(1− κu)κuX2

i

}
+n−1

n∑
i=1

(Aiu/n
ρ)2{(Iiu − κu)(1− 2κu)X

2
i }
]
{1 + op(1)}

=

{
n−1−2ρ(1− κu)κu

n∑
i=1

A2
iuX

2
i + op(1)

}
{1 + op(1)}. (S.7)

The second equality holds by directly plugging in (S.6). Strictly speaking, (S.6) can be

used only when i is large. However, since the value on the first finitely many terms do

not affect the final asymptotic results, we do not make distinction here. This practice also

applies similarly in the remaining text. The last equality follows Remark 5 and the fact

that Aiu/n
ρ is bounded due to Lemma 4. For a given ξ > 0

lim
n→∞

Pr

[
n−1−2ρ

∣∣∣∣∣
n∑
i=1

A2
iuX

2
i − E(X2

i )
n∑
i=1

A2
iu

∣∣∣∣∣ > ξ

]
≤ lim

n→∞
n−2−4ρξ−2

n∑
i=1

A4
iuvar(X2

i ).(S.8)

To inspect the right-hand side of (S.8), using Lemma 4 and following the same argument

to that in the proof of Theorem 1 in Smith (1984), we have

n−2−4ρ
∑n

i=1A
4
iu

n−2−4ρ
∑n

i=1A
4
0ui

4ρ
→ 1 (S.9)

in probability, as n→∞. Further,

n−2
n∑
i=1

(i/n)4ρ → n−1
∫ 1

0

x4ρdx = n−1(1 + 4ρ)−1.
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Thus, the right-hand side of (S.8) goes to 0. This shows that

n−1−2ρ

∣∣∣∣∣
n∑
i=1

A2
iuX

2
i − E(X2

i )
n∑
i=1

A2
iu

∣∣∣∣∣
converges to 0 in probability.

Now, we assess the limit of n−1−2ρE(X2
i )

n∑
i=1

A2
iu. Similar to the previous argument, as

n→∞,

n−1−2ρ
∑n

i=1A
2
iu

n−1−2ρA2
0u

∑n
i=1 i

2ρ

p−→ 1,

and

n−1
n∑
i=1

(i/n)2ρ →
∫ 1

0

x2ρdx = (1 + 2ρ)−1.

Therefore,

n−1−2ρE(X2
i )

n∑
i=1

A2
iu → (1 + 2ρ)−1A2

0uE(X2
i ),

and hence

n−1−2ρ
n∑
i=1

A2
iuX

2
i

p−→ (1 + 2ρ)−1A2
0uQ.

Plugging the result into (S.7), we have

n−1−2ρ
n∑
i=1

(∆Miu)
2 → (1 + 2ρ)−1A2

0(1− κu)κuE(X2
i ) = (1 + 2ρ)−1(1− κu)κuA2

0uQ(S.10)

in probability as n→∞.

Similarly, for
∑n

i=1 ∆Miu∆Miv, u 6= v, we have

n−1−2ρ
n∑
i=1

∆Miu∆Miv

= n−1−2ρ

(
n∑
i=1

AiuAivA
−1
iu ∆MiuA

−1
iv ∆Miv

)

= n−1−2ρ

{
n∑
i=1

AiuAiv(−Iiuκv − Iivκu + κuκv)X
2
i

}
{1 + op(1)}
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=

[
− n−1−2ρ

(
n∑
i=1

AiuAivκuκvX
2
i

)
− n−1−2ρ

{
n∑
i=1

AiuAiv(Iiu − κu)κvX2
i

}

−n−1−2ρ
{

n∑
i=1

AiuAiv(Iiv − κv)κuX2
i

}]
{1 + op(1)}

=

[
− n−1

{
A0uA0v

n∑
i=1

(i/n)2ρκuκvE(X2
i )

}
− n−1−2ρ

{
n∑
i=1

AiuAiv(Iiu − κu)κvX2
i

}

−n−1−2ρ
{

n∑
i=1

AiuAiv(Iiv − κv)κuX2
i

}]
{1 + op(1)}

= −(1 + 2ρ)−1A0uA0vκuκvE(X2
i ) + op(1).

The second equality holds because IiuIiv = 0 for u 6= v. The third equality holds because

lim
n→∞

Pr

{
n−1−2ρ

∣∣∣∣∣
n∑
i=1

AiuAivX
2
i − E(X2

i )
n∑
i=1

AiuAiv

∣∣∣∣∣ > ξ

}

≤ lim
n→∞

n−2−4ρ
n∑
i=1

A2
iuA

2
ivvar(X2

i )ξ−2

≤ lim
n→∞

(n−2−4ρ
n∑
i=1

A4
iu + n−1−2ρ

n∑
i=1

A4
iv)var(X2

i )ξ−2/2,

which goes to 0 by (S.9). The fourth equality holds because

n−1−2ρ
∑n

i=1AiuAiv
n−1−2ρA0uA0v

∑n
i=1 i

2ρ
→ 1

in probability, and

n−1
n∑
i=1

(i/n)2ρ →
∫ 1

0

x2ρdx = (1 + 2ρ)−1.

Finally, the last equality holds by Remark 5 and the fact that Aiu/n
ρ is bounded due to

Lemma 4.

Now we proceed to show the convergence of snuv. But note that if n−1−2ρ
∑n

i=1(∆Miu)
2

and n−1−2ρ
∑n

i=1 ∆Miu∆Miv are dominated by integrable functions, then the asymptotic

properties of snuu and snuv, u 6= v, can be derived easily by using the dominated convergence

theorem. Further, since∣∣∣∣n−1−2ρ n∑
i=1

∆Miu∆Miv

∣∣∣∣ ≤ n−1−2ρ
n∑
i=1

∣∣∣∣∆Miu∆Miv

∣∣∣∣
13



≤ 1/2n−1−2ρ

{
n∑
i=1

(∆Miu)
2 +

n∑
i=1

(∆Miv)
2

}
,

we need to show the boundedness of n−1−2ρ
∑n

i=1(∆Miu)
2 for obtaining the convergence

result. Thus, we evaluate the upper bound of n−1−2ρ
∑n

i=1(∆Miu)
2 as follows. Because

there exists a constant C1 <∞,

n−1−2ρ
n∑
i=1

(∆Miu)
2

= n−1−2ρ

{∑
i≤n0

(∆Miu)
2 +

∑
i>n0

A2
iu(A

−1
iu ∆Miu)

2

}

≤

[
n0 max

i≤n0

X2
i + C1n

−1
n∑

i>n0

(i/n)2ρ
{

(Iiu − κu)Xi + ρDi−1u/(i− 1)− β(i−1)u
}2]

≤

[
n0 max

i≤n0

X2
i + C1n

−1
n∑

i>n0

{
(Iiu − κu)Xi + ρDi−1u/(i− 1)− β(i−1)u

}2]
, (S.11)

we first show the boundedness of ρDi−1u/(i− 1) and βn−1u = γ1(n−1)u − ργ2(n−1)u.

Clearly |ρDi−1u/(i − 1)| ≤ |ρ|maxi<n |Xi|. Further, since |Unu(Xn+1)| ≤ 1 and π′′u is

bounded by Condition (A2), there exists a constant C2 <∞ so that

γ1(n−1)u = E

[
1/2{Un−1(Xn)− κ}Tπ′′u(κ∗){Un−1(Xn)− κ}Xn

∣∣∣∣Fn] ≤ C2mmax
i≤n
|Xi|,

where κ∗ = (κ∗1, . . . , κ
∗
m) with κ∗u defined as a point on the line connecting κu and Unu(Xn+1).

In addition,

γ2(n−1)u =

∫ ∑n
i=1Khn(Xi −Xn)(Iiu − κu)∑n

i=1Khn(Xi −Xn)
Xnf(Xn)dXn

−
∫ ∑n

i=1Khn(Xi −Xn)(Iiu − κu)Xn

nf(Xn)
f(Xn)dXn

≤ E(|Xn|) + max
i≤n
|Xi|.

Therefore, (S.11) implies that there exist constants C3, C4 <∞ such that

n−1−2ρ
n∑
i=1

(∆Miu)
2 ≤ C3 max

i≤n
X2
i + C4,
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almost surely. Since C3 maxi≤nX
2
i + C4 is an integrable function, by the dominated con-

vergence theorem, we have

n−1−2ρsnuu = n−1−2ρ
n∑
i=1

E
{

(∆Miu)
2
}
→ (1 + 2ρ)−1(1− κu)κuA2

0uQ,

n−1−2ρsnuv = n−1−2ρ
n∑
i=1

E (∆Miu∆Miu)→ −(1 + 2ρ)−1κuκvA0uA0vQ. (S.12)

These give the limiting form of sn in (S.3).

To show (S.4), we first note that (S.6), (S.12) and Lemma 4 yield

|(zTsnz)−1/2zT∆Mn|2

= |(zTsnz)−1||zT∆Mn∆MT
nz|

=

∣∣∣∣
(
m−1∑
u=1

m−1∑
v=1

zuzvsnuv

)−1 ∣∣∣∣m−1∑
u=1

m−1∑
v=1

∣∣∣∣zuzvAnu(Inu − κu)Anv(Inv − κv)X2
n{1 + op(1)}

∣∣∣∣
= Op(n

−1)
m−1∑
u=1

m−1∑
v=1

∣∣∣∣zuzvAnu/nρ(Inu − κu)Anv/nρ(Inv − κv)X2
n{1 + op(1)}

∣∣∣∣
≤ Op

{
n−1 max

u∈1,...,m−1
(Inu − κu)2X2

n

}
.

By Condition (A6), this implies

(zTsnz)−1/2zT∆Mn = op(1).

Further,

E[zT∆Mi(∆Mi)
TzI{|zT∆Mi| > ε(zTsnz)1/2}]

≤ E{(zT∆Mi(∆Mi)
Tz)2}1/2E

[
I{|zT∆Mi| > ε(zTsnz)1/2}

]1/2
= E{(zT∆Mi(∆Mi)

Tz)2}1/2Pr{(zTsnz)−1/2|zT∆Mi| > ε}1/2

→ 0,

by Condition (A6) and because (zTsnz)−1/2zT∆Mn is op(1). This result along with the fact

that sn = O(n1+2ρ) proves (S.4). So far, we have proven that (zTsnz)−1/2zTMn converges
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to a standard normal random variable. Since z is an arbitrary vector, we conclude that

s
−1/2
n Mn converges to a multivariate standard normal vector. Next, in order to use the

martingale results to show the asymptotic property of Dn, we first show that for each u,

n−1/2|A−1nuBnu|
p−→ 0.

Note that there exist constants C5, C6, C7 <∞, such that

|Bnu/Anu| ≤
n∑
i=1

AiuA
−1
nu |βi−1|

≤
n∑
i=1

AiuA
−1
nuC5(ihn)−1

≤ C6n
−1

n∑
i=1

(i/n)
ρ−1

h−1n

≤ C7h
−1
n

in probability. Here, we use the definition of Bnu to obtain the first inequality, the definition

of βlu and the results on the orders of γ1nu, γ2nu lead to the second inequality, Lemma 4

yields the third inequality, and replacing average with integration we can obtain the last

inequality. Therefore, together with Condition (A4) we have

n−1/2|A−1nuBnu|
p−→ 0

by Condition (A4), and this gives

n−1/2|A−1nuMnu −Dnu| = op(1).

This convergence in probability result for a single u, u = 1, . . . ,m − 1 implies the joint

convergence in probability of the vector constructed by these elements. So, n−1/2Dn

and n−1/2A−1n Mn converge equivalently to the same limit. Also, we have shown that

(zTsnz)−1/2zTMn converges to a standard normal random variable for an arbitrary z.

Therefore,

s−1/2n Mn
d→ N(0, I).
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Further, An → diag(A01n
ρ, . . . , A0mn

ρ) implies |n−1A−1n snA
−1
n −Ω| = o(1) by (S.12), where

Ω is defined in the statement of Lemma 1. Hence,

n−1/2A−1n s1/2n s−1/2n Mn
d→ N(0,Ω).

As a result, we have

n−1/2Ω−1/2Dn
d→ N(0, I).

S.3 Necessary Lemmas for Theorem 1

Lemma 5. For a new data point Xn+1, we have E{(
∑n

i=1

∏p
k=1Khn(Xik −X(n+1)k)(Iiu −

κu)X
T
n+1z)2} = O (nh−pn ).

Corollary 2. |
∑n

i=1(Iiu − κu)XT
i z| = Op

{
nh2n + n1/2h

−p/2
n

}
.

Lemma 6. Let f(Xi) be the density function of Xi. We have∣∣∣∣ ∫ ∑n
i=1

∏p
k=1Khn(Xik −X(n+1)k)(Iiu − κu)∑n
i=1

∏p
k=1Khn(Xik −X(n+1)k)

XT
n+1zf(Xn+1)dXn+1

−
∫ ∑n

i=1

∏p
k=1Khn(Xik −X(n+1)k)(Iiu − κu)XT

n+1z

nf(Xn+1)
f(Xn+1)dXn+1

∣∣∣∣
= Op

(
n−1h−pn

)
.

S.4 Proof of Theorem 1

Following Lemma 5, Corollary 2 and Lemma 6, Theorem 1 holds by using the same argu-

ments as those leading to Lemma 1.
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