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We construct a semiparametric estimator in case-control studies where the gene and the environment are
assumed to be independent. A discrete or continuous parametric distribution of the genes is assumed in the
model. A discrete distribution of the genes can be used to model the mutation or presence of certain group
of genes. A continuous distribution allows the distribution of the gene effects to be in a finite-dimensional
parametric family and can hence be used to model the gene expression levels. We leave the distribution
of the environment totally unspecified. The estimator is derived through calculating the efficiency score
function in a hypothetical setting where a close approximation to the samples is random. The resulting
estimator is proved to be efficient in the hypothetical situation. The efficiency of the estimator is further
demonstrated to hold in the case-control setting as well.
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1. Introduction

Case-control designs are frequently implemented in clinical studies where, instead of taking a
random sample of a mixed population of both cases and non-cases, a fixed number of cases and
a fixed number of controls are randomly sampled from the respective populations of cases and
non-cases. Because the resulting samples are no longer random or independently and identically
distributed (i.i.d.), the classical large-sample asymptotic theories could fail to apply. In the litera-
ture, two main approaches are taken in order to adapt the large-sample theory to the case-control
setting. The first approach is highlighted in Breslow et al. (2000), where a modified design of
the usual case-control study is proposed. The resulting random sample is then linked to the true
case-control sample through using results from McNeney (1998), where the similarity between
random and non-random sample asymptotic properties is developed by almost establishing the
whole asymptotic theory under non-i.i.d. samples. The second approach is somewhat more direct
and is implicitly used by Rabinowitz (2000). Instead of treating the indicator (D) of case/control
as a random variable, D is assumed to be known and all the calculations are performed condi-
tionally on D. Although it does result in the conditional randomness of the case-control samples,
the resulting data is not really identically distributed. Specifically, two different distributions are
involved and the large-sample theory is still not available. Strictly speaking, the asymptotic the-
ory for non-i.i.d. data rederived in McNeney (1998) also needs to be applied in order to treat such
a combination of two sample cases.

In addition to the complexity arising from a case-control design, the problem considered
in this article is also a semiparametric model problem, whose efficient estimator has not yet
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been explored even in the i.i.d. data situation. Specifically, the problem is as follows. Suppose
that in the general population, the occurrence of a disease (D = 1) follows a logistic model
logit{Pr(D = 1)} = m(G,E), where G represents a person’s genetic character and E represents
the environmental elements. Further, suppose that G and E are independent of each other and
that we are interested in the effect of gene, environment and their interaction on the disease sta-
tus. Thus, m(g, e) = βc + β1g + β2e + β3ge. The parametric form of the distribution of gene g

is assumed to be known as q(g,β4), where β4 is an unknown finite-dimensional parameter. The
distribution of the environment, η(e), is unspecified. A special version of this problem is con-
sidered in Chatterjee and Carroll (2005), where q(g,β4) is assumed to be a discrete distribution.
There, the authors derived a profile maximum likelihood estimator for β = (βc,β1, β2, β3, β4)

T

and showed that it is root-N consistent, where N is the size of the combined samples. The esti-
mator is later extended to a more general framework in Spinka et al. (2005). However, it is not
investigated whether the estimator achieves the optimal semiparametric efficiency.

In this paper, we first establish in Section 2 that the classical semiparametric theory of Bickel
et al. (1993) is applicable in general case-control studies, without having to rederive the theory
in parallel or having to resort to the results from McNeney (1998). Such first order asymptotic
equivalence between case-control sampling and random sampling is a new result. We then pro-
ceed to compute the semiparametric efficient score and construct a semiparametric estimator for
β in Section 3. The computation is carried out in a hypothetical population described in Sec-
tion 2. This differs from the real population from which the cases and controls are drawn. Hence,
the derivation has its own interest and novelty. In this section, we also prove that although the
estimation of the nuisance parameter η is bypassed in our estimator, the resulting semiparamet-
ric estimator still achieves the optimal efficiency. The proof and treatment is rather non-standard.
Numerical examples are included in Section 4 to demonstrate the performance of the proposed
estimator. The performance of the method in the discrete gene model is close to that of the
method in Chatterjee and Carroll (2005) and we pointed out the possible equivalence between
the two methods in Section 5. Some analytical derivations and technical details are included in
the Appendix.

2. Case-control data versus i.i.d. data

The samples from a case control study are not random because the disease status is not random.
In general, the design randomly samples N1 individuals from the case population and N0 from
the non-case population. However, let us consider a hypothetical population of interest with
infinite population size, in which the disease to non-disease ratio is fixed at π = N1/N0. Here,
the reason for introducing the notion of hypothetical population is to be able to use the classical
semiparametric theory for i.i.d. data, developed in Bickel et al. (1993). If the sample of size
N = N0 + N1 from a case-control study happens to be a random sample from the hypothetical
population of interest, then we have a size-N i.i.d. random sample and the usual semiparametric
analysis will apply. The asymptotic results hold when N → ∞ and π stays fixed.

Of course, the problem is that a random sample of size N from the hypothetical population of
interest does not have to have exactly N0 controls and N1 cases, hence we cannot immediately
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equate a case-control sample and a random sample from the hypothetical population. In general,
the number of controls/cases of a random sample from the hypothetical population will have
a binomial distribution Nr

d ∼ Binomial(N,Nd/N), d = 0,1, which is very close to a normal
distribution when N is large, that is, (Nr

d − Nd)/
√

Nπ(1 − π) → Normal(0,1) in distribution
when N → ∞. Here, the superscript r stands for ‘random.’ Furthermore, the probability of hav-
ing |Nr

d − Nd | > N2/3 goes to zero when N → ∞. Thus, we could think of the case-control
sample as obtained by randomly picking a size-N sample from the hypothetical population of
interest, then deleting a random op(N2/3) cases (controls) and adding a random op(N2/3) con-
trols (cases). Or, alternatively, we can think of the case-control sample as a random sample of
size N , but with a randomly chosen op(N2/3) data contaminated in a particular way. This “par-
ticular” contamination implies the following three properties: (i) the contamination happens only
to op(N) of the observations (in the case-control samples, the contamination in fact only happens
to op(N2/3) observations, but, in general, op(N) is already sufficient for our further analysis);
(ii) the contaminated data is still of order O(1), that is, |Xc

i − Xi | is bounded in probability
for i = 1, . . . ,N ; (iii) the zero expectation holds for the contaminated observations, that is, if
an estimating equation for β of the form

∑N
i=1 f (Xi;β) = 0 satisfies E{f (Xi;β0)} = 0, then

E{f (Xc
i ;β0)} = 0 as well. Here, Xi, i = 1, . . . ,N , are i.i.d. random samples, the superscript c

stands for ‘contaminated’ and the subscript 0 represents the true parameter value.
When the case-control sample is viewed as a contaminated random sample from the hypothet-

ical population of interest, the first two “particular” properties certainly hold. For the estimator
we will construct, we shall demonstrate that the third property also holds. Thus, if we can show
that the same first order asymptotics apply to both the i.i.d. sample of size N and its contami-
nated version as long as the three properties hold, then we can treat the case-control sample as
an i.i.d. sample.

The argument is as follows. Assume that we mistakenly treated the contaminated data as
i.i.d. and obtained an efficient estimator:

N∑
i=1

Seff(X
c
i ;β) = 0. (2.1)

Here, Seff is the efficient score function and its derivation is model-dependent. One obvious
aspect of Seff worth emphasizing is that the construction of Seff does not depend on the obser-
vations. Regardless of the method of derivation, the efficient score function Seff has the property
E{Seff(Xi;β0)} = 0. If we had the uncontaminated data, our subsequent estimator for β would
have been

∑N
i=1 Seff(Xi;β) = 0. Working with the contaminated data, (2.1) is the estimating

equation we really have. Suppose that β̂ solves (2.1). We then have

0 =
N∑

i=1

Seff(X
c
i ; β̂) =

N∑
i=1

Seff(X
c
i ;β0) +

N∑
i=1

∂Seff(X
c
i ;β∗)

∂βT (β̂ − β0),

therefore,

−N−1

{
N∑

i=1

∂Seff(X
c
i ;β∗)

∂βT

}√
N(β̂ − β0) = N−1/2

N∑
i=1

Seff(X
c
i ;β0), (2.2)
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where β∗ lies on the line connecting β0 and β̂ . Note that in our “particular” contamination
requirement, only op(N) terms yield a different Xi from Xc

i (requirement (i)) and, for each
Xc

i �= Xi , the difference is Op(1) (requirement (ii)), so we have

N−1

{
N∑

i=1

∂Seff(X
c
i ;β∗)

∂βT

}
= N−1

{
N∑

i=1

∂Seff(Xi;β∗)
∂βT

}
+ op(1)

(2.3)

= E

{
∂Seff(Xi;β0)

∂βT

}
+ op(1).

From the third “particular” property, we have E{Seff(X
c
i ;β0)} = 0 (we will prove that this prop-

erty holds for the case-control data in Section 3). In conjunction with the fact that only op(N) of
the terms Seff(X

c
i ;β0) − Seff(Xi;β0) are non-zero, we can further obtain

N−1/2
N∑

i=1

Seff(X
c
i ;β0) = N−1/2

N∑
i=1

Seff(Xi;β0) + op(1). (2.4)

The detailed argument of (2.4) is the following. Suppose for the first l = op(N) observations,
Xc

i �= Xi . Then we have

N−1/2
N∑

i=1

Seff(X
c
i ;β0)

= N−1/2
N∑

i=1

Seff(Xi;β0) + N−1/2
l∑

i=1

{Seff(X
c
i ;β0) − Seff(Xi;β0)}

= N−1/2
N∑

i=1

Seff(Xi;β0) + (N/l)−1/2l−1/2
l∑

i=1

{Seff(X
c
i ;β0) − Seff(Xi;β0)}.

Note that Seff(X
c
i ;β0) − Seff(Xi;β0) has mean zero, hence l−1/2 ∑l

i=1{Seff(X
c
i ;β0) − Seff(Xi;

β0)} = Op(1). From l = op(N), we obtain the result in (2.4) immediately. Thus, plugging (2.3)
and (2.4) into (2.2), we obtain

−E

{
∂Seff(Xi;β0)

∂βT

}√
N(β̂ − β0) = N−1/2

N∑
i=1

Seff(Xi;β0) + op(1).

The above display is exactly the first order asymptotic expansion of the estimator for β if we had
performed the estimation procedure on the uncontaminated data. Thus, we have demonstrated
that the estimator obtained from contaminated data performs as well as the one obtained from
uncontaminated data in terms of first order asymptotic properties. Note that the efficient estimator
can be replaced by a consistent estimator, say, a general S instead of Seff, as long as E(S|D =
d) = 0 holds for d = 0,1. This ensures that E{S(Xc

i )} = 0 as long as E{S(Xi)} = 0 (shown in
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Section 3), so the above derivation will still carry through. Hence, the asymptotic property of the
estimator using the contaminated data is indeed the same as if we had the uncontaminated data.
Thus, the case-control data can be treated as i.i.d. data and we can achieve the same efficiency as
when the data was indeed i.i.d. In other words, a semiparametric estimator using contaminated
data is at least as efficient as one using the uncontaminated data.

One question still remains: can we do even better than in the i.i.d. data case? In fact, since
case-control sampling is designed to be an efficient way to collect covariate information, it seems
to contain more information than a random sample. However, we claim that for asymptotically
linear estimators of the form

√
N(β̂ − β0) = 1√

N

N∑
i=1

ψ(Xc
i ;β0) + op(1),

where E{ψ(Xc
i ;β0)|d} = 0, the efficiency in parameter estimation cannot be further im-

proved by taking into account the special sampling procedure. This is because otherwise,
we could have obtained a better estimator for the i.i.d. sample as well, by replacing Xc

i

with Xi . The detailed derivation is the same as in the above paragraph, where the con-
dition E{ψ(Xc

i ;β0)|d} = 0 implies E{ψ(Xi;β0)|d} = 0 for case-control data, which en-
sures E{ψ(Xc

i ;β0)} = E{ψ(Xi;β0)} = 0. Of course, if the condition E(ψ |d) = 0 is not satis-
fied, the argument does not work. However, we now show that if ψ achieves the optimal variance
for the case-control data Xc

i , then it has to satisfy E{ψ(Xc
i ;β0)|d} = 0.

First, E{∂E(ψ |D)/∂β} = ∂E(ψ)/∂β = 0 because the probability density function (p.d.f.)
of D does not contain β . If we let ψ̃(Xc

i ) = ψ(Xc
i ) − E{ψ(Xc

i )|d}, then E{ψ̃(Xc
i )} = 0 and

E{∂ψ̃(Xc
i )/∂β} = E{∂ψ(Xc

i )/∂β}. If E{ψ(Xc
i )|d} �= 0, then we can obtain

var{ψ(Xc
i )} = E[var{ψ(Xc

i )|D}] + var[E{ψ(Xc
i )|D}] = var{ψ̃(Xc

i )} + var[E{ψ(Xc
i )|D}]

> var{ψ̃(Xc
i )},

which, together with E{∂ψ̃(Xc
i )/∂β} = E{∂ψ(Xc

i )/∂β}, contradicts the fact that ψ(Xc
i ) is opti-

mal.
In summary, we have shown that the case control samples can be treated as if they were

i.i.d. and all the first order asymptotic results for i.i.d. data will be inherited for case-control
data as well. We can see that the above establishment is similar to the development in Breslow et
al. (2000). However, one prominent difference is that in Breslow et al. (2000), the case-control
sample is viewed as the result of a biased sampling procedure with fixed subsample size, hence
they cannot use the classical semiparametric theory for i.i.d. data, but have to refer to McNeney
(1998) for the theoretical properties, where the whole semiparametric theory for fixed-size sub-
samples is established in parallel to the i.i.d. framework. Here, through introducing the notion of
hypothetical population and by analyzing the first order equivalence between a random sample
and a sample with fixed-size subsamples, we can easily contain the case-control problem in the
usual i.i.d. model framework. The derivation is much simpler and more elegant. Thus, in the re-
mainder of the paper, we ignore the case-control nature of the data and proceed with our analysis
by pretending the data is i.i.d. from the aforementioned hypothetical population of interest.
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3. A semiparametric efficient estimator

3.1. Geometric approach

A random sample from the hypothetical population of interest has p.d.f.

p(g, e, d;β,η) = pD(d)pG,E|D(g, e|d) = pD(d)pt
G,E|D(g, e|d)

= pD(d)pt
G(g)pt

E(e)pt
D|G,E(d|g, e)/pt

D(d) (3.1)

= Nd

N

q(g)η(e)H(d,g, e)

pt
D(d)

.

Here, the superscript t stands for the p.d.f. in the true population, whereas expressions with-
out superscripts, including various p.d.f.’s and expectation E, are quantities in the hypothetical
population of interest; η(e) = pt

E(e) is the unknown infinite-dimensional parameter and

H(d,g, e;β) = exp[d{m(g, e)}]/[1 + exp{m(g, e)}]
= exp{d(βc + β1g + β2e + β3ge)}/{1 + exp(βc + β1g + β2e + β3ge)};

pt
D(d;β,η) =

∫
q(g,β4)η(e)H(d,g, e;β)dμ(g)dμ(e).

We recognize that estimating the finite-dimensional parameter β in the presence of an infinite-
dimensional nuisance parameter η, using an i.i.d. sample of size N = N0 + N1 from a hypothet-
ical population of interest, with the p.d.f. of a random observation given by (3.1), is a classical
semiparametric problem. Therefore, we implement the semiparametric estimation methods to de-
rive the semiparametric efficient estimator. The approach we take is geometric, first introduced
in Bickel et al. (1993). Because the general approach and related concepts have been nicely
described in several recent papers including Tsiatis and Ma (2004), Allen et al. (2005), Ma et
al. (2005) and Ma and Tsiatis (2006), here, we only briefly outline the general approach and
the definition of the relevant concepts, referring the reader to these papers for more detailed
descriptions.

In general semiparametric problems, one approach to construct estimators for β is to obtain
some influence function φ(Xi;β,η) which is subsequently used to form estimating equations for
β in the form of

∑N
i=1 φ(Xi;β,η) = 0. Here, Xi = (Gi,Ei,Di), i = 1, . . . ,N , are i.i.d. obser-

vations. The solution of the estimating equation, β̂ , is subsequently a semiparametric estimator
and its variance has been established to be equal to the variance of φ(Xi;β,η). Consequently,
the optimal estimator among the class of all such estimators is the one whose influence function
has the smallest variance. This is usually referred to as the semiparametric efficient estimator.

The geometric approach considers the space in which all influence functions belong. Specifi-
cally, one considers a Hilbert space H which consists of all zero-mean measurable functions with
finite variance and the same dimension as β . The inner product in H is defined as the covariance.
The Hilbert space H is further decomposed into two spaces, the nuisance tangent space � and
its orthogonal complement �⊥.
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To understand the nuisance tangent space �, consider first the case where the nuisance parame-
ter, denoted γ , is finite-dimensional. Then, the nuisance score function, Sγ = ∂ logp(Xi;β,γ )/

∂γ , spans a linear space, which is denoted �. In the case of the infinite-dimensional nuisance
parameter η, the corresponding � is defined as the mean squared closure of the span of all the
nuisance score functions Sγ , where p(Xi;β,γ ) is any parametric submodel of p(Xi;β,η). The
orthogonal complement of � in H is subsequently defined as �⊥.

Any function in �⊥ can be properly normalized to obtain a valid influence function. On the
other hand, every influence function is a function in �⊥. Among all these functions, the projec-
tion of the score function Sβ = ∂ logp(Xi;β,γ )/∂β results in the efficient influence function.
If we denote the projection by Seff, then the corresponding optimal variance is var(Seff)

−1. The
projection Seff is usually called the efficient score function.

Hence, the geometric approach converts the problem of searching for efficient semiparametric
estimators to the problem of calculating Seff.

3.2. Construction of the estimator

Following the description in Section 3.1, we obtain the efficient score function Seff. Viewing the
sample as random from the hypothetical population, the p.d.f. in (3.1) is no longer in a simple
multiplicative form, in that the nuisance parameter appears both in the numerator and in the
integral in the denominator. Since this implies that the nuisance tangent space is not automatically
orthogonal to the score functions, the related computation for the nuisance tangent space and
associated objects is more involved. In addition, one needs to be aware that the calculation should
be carried out with respect to the hypothetical population, hence quantities such as pt

G,pt
E,pt

D

need to be treated with extra care and not confused with pG,pE,pD . The main steps of the
derivation are as follows. We first calculate the score function Sβ by taking the derivative of
logp(g, e, d;β,η) with respect to β . This results in Sβ = S − E(S|d), where

S =
{
(m′

βc
m′

β1
m′

β2
m′

β3
)

(
d − 1 + 1

1 + em

)
q ′
β4

(g,β4)
T

q(g,β4)

}T

.

We then calculate the two spaces �,�⊥ by replacing η in (3.1) with a finite-dimensional parame-
ter γ , taking the derivative of logp(g, e, d;β,γ ) with respect to γ to obtain Sγ , hypothesizing a
space of all such Sγ and proving that � is equivalent to this space. The results are

� = [h(e) − E{h(e)|d}: ∀h(e) such that Et(h) = 0] = [h(e) − E{h(e)|d}: ∀h(e)],
�⊥ = [h(g, e, d): E(h|e) = E{E(h|d)|e}].

We finally project the score vector Sβ onto �⊥ to obtain Seff = Sβ − f (e) + E(f |d) = S −
E(S|d) − f (e) + E(f |d), where f (e) − E(f |d) represents the projection of Sβ onto �. The
details of the derivation can be found in the Appendix. Note that this form of Seff implies that
E{Seff(X)|d} = 0. When X is replaced by Xc, the non-random case-control sample, we still have
E{Seff(X

c)|d} = 0 because the design itself guarantees that the only non-random component is d ,
which is held constant. Thus, viewing Xc as a special contaminated version of X, we still have
E{Seff(X

c)} = 0, which is required in Section 2.
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From the Appendix, we can further write

Seff = S − E(S|e) + (−1)d{a(0) − a(1)}w(e,1 − d), (3.2)

where a(0) − a(1) = E(f |D = 0) − E(S|D = 0) − E(f |D = 1) + E(S|D = 1).
In terms of the calculation of Seff, note that S, E(S|e) and w, as given in (A.1), are all functions

with parameters β and pt
D(d) only. Hence, as long as we can calculate pt

D(d), we will have the
ability to evaluate S, E(S|e) and w. The computation of a(0) − a(1) requires further arguments.

In the following, we first obtain an approximation of pt
D(d), then pursue the estimation of

a(0) − a(1). To estimate pt
D(d), using pE(e) to denote the probability density function of e in

the hypothetical population, we observe that

Nd = NpD(d) =
∫

NpD,E(d, e)dμ(e) =
∫

NpE(e)pD,G|E(d, g|e)dμ(g)dμ(e)

=
∫

NpE(e)

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)
dμ(e)

= Ee

{
N

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)

}
.

Replacing the moment Ee with its sample moment through averaging across different observed
ei ’s, we obtain

Nd ≈
N∑

i=1

∫
Ndq(g,β4)H(d,g, ei)dμ(g)/pt

D(d)∑
d

∫
Ndq(g,β4)H(d,g, ei)dμ(g)/pt

D(d)
for d = 0,1. (3.3)

Note that the above two equations are not independent – one determines the other. But, in com-
bination with pt

D(0)+pt
D(1) = 1, we can estimate pt

D(d) completely. Because the only approx-
imation involved in estimating pt

D(d) is replacing the mean with a sample mean, the calculation
will produce a root-N -consistent estimator for pt

D(0) and pt
D(1). We denote the estimators by

p̂t
D(0) and p̂t

D(1). In calculating Nd , we write p(g, e, d) as pE(e)pD,G|E(d, g|e), instead of
directly using the form in (3.1). Since pE(e) is the p.d.f. of the environment variable in the hypo-
thetical population, this enables us to replace the expectation Ee with the average of the samples.

The estimation of a(0)− a(1) is much more tedious, and involves an almost brute force calcu-
lation of E(S|d) and E(f |d). If we let b0 = E(S|D = 0), b1 = E(S|D = 1), c0 = E(f |D = 0)

and c1 = E(f |D = 1), then a(0)−a(1) = b1 −b0 +c0 −c1. The calculation of b0 and b1 follows
from

bd =
∫

SpD,G,E(d, g, e)dμ(g)dμ(e)∫
pD,G,E(d, g, e)dμ(g)dμ(e)

=
∫

SpE(e)pD,G|E(d, g|e)dμ(g)dμ(e)∫
pE(e)pD,G|E(d, g|e)dμ(g)dμ(e)

=
∫

pE(e)

∫
SNdq(g)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)
dμ(e)

/∫
pE(e)

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)
dμ(e).
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Since S can be calculated directly, we simply obtain the approximation of bd, d = 0,1, by re-
placing the mean with sample mean and plugging in the estimated pt

D(d):

b̂0 =
N∑

i=1

∫
S(0, g, ei)q(g)H(0, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)

(3.4)/ N∑
i=1

∫
q(g)H(0, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)
,

b̂1 =
N∑

i=1

∫
S(1, g, ei)q(g)H(1, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, e)dμ(g)/p̂t

D(d)

(3.5)/ N∑
i=1

∫
q(g)H(1, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, e)dμ(g)/p̂t

D(d)
.

The calculations of c0 and c1 are a bit more tricky. Since

f = E(S|e) + (c0 − b0)w(e,0) + (c1 − b1){1 − w(e,0)},

taking expectation conditional on, say D = 0, we have

c0 = E{E(S|e)|D = 0} + (c0 − b0)E{w(e,0)|D = 0}
+ (c1 − b1)[1 − E{w(e,0)|D = 0}]

or, equivalently, we obtain

c0 − c1 = E{E(S|e)|D = 0} − b0E{w(e,0)|D = 0} − b1[1 − E{w(e,0)|D = 0}]
1 − E{w(e,0)|D = 0} .

Hence, replacing mean by sample mean and using p̂t
D(d), c0 − c1 is estimated by

ĉ0 − ĉ1 = Ê{E(S|e)|D = 0} − b̂0Ê{w(e,0)|D = 0} − b̂1[1 − Ê{w(e,0)|D = 0}]
1 − Ê{w(e,0)|D = 0} , (3.6)

where

Ê{w(e,0)|D = 0} =
N∑

i=1

w(ei,0)
∫

q(g)H(0, g, ei)dμ(g)∑
d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)

(3.7)/ N∑
i=1

∫
q(g)H(0, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)
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and

Ê{E(S|e)|D = 0} =
N∑

i=1

E(S|ei)
∫

q(g)H(0, g, ei)dμ(g)∑
d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)

(3.8)/ N∑
i=1

∫
q(g)H(0, g, ei)dμ(g)∑

d

∫
Ndq(g)H(d,g, ei)dμ(g)/p̂t

D(d)
.

Similarly to the estimation of pt
D(d), the only approximation involved in obtaining b(0), b(1) and

c(0) − c(1) is replacing mean by sample mean, so a(0) − a(1) is estimated using â(0) − â(1) =
b̂1 − b̂0 + ĉ0 − ĉ1 at the root-N rate.

We would like to emphasize that in all of the above calculations, when we replace the expec-
tation with the sample average, we use the result that the case-control sample can be treated as a
random sample from the hypothetical population. Hence, for any function u(e), the approxima-
tion N−1 ∑N

i=1 u(ei) can only be used to replace
∫

u(e)pE(e)dμ(e), not
∫

u(e)η(e)dμ(e).
We omitted the parameter β in all of the above expressions, in fact, pt

D(0),pt
D(1), a(0)−a(1)

are all functions of β . However, if we replace β with β̃ , an initial estimator of β , we will still
obtain p̂t

D(d; β̃), â(0; β̃) − â(1; β̃) that are root-N -consistent, as long as β̃ − β = Op(N−1/2).
The final estimating equation of β has the form

N∑
i=1

Ŝeff(xi;β) =
N∑

i=1

Seff{xi;β, p̂t
D(d; β̃), â(0; p̂t

D, β̃) − â(1; p̂t
D, β̃)} = 0, (3.9)

where xi denotes the ith observation (di, gi, ei).
To summarize the description of the estimator, we outline the algorithm here:

Step 1. Pick a starting value β̃ that is root-N consistent.
Step 2. Solve for p̂t

D(0) and p̂t
D(1) = 1 − p̂t

D(0) from (3.3).
Step 3. Obtain b̂0 and b̂1 from (3.4) and (3.5).
Step 4. Obtain ĉ0 − ĉ1 from (3.6) and (3.7), (3.8).
Step 5. Calculate Seff using (3.2) and obtain β̂ from solving (3.9).

It is worth pointing out that in order to carry out Step 1, we have used a vital assumption that
a root-N starting value β̃ exists. Fortunately, the existence of β̃ is equivalent to the identifiability
of β and is already well established in Chatterjee and Carroll (2005). The starting value used
there, or in Spinka et al. (2005), can be used to obtain the initial estimator β̃ . Our algorithm here
does not require an iteration of Steps 2–5 upon each update of β . However, in practice, a more
accurate β̃ can improve the final estimation β̂ significantly, hence iterations are almost always
implemented.

3.3. Semiparametric efficiency

If we could use the exact pt
D(d;β) and a(0;β)− a(1;β) in (3.9), then, according to Section 3.1,

the resulting estimator for β would be an efficient estimator, with estimation variance V =
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E(SeffS
T
eff)

−1. To first order, V can be approximated using N{∑N
i=1 Ŝeff(xi; β̂)ŜT

eff(xi; β̂)}−1,
where β̂ solves (3.9).

We claim that using the estimated Ŝeff as in (3.9), we obtain an estimating equation that yields
the same estimator for β as using Seff, in terms of its first order asymptotic properties.

Theorem 1. The algorithm in Section 3.2 yields a semiparametric efficient estimator for β . That
is,

√
N(β̂ − β0) → Normal{0,var(Seff)

−1}
in distribution when N → ∞ and N1/N0 is fixed.

The proof of the theorem contains two main steps. In the first step, we show the semiparametric
efficiency of the estimator if the observations had been i.i.d. In the second step, we proceed to
show the efficiency in the case-control study using results in Section 2. Rather complex algebra
needs to be employed in the first step. The proof also involves a split of the data in the final
estimation of β , and in estimating pt

D(d) and a(0) − a(1), mainly for technical convenience.
The details of the proof appear in the Appendix.

4. Numerical examples

We conducted a small simulation study to demonstrate the performance of the estimator. In
the first experiment, we generated 500 cases and 500 controls, where the true environment
element E is min(10,X) and X is generated from a log-normal distribution with mean 0
and variance 1. A dichotomous model of the gene is used, where G = 1 with probability β4
and G = 0 with probability 1 − β4. This kind of model for q(g,β4) can represent the pres-
ence/absence of a certain gene mutation. We used two different sets of values for β: the first set
is β = (−3.45,0.26,0.1,0.3,0.26)T, where β4 = 0.26 represents a relatively common mutation;
the second set is β = (−3.2,0.26,0.1,0.3,0.065)T, where β4 = 0.065 represents a very rare
mutation. In both sets, the true parameters are chosen so that the model results in a population
disease rate pt

D(1) ≈ 5%. The simulation results are presented in the upper half of Table 1.
The second experiment differs from the first one in its assumption on q(g,β4). Here, we

model q(g,β4) with a Laplace distribution with variance β4. This kind of model is typically
used to model the gene expression level. To maintain an approximate 5% disease rate in the pop-
ulation, we used β = (−3.2,0.26,0.1,0.3,0.3)T and β = (−3.73,0.26,0.1,0.3,1)T as the true
parameter values. Again, in the first set, β4 = 0.3 represents a small variation in the population
distribution for the gene expression levels, resulting in a more homogeneous population in terms
of this gene. In the second set, β4 = 1 represents a larger variation, so the population is more di-
versified. The simulation results are presented in the lower half of Table 1. In both experiments,
1000 simulations are implemented.

From Table 1, it is clear that the estimator for β is consistent in all four situations and the
estimated standard deviation approximates the true one rather well. It is worth noting that the
first experiment is a repetition of the same setting as in Chatterjee and Carroll (2005) and we
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Table 1. Simulation results for the two experiments, each with two different sets of parameter values,
representing uncommon (upper-left) and common (upper-right) gene mutation, and homogeneous (lower-
left) and diversified (lower-right) gene expression levels. ‘true’ is the true value of β , ‘est’ is the average
of the estimated β , ‘sd’ is the sample standard deviation and ‘ŝd’ is the average of the estimated standard
deviation

βc β1 β2 β3 β4 βc β1 β2 β3 β4

Experiment 1
true −3.2000 0.2600 0.1000 0.3000 0.0650 −3.4500 0.2600 0.1000 0.3000 0.2600
est −3.8925 0.2498 0.0995 0.3101 0.0649 −3.9263 0.2618 0.0994 0.2998 0.2610
sd 1.6390 0.3110 0.0359 0.1226 0.0111 1.3958 0.2196 0.0445 0.0783 0.0229
ŝd 1.6285 0.3236 0.0364 0.1192 0.0116 1.2534 0.1956 0.0422 0.0723 0.0207

Experiment 2
true −3.2000 0.2600 0.1000 0.3000 0.3000 −3.7300 0.2600 0.1000 0.3000 1.0000
est −3.3128 0.2553 0.0993 0.3126 0.2999 −3.7442 0.2589 0.0995 0.3053 0.9986
sd 0.7815 0.1624 0.0352 0.0750 0.0101 0.2906 0.0685 0.0442 0.0405 0.0378
ŝd 0.7969 0.1663 0.0358 0.0789 0.0101 0.2859 0.0676 0.0439 0.0402 0.0373

observe very similar results. Specifically, for β1, β2, β3, β4 in the upper-left table, their results
for “sd” are 0.322, 0.037, 0.128, 0.0122, respectively, and those in the upper-right table are 0.198,
0.043, 0.075 and 0.0273, respectively. Although some numerical improvement can be observed in
certain parameters (for example β4), it can be a result of finite-sample performance and numerical
issues. We conjecture that the estimator in Chatterjee and Carroll (2005) is equivalent to the
method proposed here, hence is also efficient, although a rigorous proof is beyond the scope of
this paper. It is also worth noting that the estimation of βc is more difficult than the remaining
components of β , in that the estimation has large variability. This is especially prominent in
the discrete model setting for q(g). Indeed, the estimation result for βc has not been reported
elsewhere and, without the gene-environment independence, βc is known to be unidentifiable
(Prentice and Pyke (1979)). This provides an intuitive explanation for the performance of β̂c we
observe. The set of estimating equations is solved using a standard Newton–Raphson algorithm.

5. Conclusion

Semiparametric modeling and estimation to study the occurrence of a disease in relation to gene
and environment has attracted much interest recently. However, despite the various estimators
proposed in the literature, very little is understood in terms of the efficiency of the estimators.
This is partly due to the fact that most estimators are constructed in rather ingenious ways, in-
stead of following the standard lines of semiparametric theory. The other reason is that most
such problems are set in a case-control design, which violates the i.i.d. assumption for standard
semiparametric theory.

Instead of rederiving the whole semiparametric theory under non-i.i.d. samples, we argue that
case-control data can be treated as if they were i.i.d. data and the standard semiparametric ef-
ficiency theory will still apply. The equivalence of the first order asymptotic theory shown in
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this article is a new contribution. The argument is based on rather elementary statistics without
involving advanced knowledge or highly specialized techniques.

The establishment of the equivalence of the semiparametric efficiency between i.i.d. data and
case-control data allows us to carry out the estimation using standard, well-established semipara-
metric theory. However, these standard analyses are performed under a hypothetical population
of interest, hence the detailed derivation often requires special treatment, something which has
not previously appeared in the literature. Under the gene-environment independence assump-
tion, we are able to explicitly construct a novel semiparametric estimator and show its efficiency.
A special feature of this estimator is that we never attempted to estimate the infinite-dimensional
nuisance parameter η itself, neither did we posit a model, true or false, for it. Rather, we avoided
its estimation and instead approximated quantities that rely on it. On the one hand, this enables us
to carry out the estimation rather easily; on the other hand, some asymptotic properties have to be
rederived because any result that relies on the convergence properties of the nuisance parameter
itself can no longer be used.

Finally, our simulation results support the theory we developed, in both discrete and contin-
uous gene distribution cases. Our simulation results in the discrete gene model are very similar
to those of Chatterjee and Carroll (2005), which leads us to believe that their estimator is also
efficient. A demonstration of this aspect would be an interesting direction for future work. The
programming of the method in Chatterjee and Carroll may seem easier. However, if the two
methods are indeed equivalent, then the projection step in the current method should be equiva-
lent to the profiling step in Chatterjee and Carroll, hence the computational effort and intensity
should be equivalent. Although we did not further expand our estimator to stratified case-control
data, the method is clearly applicable there as well.

Appendix

The derivation of Seff

We will use Seff to construct our estimating equation. We calculate Seff by projecting the
score functions with respect to the parameters of interest βc,β1, β2, β3, β4 onto the or-
thogonal complement of the nuisance tangent space. We first derive the score functions
Sβ ≡ ∂ logp(g, e, d;β,η)/∂β . Straightforward calculation shows that the score function Sβ =
(ST

1 , ST
2 )T, where

ST
1 = (m′

βc
m′

β1
m′

β2
m′

β3
)

(
d − 1 + 1

1 + em

)
− E

{
(m′

βc
m′

β1
m′

β2
m′

β3
)

(
d − 1 + 1

1 + em

)∣∣∣d}
,

S2 = q ′
β4

(g,β4)

q(g,β4)
− E

{
q ′
β4

(g,β4)

q(g,β4)

∣∣∣d}
.

Here, m′∗ and q ′∗ represent partial derivatives with respect to ∗. Note that, in general, Sβ can be
written as Sβ = S − E(S|d).

We next derive the nuisance tangent space � and its orthogonal complement �⊥. Inserting
the form of pt

D(d;β,η) into (3.1), replacing η(e) by an arbitrary submodel pt
E(e;γ ) and taking
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the derivative of logp(g, e, d;β,γ ) with respect to γ , we obtain ∂ logp(g, e, d;β,γ )/∂γ =
∂ logpt

E(e;γ )/∂γ − E{∂ logpt
E(e;γ )/∂γ |d}. Now, recognizing that ∂ logpt

E(e;γ )/∂γ for an
arbitrary submodel can yield an arbitrary function of e with mean zero calculated under the true
η(e), we obtain the nuisance tangent space:

� = [h(e) − E{h(e)|d}: ∀h(e) such that Et(h) = 0] = [h(e) − E{h(e)|d}: ∀h(e)],
�⊥ = [h(g, e, d): E(h|e) = E{E(h|d)|e}].

Here, Et stands for an expectation calculated with respect to the true population distribution. The
second expression for � is more convenient because it allows h(e) to be an arbitrary function
of e, hence this is the form of � that we will use.

Having obtained Sβ and the spaces � and �⊥, we can proceed to derive the efficient score
function Seff ≡ 
(Sβ |�⊥). If we let 
(Sβ |�) = f (e) − E(f |d), then Seff = Sβ − f (e) +
E(f |d) = S − E(S|d) − f (e) + E(f |d).

We now modify the expression of Seff to facilitate its actual computation. Letting a(d) =
E(f |d) − E(S|d), we can thus write Seff = S − f + a(d). Note that S does not depend on η and
a(d) is either a(1) or a(0). In addition, we have E(Seff|e) = E{E(Seff|d)|e}. This is equivalent
to

E(Sβ |e) − f (e) + E{E(f |d)|e} = E[E{S − E(S|d)|d} − E{f − E(f |d)|d}|e] = 0,

which, in turn, is equivalent to

E(S|e) = f + E{E(S|d)|e} − E{E(f |d)|e} = f − E{a(d)|e}

= f −
∑

d

∫
a(d)Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)
.

Let

v(e, d) = Nd

∫
q(g,β4)H(d,g, e)dμ(g)/pt

D(d) = pE,D(e, d)Nη−1(e)

and

w(e, d) = v(e, d)/{v(e,0) + v(e,1)}. (A.1)

We have

E(S|e) = f − a(0)v(e,0)/{v(e,0) + v(e,1)} − a(1)v(e,1)/{v(e,0) + v(e,1)}
= f − a(0)w(e,0) − a(1)w(e,1)

or f = E(S|e) + a(0)w(e,0) + a(1)w(e,1). Consequently,

Seff = S − E(S|e) − a(0)w(e,0) − a(1)w(e,1) + a(d)

= S − E(S|e) + (−1)d{a(0) − a(1)}w(e,1 − d).
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Proof of Theorem 1

To simplify notation, we denote α = pt
D(0)/pt

D(1), α̂ = p̂t
D(0)/p̂t

D(1), δ(α) = a{0;pt
D(d)} −

a{1;pt
D(d)}, δ(α̂) = a{0; p̂t

D(d)} − a{1; p̂t
D(d)} and δ̂(α̂) = â{0; p̂t

D(d)} − â{1; p̂t
D(d)}.

Suppose we randomly partition the data into two groups: group 1 has m observations and
group 2 has n observations. Here, m = N0.9, n = N − m. We use the first group to obtain α̂, and
δ̂(α̂), then use the second group to form the following estimating equation to estimate β:

n∑
i=1

Seff{xi; β̂, α̂, δ̂(α̂)} = 0.

We will first show that the resulting estimator satisfies n1/2(β̂ − β0) → N(0,V ) in distribution
when N → ∞.

The proof splits into several steps: First, obviously, α̂ − α = Op(m−1/2) and δ̂(α̂) − δ(α̂) =
Op(m−1/2), as long as a root-N -consistent β̃ is inserted in the calculation of these quantities.
A standard expansion yields

0 =
n∑

i=1

Seff{xi; β̂, α̂, δ̂(α̂)}

=
n∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)} +
n∑

i=1

∂

∂βT Seff{xi;β∗, α̂, δ̂(α̂)}(β̂ − β0)

=
n∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)} + n

{
E

(
∂Seff

∂βT

)
+ op(1)

}
(β̂ − β0),

which can be rewritten as{
E

(
∂Seff

∂βT

)
+ op(1)

}
n1/2(β̂ − β0)

= −n−1/2
n∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)}

= −n−1/2
n∑

i=1

[Seff{xi;β0, α̂, δ(α̂)} + (−1)di {δ̂(α̂) − δ(α̂)}w(ei,1 − di, α̂)].

The last equality uses the form of Seff in (3.2) and the fact that S, E(S|e) and w do not depend
on α. Because δ̂(α̂) − δ(α̂) = Op(m−1/2) = op(1) and

E{(−1)di w(ei,1 − di, α̂)} =
∫ ∑

d=0,1

(−1)dpE,D(e,1 − d; α̂)η−1(e)

v(e,0; α̂) + v(e,1; α̂)
pE,D(e, d; α̂)dμ(e) = 0,
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we actually have{
E

(
∂Seff

∂βT

)
+ op(1)

}
n1/2(β̂ − β0)

= −n−1/2
n∑

i=1

Seff{xi;β0, α̂, δ(α̂)} + op(1)

= −n−1/2
n∑

i=1

{
Seff(xi) + ∂Seff(xi;β0, α)

∂α
(α̂ − α) + ∂2Seff(xi;β0, α

∗)
∂α2

(α̂ − α)2
}

+ op(1).

In addition, (α̂ − α)2 = Op(m−1) = op(n−1/2), so

{
E

(
∂Seff

∂βT

)
+ op(1)

}
n1/2(β̂ − β0) = −n−1/2

n∑
i=1

{
Seff(xi) + ∂Seff(xi)

∂α
(α̂ − α)

}
+ op(1).

We now proceed to examine ∂Seff(xi )
∂α

by examining each term in (3.2). S is free of α. As a
function of α, we already have

b5(e;α) ≡ E(S|e;α) =
∑

d

∫
SNdq(g,β4)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g,β4)H(d,g, e)dμ(g)/pt

D(d)

=
∫

SN0qH0 dμ(g) + α
∫

SN1qH1 dμ(g)∫
N0qH0 dμ(g) + α

∫
N1qH1 dμ(g)

= u2(e,0) + αu2(e,1)

u1(e,0) + αu1(e,1)
,

where we define u1(e, d) = ∫
Ndq(g,β4)H(d,g, e)dμ(g) and u2(e, d) = ∫

SNdq(g,β4)H(d,

g, e)dμ(g). Using this notation,

∂b5

∂α
= u2(e,1)u1(e,0) − u2(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2
,

w(e,0) = u1(e,0)

u1(e,0) + αu1(e,1)
,

w(e,1) = αu1(e,1)

u1(e,0) + αu1(e,1)
.

Similarly to the calculation of b0, b1, we also have that for any function u,

E(u|d;α) =
∫

pE(e)
∫

uNdq(g)H(d,g, e)dμ(g)/pt
D(d)∑

d

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)
dμ(e)

/∫
pE(e)

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)∑
d

∫
Ndq(g)H(d,g, e)dμ(g)/pt

D(d)
dμ(e)
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=
∫

pE(e)
∫

uNdq(g)H(d,g, e)dμ(g)/pt
D(d)∑

d u1(e, d)/pt
D(d)

dμ(e)

/∫
pE(e)u1(e, d)/pt

D(d)∑
d u1(e, d)/pt

D(d)
dμ(e),

thus

E(u|0;α) =
∫

pE(e)
∫

uN0q(g)H(0, g, e)dμ(g)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e),

E(u|1;α) =
∫

pE(e)
∫

uN1q(g)H(1, g, e)dμ(g)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,1)

u1(e,0) + u1(e,1)α
dμ(e).

These relations lead to

b0 =
∫

pE(e)u2(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e),

b1 =
∫

pE(e)u2(e,1)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,1)

u1(e,0) + u1(e,1)α
dμ(e),

b2 ≡ E{E(S|e)|0;α}

=
∫

pE(e)
∫

E(S|e)N0q(g)H(0, g, e)dμ(g)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

=
∫

pE(e)E(S|e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

=
∫

pE(e)u1(e,0){u2(e,0) + u2(e,1)α}
{u1(e,0) + u1(e,1)α}2

dμ(e)
/∫

pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e),

b3 ≡ E{w(e,0)|D = 0}

=
∫

pE(e)
∫

w(e,0)N0q(g)H(0, g, e)dμ(g)

u1(e,0) + u1(e,1)α
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

=
∫

pE(e)u2
1(e,0)

{u1(e,0) + u1(e,1)α}2
dμ(e)

/∫
pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e).

Consequently, we obtain

Seff(0) = S − b5(e) +
{
b1 − b0 + b2 − b0b3 − b1(1 − b3)

1 − b3

}
αu1(e,1)

u1(e,0) + αu1(e,1)

= S − b5(e) +
(

b2 − b0

1 − b3

)
αu1(e,1)

u1(e,0) + αu1(e,1)
,

Seff(1) = S − b5(e) −
(

b2 − b0

1 − b3

)
u1(e,0)

u1(e,0) + αu1(e,1)
,
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∂Seff(0)

∂α
= −b5(e)

′ +
(

b2 − b0

1 − b3

)′
αu1(e,1)

u1(e,0) + αu1(e,1)
+

(
b2 − b0

1 − b3

)
u1(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2
,

∂Seff(1)

∂α
= −b5(e)

′ −
(

b2 − b0

1 − b3

)′
u1(e,0)

u1(e,0) + αu1(e,1)
+

(
b2 − b0

1 − b3

)
u1(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2
.

Since S does not contain α, ∂Seff
∂α

is a function of (e, d) only. Because pE,D(e, d) = η(e)u1(e, d)/

{Npt
D(d)}, we have pE,D(e,0) = (1+α)η(e)u1(e,0)/(Nα), pE,D(e,1) = (1+α)η(e)u1(e,1)/

N and pE(e) = (1 + α)η(e){u1(e,0) + αu1(e,1)}/(Nα). Combining these results, we have

E

(
∂Seff

∂α

)
= E

[
−b′

5(e) +
(

b2 − b0

1 − b3

)
u1(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2

]
= E

[−u2(e,1)u1(e,0) + u2(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2

]
+

(
b2 − b0

1 − b3

)
E

[
u1(e,0)u1(e,1)

{u1(e,0) + αu1(e,1)}2

]
.

Plugging in the expressions for b0, b2, b3, we obtain

b2 − b0

1 − b3
=

[∫
pE(e)u1(e,0){u2(e,0) + u2(e,1)α}

{u1(e,0) + u1(e,1)α}2
dμ(e) −

∫
pE(e)u2(e,0)

u1(e,0) + u1(e,1)α
dμ(e)

]
/[∫

pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dμ(e) −

∫
pE(e)u2

1(e,0)

{u1(e,0) + u1(e,1)α}2
dμ(e)

]
=

∫
αpE(e){u1(e,0)u2(e,1) − u1(e,1)u2(e,0)}

{u1(e,0) + u1(e,1)α}2
dμ(e)

/[∫
αpE(e)u1(e,0)u1(e,1)

{u1(e,0) + u1(e,1)α}2
dμ(e)

]

= E

[ {u1(e,0)u2(e,1) − u1(e,1)u2(e,0)}
{u1(e,0) + u1(e,1)α}2

]/
E

[
u1(e,0)u1(e,1)

{u1(e,0) + u1(e,1)α}2

]
,

thus, we have E(∂Seff/∂α) = 0.
The fact that E(∂Seff/∂α) = 0, in combination with α̂ − α = op(1), yields{

E

(
∂Seff

∂βT

)
+ op(1)

}
n1/2(β̂ − β0) = −n−1/2

n∑
i=1

Seff(xi) + op(1).

Thus, we indeed have n1/2(β̂ − β0) ∼ N(0,V ) asymptotically.
In fact, the classical N1/2(β̂ − β0) ∼ N(0,V ) also holds. This is because

N1/2(β̂ − β0) − n1/2(β̂ − β0) = m

N1/2 + n1/2
(β̂ − β0) → N0.9

N
n1/2(β̂ − β0) → 0
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when N → ∞. Thus, our estimator is semiparametric efficient. Because of the equivalence result
developed in Section 2, the estimator is also semiparametric efficient for case-control data. We
split the data set into two groups with sizes m and n for simplicity of the asymptotic analysis. In
reality, one can certainly use the whole data set in each stage of the estimation.
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