Testing change-point in logistic models with covariate
measurement error

Yanyuan Ma
Department of Statistics, Texas A&M University
College Station, TX 77845, USA

Abstract

We test the presence of a change of slope in a logistic regression model with covariate
measured with errors. Under the null hypothesis of no change-point, estimation of a sin-
gle intercept and slope can be carried out straightforwardly by various conditional score
based methods. If the alternative hypothesis holds and indeed there exists a change-point,
estimation becomes more challenging, nevertheless it can still be carried through via semi-
parametric procedures. However, this does not warrantee a score type of testing procedure
due to a degeneration of the estimating equation for the change-point location under the
null. The usual Wald type tests fail as well due to another degeneration caused by the
singularity of the information matrix. We propose a Wald type test without requiring to
estimate the change-point location. Numerical results show the satisfying performance of

the proposed testing procedure in terms of both level precision and power.
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1 Introduction

Consider the model
Pr(Y = 1|1X) = M{B1 + B X + B3(X — ) [(X > )}, (1)

where h(t) = 1/(1 +e*). When (35 = 0, this is a familiar logistic regression model. When
B3 # 0, the linear function has a change of slope at the point ¢, hence (1) is referred to
as a change-point model. Change-point models often arise in various practical situations.
For example, in assessing the possibility of a patient cure under a treatment depending on
an individual’s biomarker, one might suspect that for patients with the biomarker value
above a certain threshold, the treatment works more or less effectively. Hence it is often
important to verify if this is indeed the case and if so, what is the threshold value. This
has become increasingly important in the personalized medicine era since often two or
more drugs exist for a same symptom and a more efficient administration strategy is to
use a specific medication in the most responsive patient group. Similar examples come
from toxicology. It is known that exposure to high does of radon has a direct link with the
occurrence of lung cancer. A legitimate question to ask is what exposure level is the critical
point where risk increases dramatically, since a complete elimination of the exposure is very
unlikely.

Both problems can be modeled as the logistic change-point model given in (1), where
as soon as the covariate reaches the change-point ¢, the rate of the response-covariate
dependence, represented by the slope, changes provided that (33 # 0. Another common
aspect of these two examples is that both the biomarker and the radon exposure level can
only be measured imprecisely. To improve the precision, often repeated measurements are
taken and the average of these measurements are taken as a better measurements. This
naturally leads to an errors-in-variables problem, where we assume the measurements are

related to the true yet unobservable variable X through

W=X+U0, (2)



and we typically assume U to be normally distributed with mean zero. Taking advantage
of additional information such as repeated measurements, other instrumental variables or
validation data information, we can estimate the variance of U in the data preprocessing
stage. Because of these common practices, from here on, as far as the change-point problem
is concerned, we can treat the distribution of U to be known.

The display (1) together with (2) form the central model of our problem. We denote
the observations (W;,Y;) for i = 1,...,n. Our goal is to, firstly, identify if a change-point
really exists, and secondly, to identify the location of the change-point if such a change-
point indeed is present. We first note that to establish or eliminate the existence of the
change-point is a problem of testing Hy : 83 = 0 versus Hy : 83 # 0. If 83 = 0, (1) simplifies
to Pr(Y = 1|X) = h(B + (2X), which is a familiar linear logistic regression model, and
various methods exist to estimate [, 3, without imposing a distributional assumption on
X, see Carroll et al. (2006). When (3 # 0, (1) deviates away from the generalized linear
model framework and a sufficient complete statistic no longer exists. This implies that the
traditional conditional score type of methods will no longer applicable and we will have to
rely on the semiparametric methods developed in Tsiatis and Ma (2004). An additional
complexity here is that the location of the change, ¢ is also unknown and the regression
function is not smooth with respect to ¢. Thus, even the semiparametric methods cannot
be straightforwardly used without modification.

Even if we are able to perform the estimation both under the null and under the al-
ternative, it is not immediately clear how the testing procedure proceeds. This is caused
by a rather special degeneration phenomenon specific to the change-point problem in (1).
For example, a natural testing strategy for measurement error models is a score type pro-
cedure proposed in Ma et al. (2010). This procedure requires estimating “all” the free
parameters under the null model and then plugging them into the estimating equations
under the alternative. Obviously, under the null model, the change-point degenerates to a

simple linear logistic model, hence the free parameter c is not estimable. This immediately



excludes the score type of testing procedure. A second natural procedure is the Wald type
test. In fact, as long as we can estimate the parameters at a root n rate with the usual
asymptotic normality property, a Wald test statistic can be easily formed by normalizing
the square of the corresponding estimate with its asymptotic variance, and comparing it
with the chi-square quantiles. However, a closer look at the structure of the model reveals
that this is again not applicable due to the degenerated asymptotic variance-covariance
matrix. Specifically, when the parameter (5 is close to zero, the corresponding estimat-
ing equation with respect to c¢ is almost identically zero. This results in a rank deficient
derivative matrix, which causes the information matric to become singular. This in turn
renders the estimation variance-covariance matrix to be unobtainable, hence the standard
Wald test also breaks down.

Based on sound mathematical and statistical intuition, we propose a surprisingly simple
treatment to the problem. We explain the main idea and describe the working procedure
for both the testing and the estimation of the change-point in Section 2. A simulation
study is conducted to illustrate level precision and power of the proposed test procedure
and the performance of estimation in Section 3. Finally, in Section 4, we provide some

further discussion on the related issues.

2 Methodology

2.1 Estimation

We first provide an overview of the semiparametric estimation procedure for a general
regression model with measurement error. We write the regression model as py|x (y|x; )
where 3 contains all the unknown parameters. Thus, under null, 3 = (8, 32)7, and under
alternative, 5 = (01, 82, 83, ¢)*. Under the assumption that py |y (y|z; 3) is differentiable
with respect to 3. We perform the following procedure. First, we denote the score function

dlog py|x (y|x; B)/0p evaluated at (X;,Y;) as S§(X;,Y;; 3). We now adopt a model as the



probability density function (pdf) for X, f%, and use E* to denote expectations calculated
using f%. Note that f% does not need to be the true pdf of X. We then solve for a(X),

which is a function that satisfies
E[E{a(X)|W, Y }X] = E[E*{S5(X;, Y3 8)[W, Y }] X].
Finally, we form v (w;, y;; 5) through
D(wi, yi; B) = E{S5 (X3, Yis B)IW = w;, Y =y} — E{a(X)|W = w;, Y = y;}

for i = 1,...,n. The estimation of 3 is subsequently obtained via solving the estimating

equation

n

> p(wi, i B) = 0.

i=1
Typically, no closed form of E*{S g (X;,Y:; B)|W, Y} exists even under normal measurement
error, therefore, the calculation of the score function and its conditional expectation needs
to be carried out numerically. As a consequence, a(X) also has to be obtained numerically.
In Tsiatis and Ma (2004), it is shown that the above procedure is guaranteed to yield a
consistent estimator for (.

Our difficulty here lies in the fact that our pdf is not differentiable with respect to [.
Specifically, the change-point model is non-differentiable with respect to the change-point
location ¢. There are two approaches to circumvent this problem. The first is to replace

the sharp change with a smooth change. For example, we consider the model

Pr(Y =1|X)
= h{B1 + BoX + B5(X — c+u)?/(Au)(c —u < X < c+u) + F5(X — ) I(X > c+u)},
where u is a small positive constant. It is easy to verify that for any positive u, the above

model is continuous and differentiable with respect to ¢, and when v — 0, the model

approaches our original model (1). Therefore we can work with the smooth model with



a small u value instead of the original model. Because the approximation of the smooth
model to the original model is a numerical error issue instead of a statistical issue, we can
always choose u sufficiently small so that the numerical error is ignorable in comparison to
the statistical error.

A second approach is even simpler. Note that the non-differentiability only occurs at
¢ = X and is caused by the difference of the left derivative and right derivative with
respect to ¢. This implies that at all other ¢ values, the score function with respect to
¢ does exist. In fact, when X # ¢, the score function with respect to ¢ can be easily
written as S.(X,Y;08) = [Y — h{f1 + (o X + 53(X — ) [(X > ¢)}|(=F2I(X > ¢). In the
procedure of the estimation, the score function only appears in its integrated form via
E*{Sg (X;,Y:; B)|[W, Y}, where the expectation is calculated under a model we mandate.
Thus, we can easily propose a model f%, for example, f% is continuous, so that {X = ¢}
is a zero measure set hence its value has no impact in the subsequent calculation.

The above two procedures are equally effective in practice and can be used to carry out

the estimation of § under the alternative.

2.2 Testing

Our next task is to find a testing procedure that does not suffer from the pitfalls mentioned
before. A quick fix of the score type test seems not obvious. In an attempt to fix the
Wald test, recall that the breakdown of the Wald test is caused by the singularity of
the asymptotic information matrix. To this end, a natural thinking is to give up using
the asymptotic property, and use an alternative bootstrap based method to obtain the
estimation variance. However, our practical experience indicates that this does not solve
the problem either, since the bootstrap estimation of the variance will also be close to be
singular. This in turn creates numerical instability in the variance estimation. Since the
Wald test statistic is formed via T = B\g / \Ta\r(@,), a crude estimate of V&I‘(B\g) certainly will

cause the T" to be very different from Eg / Var(ag), hence leads to an imprecise testing level.



To overcome the above difficulties, a very simple observation turns out to be beneficial.
We point out the fact that if indeed, no change-point exists, then we can fix ¢ at an arbitrary
value ¢,, model (1) with this fixed ¢, value will still have 83 = 0. If on the other hand, there
is indeed a change-point existing at ¢, then even if we fix ¢ at an arbitrary value ¢, that
may be different from ¢, model (1) with this fixed ¢, value will still have 33 # 0, although
the slope change will become smaller no matter ¢, < ¢ or ¢, > c¢. This motivates us to
propose a simple testing procedure. We first arbitrarily fix a value for ¢, say ¢ = ¢,. Then,
treating ¢ as known, we can perform a test on (33 = 0 using, say, a Wald test based on the
semiparametric estimation procedure. One can easily form the test statistic T = Bg / \7&7(53)
and compare it against the chi-square distribution with 1 degree of freedom. Formally, the
p-value equals 1 — x3(7T'), where x3(-) represents the cumulative distribution function of
the chi-square distribution with one degree of freedom. This test should yield the correct
level of significance, while it could suffer some power lost. Intuitively, the further away c,
is from ¢, the more the loss of power will occur.

If Hy is not rejected, the procedure is formally completed. We could follow with an
estimation of (31, 35 is desired. However, if Hj is rejected, a natural subsequent question
is to identify the location of the change-point. This is to estimate ¢ and make inference.
It can be performed using the modified semiparametric estimator described in Section 2.1.
The estimation and inference is now no longer a pathologic problem in theory because
the alternative is established. However, in practice, it can still be difficult depending on
how large the value (3 is. Intuitively, if g3 is large, the change is more dramatic, hence
it is relatively easy to identify where this change happens. On the contrary, if the change
is fairly small, then with the additional measurement error, it is very difficult to identify
where this slight change happens.

We emphasize here that if the proposed model f% (z) is true, the above procedure yields
the optimal estimator for ¢, hence no improvement is possible. This is equivalent to say that

even if unsatisfactory performance of the estimation of ¢ happens, it is an inherent property



of the problem and no method exists that will improve it. On the other hand, if f%(x) is
not true, the estimation is still consistent. Obviously, estimating fx(z) is no easy task. In
addition, from our experience, the semiparametric estimation property of the parameter 3
is often very insensitive to the proposed model f%(x). Thus, in practice, we recommend to
simply use the estimation and inference result from the modified semiparametric estimation

procedure.

3 Simulation

We conduct a simulation study to illustrate the proposed methodology. In this simulation,
we generated the X;’s from a uniform distribution between 0 and 3, and the measurement
error U;’s from a normal distribution with mean zero and standard deviation 0.04. We
constructed both the null model data set with § = (—1.5,1) and three alternative model
data sets. The change-point in all three cases are ¢ = 1.5 while the 33 values are respectively
1.5,1 and 0.5, representing a dramatic, moderate and small change of the slope at c. We
experimented with a pre-decided ¢, value to be 0.75,1.5 and 2.25 respectively. A sample
size of n = 1000 is used and all results are based on 1000 simulations.

The result of the testing and estimation results are illustrated in Tables 1 to 4. From
the results under Hy in Table 1, we can see clearly that the level precision is very close to
the nominal whether or not we set ¢, = ¢ and whether or not we set f% to the true fx.
This indicates the consistency of the test hence the validity of our method. The results in
Table 2 to 4 convey several messages on the power of the test. First. Whether or not we
have set ¢, = ¢, the test has certain power to detect the alternative. Not surprisingly, when
c. = ¢, the power is largest, and it decays when ¢, deviates away from c. Second, when
the slope change represented by (3 is large, the performance is better. This is reflected
in the power of the test, in the precision of the estimation variance assessment and in the

95% confidence interval coverage probability. Finally, change-point location is relatively



difficult to estimate (the last element in 3 is the change-point location ¢). Even under the
alternative, where the singularity of the information matrix is not an issue, the estimation
is very unstable. This is especially clear when the slope change is small as in Table 4 or
when we target at assessing the tail of the variance estimation as in the 95% coverage

results in Tables 2 to 4.

4 Discussion

We have proposed a relatively simple procedure to test the existence of a change-point in
the logistic regression context with covariate measurement error. The unique aspect of the
test is to require pre-fixing a candidate change-point location and then proceed with this
candidate location as if it is the true location.

Although we can establish the consistency of the test, this certainly raises the concern
about the power loss. At a first look, this power loss seems avoidable via a usual multiple
testiing procedure. For example, we set the change-point at several candidate change-point
locations and define a new test statistic to be the maximum of the collection of the test
statistics at each of these locations. However, the serious issue here is the null distribution
of this new test statistic. The asymptotic distribution of the resulting test statistic is no
longer obvious, and a traditional bootstrap method fails to produce a sample distribution
either. This is because under covariate measurement error, we are not able to generate
data under a null model without observing the X;’s or knowing the distribution of X;’s.
One could argue that it is still possible to estimate fx through a deconvolution procedure,
but it is known to yield very slow rate (Carroll and Hall, 1988), hence it is not clear it will
actually lead to a gain in the final testing procedure.

A much simpler way exists to reduce the power loss. Specifically, we can choose several
candidate changepoints, consider the concatination of the (3 at these changepoints as a new

parameter vector and test the vector value equal to zero. Because the essential idea for



the vector testing is identical to what is presented in the main text while computationally

more complex, hence we do not further expand on the details.
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Table 1: Level precision of the test and estimation results in the simulation. True pa-
rameter values (), average of the estimated parameter values (B), empirical standard
deviation (sd), average of the estimated standard errors (sd) and coverage probability of
95% confidence intervals (95%) are reported. Sample size n = 1000, results based on 1000

simulations.

Uniform f% Normal f%

Testing

Ca 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2
0.75 | 0.010 0.052 0.104 0.206 | 0.010 0.051 0.107 0.205
1.5 | 0.008 0.061 0.108 0.207 | 0.006  0.052 0.108 0.208
2.25 | 0.012  0.050 0.098 0.209 | 0.013  0.051 0.100 0.208

Estimation
Bo | -15 1 - - 1.5 1 . -
B3 |-1.5061 1.0017 - - |-1.5087 1.0033 - -
sd | 0.1469 0.0877 - - | 01472 0.0878 - -
sd | 0.1456 0.0855 - - | 01458 0.0857 - -
95% | 95.1% 95.3% - - | 94.9%  95.3% - -
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Table 2: Power of the test and estimation results in the simulation for large slope change.
True parameter values (), average of the estimated parameter values (B), empirical stan-
dard deviation (sd), average of the estimated standard errors (sd) and coverage probability
of 95% confidence intervals (95%) are reported. Sample size n = 1000, results based on

1000 simulations.

Uniform f% Normal f%

Testing

Ca 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2
0.75 1 0.592  0.785 0.859 0.920 | 0.588  0.778 0.856 0.921
1.5 | 0.869 0953 0979 0.992 | 0.867 0.955 0.979  0.992
2251 0319 0.677 0.802 0903 | 0.313 0.673 0.801 0.899

Estimation

-1.5 1 1.5 1.5 -1.5 1 1.5 1.5
-1.4967 0.9824 1.6089 1.5193 | -1.4985 0.9832 1.6205 1.5207
sd | 0.2096 0.2313 0.4494 0.1739 | 0.2105 0.2339 0.5033 0.1824
sd | 0.2080 0.2246 0.4574 0.1796 | 0.2084 0.2250 0.5326 0.1737
95% | 94.3% 94.6% 96.5% 59.4% | 93.7% 94.1% 96.7% 56.7%

@) S°

12



Table 3: Power of the test and estimation results in the simulation for moderate slope
change. True parameter values (f3y), average of the estimated parameter values (B\), em-
pirical standard deviation (sd), average of the estimated standard errors (sAd) and coverage
probability of 95% confidence intervals (95%) are reported. Sample size n = 1000, results

based on 1000 simulations.

Uniform f% Normal f%
Testing

Ca 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2
0.75 | 0.289 0.528 0.651 0.770 | 0.284  0.525 0.646  0.767
1.5 | 0558 0.779 0.873 0927 | 0.560  0.781  0.871  0.927
225 | 0.167 0466 0.621 0.7539 | 0.167  0.457 0.617 0.754

Estimation

-1.5 1 1 1.5 -1.5 1 1 1.5
-1.4927  0.9760 1.0988 1.5240 | -1.4961 0.9781 1.0993 1.5214
sd | 0.2034 0.2310 0.3955 0.2195 | 0.2047 0.2233 0.3980 0.2184
sd | 0.2070 0.2262 0.4177 0.2610 | 0.2077 0.2260 0.4203 0.2529
95% | 94.5% 94.4% 96.5% 54.6% | 94.8% 94.3% 96.6% 54.7%

@) S°
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Table 4: Power of the test and estimation results in the simulation for small slope change.
True parameter values (), average of the estimated parameter values (B), empirical stan-
dard deviation (sd), average of the estimated standard errors (sd) and coverage probability
of 95% confidence intervals (95%) are reported. Sample size n = 1000, results based on

1000 simulations.

Uniform f% Normal f%

Testing

Ca 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2
0.75 ] 0.066  0.190 0.277 0423 | 0.064 0.189 0.275 0.419
1.5 | 0.127  0.310 0.424 0.586 | 0.123  0.307 0.423  0.585
225 0.050 0.184 0.281 0429 | 0.061  0.180 0.277  0.426

Estimation

-1.5 1 0.5 1.5 -1.5 1 0.5 1.5
-1.5005 0.9884 0.5545 1.5266 | -1.5044 0.9918 0.5446 1.5225
sd | 0.2007 0.2093 0.3882 0.2905 | 0.2005 0.2080 0.3854 0.2703
sd | 0.2061 0.2274 0.4107 0.7578 | 0.2090 0.2213 0.5056 0.8558
95% | 93.9%  92.0% 91.4% 44.0% | 94.3% 92.0% 91.0% 44.7%

@) S°
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