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We derive constructive locally efficient estimators in semiparametric measurement error models. The setting is one in which the likelihood
function depends on variables measured with and without error, where the variables measured without error can be modeled nonparametri-
cally. The algorithm is based on backfitting. We show that if one adopts a parametric model for the latent variable measured with error and
if this model is correct, then the estimator is semiparametric efficient; if the latent variable model is misspecified, then our methods lead to
a consistent and asymptotically normal estimator. Our method further produces an estimator of the nonparametric function that achieves the
standard bias and variance property. We extend the methodology to allow estimation of parameters in the measurement error model by ad-
ditional data in the form of replicates or instrumental variables. The methods are illustrated through a simulation study and a data example,
where the putative latent variable distribution is a shifted lognormal, but concerns about the effects of misspecification of this assumption
and the linear assumption of another covariate demand a more model-robust approach. A special case of wide interest is the partial linear
measurement error model. If one assumes that the model error and the measurement error are both normally distributed, then our estimator
has a closed form. When a normal model for the unobservable variable is also posited, our estimator becomes consistent and asymptotically
normally distributed for the general partially linear measurement error model, even without any of the normality assumptions under which
the estimator is originally derived. We show that the method in fact reduces to a same estimator as that of Liang et al., thus demonstrating a
previously unknown optimality property of their method.
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1. INTRODUCTION

A common practice in facilitating increased model flexibility
is through nonparametric modeling, resulting in widely used
semiparametric models including partially linear models, gen-
eralized partially linear models, or semiparametric models con-
taining a single index component. Measurement error problems
in such a context are less well studied than their parametric
counterparts, probably due to the difficulty of handling multi-
ple infinite-dimensional parameters. In this article we consider
a class of such semiparametric measurement error models. We
construct estimators for the parametric part of the model that
are root-n consistent and asymptotically normally distributed
and also for the nonparametric part of the model that enjoys
the usual bias and variance properties of the nonparametric es-
timation. We assume a parametric specification for the mea-
surement error part of the model. The methods are based on
a further parametric specification for the latent variable; if this
model specification holds, then our methods are semiparamet-
ric efficient, whereas if the latent variable model is misspeci-
fied, then we still obtain root-n–consistent and asymptotically
normal estimators. As far as we know, this is the first article
on semiparametric measurement error models that proposes a
general methodology for consistently estimating parametric and
nonparametric parts without having to resort to a deconvolution
method or to correctly specify a distributional model for the
variable measured with error.
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An example of such problem is as follows. In the Framing-
ham Heart Study data (Kannel et al. 1986), consider a logistic
regression of coronary heart disease, Y , on true systolic blood
pressure, X, and age, Z, among the nonsmokers. The main inter-
est is in the effect of systolic blood pressure on coronary heart
disease. A model that allows for a flexible shape in age is

Pr(Y = 1|X,Z) = H{BX + θ(Z)}, (1)

where H(·) is the logistic distribution function. Of course, true
systolic blood pressure is not observable, and instead we ob-
serve W , measured blood pressure. As described by Carroll,
Ruppert, Crainiceanu, and Stefanski (2006, chap. 5), a reason-
able model relating W and X is

log(W − 50) = log(X − 50) + U, (2)

where U is normally distributed with mean 0 and variance σ 2
u :

Carroll et al. estimated σ 2
u = .0126 based on 1,615 df, so that

for the purposes of illustration, we consider σ 2
u as known. Al-

though earlier analysis (Carroll et al. 2006) has assumed a linear
model for the age effect, our analysis will show that the linear-
ity assumption is somewhat violated, and hence the inclusion of
an arbitrary function θ(Z) is needed.

There are various strategies for analyzing the model (1)–(2).
An obvious and reasonable approach for this particular dataset
is to make the further assumption that log(X − 50) is nor-
mally distributed independently of Z, although a moments
analysis suggests that the distribution of this transformed vari-
able is heavier-tailed than the normal, with a kurtosis of
approximately 9.0. We then have a fully specified semipara-
metric model, and thus we would typically apply a standard
semiparametric method, such as profile likelihood (Severini
and Staniswalis 1994) or backfitting (Chen, Linton, and van
Keilegom 2003).

The main point of our article is illustrated by the follow-
ing considerations. Assuming that log(X − 50) is normally
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distributed implies the assumption that X is a shifted log-
normal random variable. However, there is inevitable concern
that the analysis will be sensitive to this assumption; the fact
that log(X − 50) has a kurtosis greater than 8.0 indicates a
t-distribution with approximately 5 df. A good discussion of
this issue has been given by Gustafson (2004, chap. 4.6). This
concern is a major motivation for the class of functional mea-
surement error methods, including the SIMEX estimator of
Cook and Stefanski (1995), which is an approximately con-
sistent estimator. In contrast, we seek methods that are fully
consistent and semiparametric efficient when the shifted log-
normal assumption is true and remain fully consistent when the
assumption is false.

Our method is based on a computationally convenient back-
fitting method for estimating θ(•), in conjunction with kernel-
based local polynomial methods. Denote the response variable
as Y , the predictor measured with error as X, and predictors
measured without error as (S,Z). The likelihood function for Y
given (X,S,Z) is

[Y|X,S,Z] = p{y|x, s, z,B, θ(z)} (3)

for some unknown function θ(z) and parameter B. But instead
of observing X, we observe W , which is conditionally indepen-
dent of Y given (X,S,Z). The likelihood function of W given
(X,S,Z) is p(w|x, s, z, γmem) depending on a parameter γmem.
Often γmem can be estimated using additional information. Here
we separate the covariates measured without error into S and Z
to allow both parametric and nonparametric entry of these co-
variates. Throughout the article, S can be ignored without af-
fecting understanding of the methodology.

To complete a parametric likelihood specification, we need
a model for the unobservable X given (S,Z), which we denote
by pc(x|s, z, ξlatent) depending on a parameter ξlatent, where the
subscript means conjectured. We assume that ξlatent can be esti-
mated at root-n rate by an estimator, ξ̂latent. We show how to
construct estimators of B such that the following conditions
hold:

• Whether or not pc(x|s, z, ξlatent) is correct, the estimator is
consistent and asymptotically normally distributed, with
limiting distribution independent of the method for esti-
mating ξlatent. If pc(x|s, z, ξlatent) is correct, then the esti-
mator is semiparametric efficient.

• For any chosen distributional model of X given (S,Z), the
estimator achieves the minimal estimation variance under
such a model. That is, no further improvement for esti-
mating B can be achieved through improved estimation
of θ(Z).

One interesting example is the partially linear model with
measurement error Y = Xβ + θ(Z) + ε and W = X + U, where
both ε and U are assumed to be normal. When θ(Z) is replaced
by a constant θ in this model, Stefanski and Carroll (1987,
eq. 3.5) derived an efficient estimator. We generalize this work
to the partially linear model, deriving the semiparametric ef-
ficient estimator. When the latent variable X is also assumed
to be normal, the resulting estimator is explicit and enjoys the
robustness property of being consistent and asymptotically nor-
mal even if all of the normality assumptions are violated. We
also show that this estimator is the same as one proposed by

Liang, Härdle, and Carroll (1999), thus characterizing their es-
timator in terms of the optimality/suboptimality property under
different conditions.

The article is organized as follows. In Section 2 we describe
the estimating equations approach for the parametric measure-
ment error models of Tsiatis and Ma (2004) and then define
our methodology. Although our backfitting estimator can build
on any consistent estimator of a parametric measurement error
model, we choose to use their estimator due to the estimator’s
general applicability and its local efficiency. We give our main
results in Section 3, with the limiting distribution of the estima-
tor in Section 3.1, the local efficiency property in Section 3.2,
the partially linear model in Section 3.3, and implementation
of the methods in Section 3.4. In Section 3.5 we describe how
the results change if the distribution of the measurement error
needs to be estimated. We focus on additive measurement error,
with either replicates of W (Sec. 3.6) or instruments (Sec. 3.7).
In Section 4 we describe a simulation study, and in Section 5
we analyze the Framingham data. We give concluding remarks
in Section 6, and collect all technical details in an Appendix.

2. PARAMETRIC ESTIMATING FUNCTIONS
AND METHODS

Let Y = (Y,W,S,Z) be the observed data. Consider the spe-
cial situation of (3) when θ(z) ≡ α. Let B0 and α0 be the true
parameters in this model, and let θ0(z) be the true function.
Thus θ0(z) = α0. In what follows, for simplicity we assume
that the true value for the parameter γmem in the model for W
given (X,S,Z), γ0,mem, is known, and hence we suppress γmem;
see Section 3.5 for a discussion on how to relax this condi-
tion. We also assume that there is an estimator ξ̂latent such that
n1/2(̂ξlatent − ξ∗,latent) = Op(1) for some ξ∗,latent; if the model
for X given (S,Z) is correctly specified, then ξ∗,latent = ξ0,latent,
the true value of ξlatent.

Tsiatis and Ma (2004) constructed estimating functions
LB(•) for B and �θ(•) for α that identify (B0, α0). Here
we use the notation �θ instead of �α to hint at the effect
of �θ on estimating θ(Z) in the nonparametric case. Let
SB(•) and Sθ (•) be the log-likelihood scores for B and θ com-
puted under pc(x|s, z), the conjectured model for X given (S,Z),
that is, SB(•) = ∂ log

∫
pc(x|s, z)p(w|x, s, z)p(y|x, s, z)dx/∂B

and Sθ (•) = ∂ log
∫

pc(x|s, z)p(w|x, s, z)p(y|x, s, z)dµ(X)/∂θ .
Let expectations computed under the true model and the as-
sumed model for X given (S,Z) be denoted by “E” and “E∗.”
Then there exist functions aB(X,S,Z) and aθ (X,S,Z) such that

E{SB(•)|X,S,Z} = E
[
E∗{aB(X,S,Z)|Y}|X,S,Z

]
(4)

and

E{Sθ (•)|X,S,Z} = E
[
E∗{aθ (X,S,Z)|Y}|X,S,Z

]
, (5)

and form LB(•) = SB(•) − E∗{aB(X,S,Z)|Y} and �θ(•) =
Sθ (•) − E∗{aθ (X,S,Z)|Y}. In particular, it follows that

0 = E{LB(Y,B0, α0, ξ∗,latent)|S,Z} (6)

and

0 = E{�θ(Y,B0, α0, ξ∗,latent)|S,Z}. (7)

Equations (6) and (7) form the backbone of our method that
allows for a general unknown function θ(z). Let K(z) be a
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smooth symmetric density function, let h be a bandwidth, and
define Kh(z) = h−1K(z/h). Then for every (B, ξlatent), define
θ̂ (z0,B, ξlatent) as the solution α to the local constant estimat-
ing equation

0 =
n∑

i=1

Kh(Zi − z0)�θ {Yi,B, α, ξlatent}. (8)

The estimate B̂ of B is defined as the solution to

0 =
n∑

i=1

LB{Yi,B, θ̂ (Zi,B, ξ̂latent), ξ̂latent}. (9)

Equations (8) and (9) represent a type of backfitting algorithm,
as opposed to the more commonly studied profile likelihood
approaches (see Chen et al. 2003).

3. MAIN RESULTS

Our results split into a series of steps. We first describe
the limiting distribution of the estimates of B0 when γ0,mem

is known; recall that γmem is the parameter associated with
the measurement error model and γ0,mem is its true value. We
then describe the local semiparametric efficiency of our meth-
ods. Finally, we indicate the modifications necessary for the
case where that γmem must be estimated. We state all of the
results in the case where we use a local constant estimator
for θ(Z).

3.1 Main Asymptotic Expansion

Set the definitions that LBB is the partial derivative of LB
with respect to B, LBθ is the partial derivative of LB with
respect to θ , �θθ is the partial derivative of �θ with respect
to θ , and �θB is the partial derivative of �θ with respect to B.
With the argument (•) being {Y,B0, θ0(Z), ξ∗,latent}, also de-
fine 
(Z) = E{�θθ (•)|Z}, U(Z) = E{LBθ (•)|Z}/
(Z), and
θB(Z) = −E{�θB(•)|Z}/
(Z). Further define that

F = E
[
LBB{Y,B0, θ0(Z), ξ∗,latent}

+LBθ {Y,B0, θ0(Z), ξ∗,latent}θT
B(Z,B0)

]
. (10)

Theorem 1. Let Li,B(•) = LB(Yi,B0, θ0(Zi), ξ∗,latent}, and
similarly for other terms. Assume that the bandwidth h sat-
isfies nh4 → 0 and nh2 → ∞. Then, whether the model for
X given (S,Z) is specified correctly or not, the backfitting esti-
mator B̂ has the asymptotic expansion

−Fn1/2(B̂ −B0)

= n−1/2
n∑

i=1

{Li,B(•) − �i,θ (•)U(Zi)} + op(1). (11)

Hence n1/2(B̂ − B0) is asymptotically normally distributed
with mean 0 and covariance matrix F−1�F−T, where � =
cov{LB(•) − �θ(•)U(Z)}.

In Theorem 1, the requirement that nh4 → 0 is the under-
smoothing typically required for backfitting, a direct result of
the bias of the local constant estimator.

Remark 1. Theorem 1 states that regardless of the correct-
ness of the conjectured model for X given (S,Z), the estimator
is guaranteed to yield a root-n consistent estimator for B. Note
that although the conditional expectations involved in LB and
�θ can be under either the true or false model of p(X|S,Z),
the expectations involved in 
(Z), θB(Z), and U(Z) must be
calculated under the true p(X|S,Z) for (11) to hold. Also note
that θB(Z) = −U(Z) if LB and �θ are calculated under the true
model.

Remark 2. There are numerous possibilities for performing
inference about B0, Chen et al. (2003) described conditions un-
der which the bootstrap will be asymptotically valid for back-
fitting estimators. Alternatively, estimating equation ideas can
be used. The term F is easily estimated by the sample av-
erage of the terms in (10). The difficulty in implementing an
estimate of � via sandwich-type ideas is that it relies on an
estimate of U(Z), and this depends on the true model for X
given (S,Z). The device that we used was to estimate 
(Z)

and U(Z) by simple nonparametric regression devices, and
then define �̂ to be the sample covariance matrix of the terms
L̂i,B(•) − �̂i,θ (•)Û(Zi).

Remark 3. After obtaining the root-n consistent estimator B̂,
we can select a more standard bandwidth, h = O(n−1/5), and
perform one more iteration of (8) to obtain a nonparametric es-
timator of θ(Z) with standard bias and variance properties.

3.2 Local Semiparametric Efficiency

In our model, there are two infinite-dimensional nuisance pa-
rameters, θ(•) and the model for X given (S,Z). In Theorem 2
we show that the optimal efficiency with respect to θ(·) is al-
ready achieved in our estimator; the optimal efficiency with re-
spect to the model of p(X|S,Z) can be achieved if we posit the
model correctly. One implication of Theorem 2 is that there is
no further improvement possible by, for example, better esti-
mating θ(Z).

Theorem 2. The backfitting estimator B̂ is locally efficient
with respect to the assumed density function p(x|s, z, ξlatent) for
X given (S,Z). That is, it is semiparametric efficient if the con-
jectured model for X given (S,Z) is correct, and is consistent if
the conjectured model for X given (S,Z) is incorrect.

The proof is given in the Appendix. The calculations leading
to the proof of Theorem 2 are also useful in showing that when
the conjectured model for X is true, the limiting covariance ma-
trix of the estimate of B0 has a simple and familiar form. We
state the result in Corollary 1 and give the proof in the Appen-
dix.

Corollary 1. If the conjectured model is correct, then F =
−�, and the asymptotic covariance matrix of n1/2(B̂ − B0) is
−F−1 = �−1.

Remark 4. The referee asked us to compare our work here
with that of Liang, Wang, Robins, and Carroll (2004). Those
authors worked in a missing-data context instead of a mea-
surement error context, with the same two infinite-dimensional
components. They computed a double projection and found
it infeasible to implement. Thus they resorted to an ad hoc
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but computationally convenient approach that lacked full ef-
ficiency. We too gave up the double-projection approach and
replaced one of these projections with backfitting; however,
our method is locally semiparametric efficient. The methods of
proof in the two approaches are completely different.

3.3 Special Case: The Partially Linear Model

The partially linear model is Y = XTβ + θ(Z) + ε, where
ε = normal(0, σ 2

ε ). The parameter B = (βT, σ 2
ε )T. We assume

that W = X + U, where U = normal(0, ξlatent). As we shall see,
the normality assumption for ε and U is used only in the con-
struction of the estimators and does not affect their validity.

Define δ = W + Yξlatentβ/σ 2
ε . Following Stefanski and

Carroll (1987), the forms of LB and �θ are calculated as

LB(•) = (AT
1 ,A2)

T, (12)

A1 =
{

Y − δTβ + θ

1 + βTξlatentβ/σ 2
ε

}

E∗(X|δ),

A2 = Y2(1 + βTξlatentβ/σ 2
ε ) − 2Y(θ + δTβ)

− σ 2
ε + (δTβ + θ)2

1 + βTξlatentβ/σ 2
ε

,

where A1 is the component associated with β and A2 is asso-
ciated with σ 2

ε . E∗ is computed under the assumed model. In
addition,

�θ(•) = Y − δTβ + θ

1 + βTξlatentβ/σ 2
ε

. (13)

This is a locally efficient estimator when both p(W|X) and
p(Y|X,Z) are assumed to be normal. Expanding δ in terms of
W and Y , (12) and (13) become

A1 = Y − WTβ − θ

1 + βTξlatentβ/σ 2
ε

E∗(X|δ),

A2 = (Y − WTβ − θ)2 − σ 2
ε − βTξlatentβ

1 + βTξlatentβ/σ 2
ε

,

�θ = Y − WTβ − θ

1 + βTξlatentβ/σ 2
ε

.

If we posit a suitable model on X (e.g., X is normal) so that
E∗(X|δ) is a linear function of δ but is otherwise functionally
independent of θ(·), say a + bδ, then we find that

A1 = a(Y − WTβ − θ)

1 + βTξlatentβ/σ 2
ε

+ {
aθ (YW − WWTβ − θW + Y2σ−2

ε ξlatentβ

− Yσ−2
ε βTWξlatentβ − Yσ−2

ε θξlatentβ)
}

/(1 + βTξlatentβ/σ 2
ε ).

Specifically, when the model for X is posited to be
normal(µ,
), the expressions for a and b are as given in
the Appendix. The fact that b does not depend functionally
on θ will be useful later on. Under such conditions, it can be
verified that A1, A2, and �θ all have mean 0 even if we do not
have the normality for Y or W conditional on X. This implies
that as long as we posit a normal model for X, our estimator is

always consistent. In addition, if the true model p(X), p(W|X),
and p(Y|X,Z) are all normal, then our estimator is also efficient.

Although the estimator proposed here appears to be very dif-
ferent from that of the one in Liang et al. (1999), it is exactly
the same estimator. See the Appendix for a proof of the equiva-
lence.

3.4 Implementation

Implementation our method involves iterations of estimating
θ(z0) at z0 = Z1, . . . ,Zn from solving (8) and estimating B from
solving (9). Equations (8) and (9) are usually solved through a
Newton–Raphson algorithm, which would only require evaluat-
ing LB and �θ at fixed values of θ and B. However, except for
some special situations, such as in generalized linear models,
LB and �θ do not have a closed form. In fact, each evaluation
of LB and �θ requires solving for aB and aθ from the integral
equations (4) and (5).

We propose solving these integral equations using a dis-
cretization technique. To remain focused, we describe de-
tails of solving for aB(X,S,Z); the same technique applies to
aθ (X,S,Z) as well. We consider a set of grid points x1, . . . , xm

and try to obtain aB(xi,S,Z) for each observed value of (S,Z).
Under this scheme, denote pi(Y) = pX,S,Z|Y (xi,S,Z|Y), in
which case (4) becomes

m∑

i=1

aB(xi,S,Z)E{pi(Y)|X,S,Z} = E{SB(Y)|X,S,Z}. (14)

Setting X = x1, . . . , xm in (14) thus will provide m linear equa-
tions, and we subsequently solve the m-equation linear system
to obtain aθ (xi,S,Z), i = 1, . . . ,m.

The implementation of the discretization technique corre-
sponds to positing a discrete model for p(X|S,Z) and carry-
ing out the computation under this posited model. Note that
to ensure sufficient accuracy, we need to make sure that the
discretization points are sufficiently dense on the support of
the true p(X|S,Z). Alternative methods for solving the integral
equation also exist (see Kress 1999, chap. 15). Any suitable nu-
merical method for solving integral equations can be used to
solve (4) and (5), but determining the specific method to use
must be based on the specific problem.

3.5 Estimation of the Measurement Error Distribution

In practice, the parameter γ0,mem governing the measurement
error distribution of W given (X,S,Z) may be unknown and
must be estimated. We discuss two methods for doing this in
the situation of additive normal error. The first method applies
to cases with partial or complete replication. For this problem,
our methodology is readily extended, and asymptotics follow
from our previous results with only a slight change in notation.
The second method involves using instrumental variables. It is
not generally well known that instruments allow for estimation
of the measurement error variance, but this is possible.

3.6 The Use of Replicates

One basic idea is to form an estimating function for γ0,mem
and then append it to the estimating function LB(•). Con-
sider, for example, the standard additive measurement error
model Wij = Xi + Uij, where j = 1, . . . ,m, and assume that
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Uij ∼ normal(0, γ0,mem) are independent and identically dis-
tributed. In this case, define ψγmem(Wi1, . . . ,Wim, γmem) = (m−
1)−1 ∑m

j=1(Wij − Wi)
2 − γmem. Then, in place of LB(Y,B,

γmem, θ, ξlatent), we use

LB,mem(Y,B, γmem, θ, ξlatent)

= {
LT
B(Y,B, γmem, θ, ξlatent),

ψγmem(Wi1, . . . ,Wim, γmem)
}T

.

Our results in Theorem 1 apply with LB(•) simply replaced by
LB,mem(•).

This plug-in method enjoys the robustness properties of our
general methodology, but it need not be semiparametric effi-
cient, wherein we would need to include the unknown γ0,mem in
the parameter of interest B and change the full-data likelihood
to incorporate the replicates. This requires a rederivation of LB
and �θ . Let Wi = (Wi1, . . . ,Wim)T and let Yi = (Yi,Wi,Si,Zi)

be the observed data. Replace the parameter B with β and de-
fine the new B = (βT, γ T

mem)T. Using this new notation, the
form of the observed data likelihood does not change. Thus �θ

has exactly the same expression as in the case where γmem is
known; LB = (LT

β,LT
γ )T, where Lβ has exactly the same ex-

pression as LB in the known γmem case and Lγ is obtained by
replacing all of the

E

[
∂ log{p(Yi|Xi,Si,Zi, β, θ)}

∂β

∣
∣
∣Wi,Yi,Si,Zi

]

with

E

[
∂ log{p(Wi|Xi,Si,Zi, γmem)}

∂γmem

∣
∣
∣Wi,Yi,Si,Zi

]

in forming Lβ while keeping everything else unchanged.

3.7 Use of Instrumental Variables

A referee asked about the connection between our method-
ology and that of the instrumental variables work of Carroll,
Ruppert, Tosteson, Crainiceanu, and Karagas (2004). Although
there are many differences between our work and theirs, there
is one interesting connection, showing that our methodology is
also applicable to the instrumental variables problem. Suppose
that we have an additive measurement error model W = X + U,
where U is normally distributed with mean 0 and variance σ 2

u ,
which is treated as γmem. Suppose that in addition to the main
data (Y,S,Z,W), we also observe an instrument, Tinstru. Carroll
et al. (2004) considered this problem under certain conditions;
see their eqs. (11)–(13). Their model for the instrument is a
general varying-coefficient model of the form

Tinstru = α0(S,Z) + α1(S,Z)X + ν,

where ν has mean 0 and is independent of everything else. Us-
ing kernel techniques, they developed an estimate γ̂mem, and in
their theorems 3 and 4 they described an asymptotic expansion
n1/2(γ̂mem − γ0,mem) = n−1/2 ∑n

i=1 εui + op(1), where the εui’s
satisfy E(εui|Zi) = 0. They did a construction such that there are
random variables ε̂ui with the property that the sample moments
of the ε̂ui are consistent estimates of the sample moments of
the εui. Writing εui = εui(γ0,mem), the asymptotic distribution of
the estimate of B can be obtained as in Section 3.6 by append-
ing the “estimating function” Li,γmem(γmem) = εui(γ0,mem) +
γ0,mem − γmem.

In certain cases, a more explicit construction is possible.
Consider once again the partially linear model of Section 3.3.
Suppose that Z and X are scalar, and also that X and Z are inde-
pendent and Tinstru = α0 + α1X + ν. Then, assuming that all of
the covariances are nonzero, we can characterize σ 2

u as

σ 2
u = var(W) − cov(W,Tinstru) cov(Y,W)

cov(Y,Tinstru)
.

Write Y = (W,Y,Tinstru,W2,WTinstru,YW,YTinstru)
T. If we

consider the ensemble of moments and treat it as γmem, that
is,

γmem = {
E(W),E(Y),E(Tinstru),E(W2),

E(WTinstru),E(YW),E(YTinstru)
}T

,

then the estimating equation for γmem is Lγmem(Y, γmem) = Y−
γmem. As in Section 3.6, absorbing γmem into B and denoting
the original B as β , the estimating function becomes

LB(Y,B, θ) = {LT
β(Y, β, θ, γmem),LT

γ (Y, γmem)}T,

where the dependence of Lβ on γmem is through σ 2
u , which is

an explicit function of γmem.

4. SIMULATION STUDY

We illustrate the method using a small simulation study. Con-
sider a partially quadratic logistic relation in the central model
and normal additive measurement model, that is,

logit{Pr(Y = 1|X,Z)} = β1X + β2X2 + θ(Z),

where W = X + U and U = normal(0, σ 2
u ), with σ 2

u known.
In our simulation we set σu = .4, B = (β1, β2)

T = (.7, .7)T,
and θ(z) = .5 cos(z) − 1. We set the sample size n = 500 and
ran 1,000 simulations. We generated X from a normal distribu-
tion normal(µx = −1, σ 2

x = 1) independent of Z, and generated
Z from a uniform distribution uniform(0,π). Using this setup,
we can gain some insight into the effect of measurement error,
as follows. Let λ = σ 2

x /(σ 2
x + σ 2

u ) = .86 be the reliability ra-
tio, then the usual regression calibration approximation replaces
β1X +β2X2 by E(β1X +β2X2|W) = constant+λ{β1 +2β2(1−
λ)µx}W + β2λ

2W2. This suggests that the naive method that
ignores measurement error will have a limiting value for β1
of λ{β1 + 2β2(1 − λ)µx} ≈ .43 and a limiting value for β2 of
β2λ

2 ≈ .52, which are fairly close to what we found in our sim-
ulations.

We implemented the proposed semiparametric estimator un-
der two different posited models for p(X|Z), the true normal
model and a false model p(X|Z) = uniform(−4,2). The sup-
port of the uniform model is selected to practically agree with
the support of the true p(X), although the variance is quite
different. For illustrative purposes, we selected the bandwidth
as h = σ̂wn−1/3, where σ̂w is the estimated standard deviation
of W . Under the true model, the estimator should yield an effi-
cient estimator, whereas under the misspecified model, it should
still give a consistent estimator. The standard error estimates for
our method were computed as in Section 3.1, where the band-
width involved in calculating U(Z) is chosen as h = .5σ̂wn−1/5.

To compare other approaches with our method, we also im-
plemented the naive estimator, a regression calibration estima-
tor and a SIMEX estimator. The naive estimator simply fits the
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partially quadratic logistic model ignoring measurement error
and treating W as if it were X. The regression calibration esti-
mators were adopted from Carroll et al. (2006, chap. 4), where
we replaced X and X2 by estimates of E(X|W) and E(X2|W)

and then run a standard partially quadratic logistic regression.
To calculate E(X|W) and E(X2|W), we used the following de-
vice: we computed E(Xk|W) for k = 1,2 under the correct nor-
mal model. For both the naive estimator and the regression
calibration estimators, asymptotic standard errors were con-
structed as done by Severini and Staniswalis (1994).

We performed the SIMEX estimator following the descrip-
tion of Carroll et al. (2006, chap. 5), with the simulation step
carried out at five inflated measurement error scales, spaced
equally between σu and 2σu, with 100 replicates for each er-
ror scale. We used the standard extrapolant functions: linear,
quadratic, and rational linear. Note that SIMEX has two parts
when the measurement error is additive with known variance as
here. The first part is the actual estimation; in our case, studying
some of the simulated datasets suggests that the linear extrap-
olant is to be preferred, and so we confine our attention to it.
SIMEX also has a variance estimator; we used the linear ex-
trapolant for it as well.

The simulation results are presented in the upper part of
Table 1. The bias of the naive method is approximately in
line with the regression calibration approximation. As expected
from the theory, our methods provide relatively unbiased es-
timates whether computed with the correct model or with the
incorrect model, and inference for B is also approximately cor-
rect in both cases, in the sense that the coverage probabilities
were near the nominal 95%. As expected, the naive estimator
is severely biased, and the regression calibration estimator and
SIMEX estimator also have some bias. In a simulation not re-
ported here with sample size n = 1,000, we observed that the
bias, variance, and 95% confidence interval for our method im-
proved significantly, whereas the naive, regression calibration,
and SIMEX estimators all either deteriorated further or showed
no sign of improvement.

The simulation was repeated with θ(Z) = .5 cos(2Z) − 1,
where the nonparametric function has higher frequency and its
departure from linearity is more visible. Although the nonpara-
metric component here is harder to estimate, the results show

that the estimation of B is not very much influenced. The re-
sults are presented in the lower part of Table 1.

5. DATA ANALYSIS

We now analyze the Framingham data described in Section 1.
The parameter ξlatent in this problem contains the mean and
variance of log(X − 50). We estimate the mean by the sample
mean of the W∗

i = log(Wi − 50), whereas the variance estimate
is the difference of the sample variance of the W∗

i and σ 2
u . In

this scale the attenuation is .75, reflecting that roughly 1/4 of
the variability in measured log systolic blood pressure is due
to measurement error. The actual blood pressure data do not
closely follow a log-normal distribution (see Fig. 1, which gives
a q–q plot of the W∗

i ), so that, at least in principle, a likelihood
analysis might suffer from model misspecification.

We applied our methods to the Framingham nonsmoker data
under the models (1)–(2). We used various bandwidths, rang-
ing from 25% to 100% of the standard deviation of age (Z),
with no discernible effect on the estimate of β or its estimated
variance for either the analysis that ignored measurement er-
ror or our analysis. Roughly, independent of the bandwidth, the
analysis that ignored measurement error has a regression co-
efficient of .014 with an estimated standard error of .0040, and
our analysis accounting for measurement error had an estimated
regression coefficient of .019 with an estimated standard error
of .0045. Given the attenuation in the log scale, these numbers
are roughly what one would expect if the true X-data were log-
normal, a happy coincidence.

The estimated function θ̂ (·) was, as expected, more sensitive
to the bandwidth, because of the sparsity of responses Y = 1.
For example, if the bandwidth is half of the standard deviation
of age, then there were only four coronary heart disease cases
in the kernel window for the lowest age, leading to instability
in the fitted function. Because of this, for illustration purposes
here we used a larger bandwidth equal to the standard devia-
tion of Z. In this problem, age (Z) is only very weakly corre-
lated with blood pressure (X); see Figure 1, where the sample
correlation between Z and W is .22. This suggests that the fit-
ting functions θ(z) in age will not change shape much, which
is what happens (Fig. 2). The difference in the two functions

Table 1. Mean, Estimated Standard Error (SE), Empirical SE, and 95% Coverage of Four Classes of Estimators

β1 (= .7) β2 ( = .7)

Estimator p(X) Mean Estimated SE Empirical SE 95% Mean Estimated SE Empirical SE 95%

θ (Z ) = .5cos (Z ) − 1
Naive .3900 .1516 .1720 .4450 .4780 .0733 .0873 .2250
Regression calibration True .6292 .2124 .2263 .9020 .6431 .1089 .1174 .8570
SIMEX .5811 .2225 .2260 .8860 .6298 .1128 .1214 .8510
Semiparametric True .7205 .2873 .2772 .9470 .7264 .1721 .1557 .9390

False .7221 .2940 .2802 .9460 .7270 .1772 .1572 .9410
θ (Z ) = .5cos (2Z) − 1

Naive .3958 .1514 .1705 .4640 .4797 .0734 .0866 .2180
Regression calibration True .6364 .2113 .2244 .9190 .6453 .1081 .1164 .8540
SIMEX .5883 .2222 .2239 .8970 .6321 .1127 .1204 .8420
Semiparametric True .7268 .2844 .2759 .9510 .7284 .1699 .1554 .9400

False .7287 .2929 .2786 .9480 .7292 .1761 .1568 .9350

NOTE: The first class contains the naive estimator. The second class contains the regression calibration estimator when p(X) is posited to be the true model, that is, normal(−1, 1). The third class
contains the SIMEX estimator with linear extrapolation function. The fourth class contains two semiparametric estimators, where p(X ) is posited to be the true model [i.e., normal(−1, 1)] and a very
badly misspecified model [i.e., uniform(−4, 2)]. The true θ is θ (Z ) = .5 cos(Z ) − 1 (upper panel) and θ (Z ) = .5 cos(2Z) − 1 (lower panel). We generated 1,000 simulated datasets, with sample size
n = 500.
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(a) (b)

Figure 1. Framingham Heart Study Data. (a) q–q plot of the loga-
rithm of systolic blood pressure. (b) Plot of W , observed systolic blood
pressure, on Z , age, indicating a weak relationship between the two.

is easily explained. If we had changed the model to have logit
β0 +β1X +θ(Z) with θ(Z) constrained to have mean 0, then the
two functions almost overlap, so the difference seen in Figure 2
really reflects a difference in the intercept estimates.

6. DISCUSSION

We have constructed a locally efficient semiparametric esti-
mator for a general class of semiparametric models with mea-
surement errors, in which there are two infinite-dimensional
nuisance functions, the distribution of the latent variable X and
the nonparametric function θ(·). The essential idea is to com-
bine a parametric model estimator and a local kernel estimator
through backfitting, rather than doing two projections as might
be standard. The resulting backfitting-based estimator enjoys

Figure 2. Framingham Data Function Fits. The solid line is the fit ig-
noring measurement error and the dashed line is our estimate.

similar asymptotic properties as the corresponding parametric
model estimator; that is, a consistent parametric model estima-
tor will yield a consistent semiparametric model estimator, and
an efficient parametric model estimator will yield an efficient
semiparametric model estimator. When the estimator of Tsiatis
and Ma (2004) is adopted as the parametric model estimator,
the resulting semiparametric model estimator is guaranteed to
be consistent, with its only efficiency loss caused by the possi-
ble misspecification of p(X|S,Z).

To simplify the implementation, we have proposed us-
ing a local constant estimator in the local kernel estimating
equation. The results can, of course, be generalized to local-
polynomial kernel methods without any change in the asymp-
totic theory. Other nonparametric estimators (e.g., regression
splines, Fourier series) could be chosen; the asymptotic theory
should not change, but it would need to be rederived.

Instead of backfitting, we could also use the efficient score
to form an estimating equation, that is, replace LB(•) by
LB(•)−�θ(•)U(Z). The advantage of this estimating equation
is that we do not need undersmoothing of the kernel estimator—
standard results suggest that the asymptotic theory would not
change. However, as a practical matter, this approach is far
more computationally complex than backfitting, because of the
need for calculating a consistent version of U(Z) at each stage
of the process.

Although we constructed our method for a one-dimen-
sional Z, the method can be further extended to higher-
dimensional cases. One difficulty with such extension is the
familiar curse of dimensionality. We believe that our basic ap-
proach can be used within the single-index model context; this
will be taken up in a later article.

APPENDIX: TECHNICAL DETAILS

Define

S∗
eff(Y,B0, γ0,mem, θ0, ξlatent)

= {
LB(Y,B0, γ0,mem, θ0, ξlatent)

T,

�θ (Y,B0, γ0,mem, α0, ξ∗,latent)
T}T

.

We need that

0 = E

{
∂LB(Y,B0, γ0,mem, α0, ξ∗,latent)

∂ξlatent

∣
∣
∣S,Z

}

= E

{
∂�θ (Y,B0, γ0,mem, α0, ξ∗,latent)

∂ξlatent

∣
∣
∣S,Z

}

. (A.1)

To show (A.1), note that S∗
eff is a function in the nuisance tangent

space orthogonal complement defined by Tsiatis and Ma (2004). Their
results imply that E{S∗

eff|X,S,Z} = 0. Taking derivatives with respect
to ξ∗,latent and interchanging expectation and differentiation, we obtain

E

{
∂S∗

eff

∂ξT∗,latent

∣
∣
∣X,S,Z

}

+ E

[

S∗
eff

∂ log{p(Y|X,S,Z)}
∂ξT

latent

∣
∣
∣X,S,Z

]

= 0.

(A.2)

Because the conditional probability distribution function (pdf )
p(Y|X,S,Z) is free of ξlatent, the second term in (A.2) is 0, we have
that E(∂S∗

eff/∂ξT∗,latent|S,Z) = E{E(∂S∗
eff/∂ξT∗,latent|X,S,Z)|S,Z} = 0,

as claimed.
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Sketch of the Proof of Theorem 1

We provide only a sketch of the proof here. Precise conditions that
justify our calculations and the general backfitting algorithm have been
given by Claeskens and van Keilegom (2003) and Chen et al. (2003).

We assume the primitive conditions that Z has compact support
and that its density function is positive on that support. We also as-
sume that θ̂ (z,B, γmem, ξlatent) has the usual properties uniformly
in z in neighborhoods of (B0, γ0,mem, ξ∗,latent), and particularly that
θ̂ (z,B0, γ0,mem, ξ∗,latent) = θ0(z)+op(n−1/4) uniformly in z; this fol-
lows because nh4 → 0.

Using standard expansions and applying (A.1), it is easy to see that

−Fn1/2(B̂ −B0)

= n−1/2
n∑

i=1

[
LiB(•) +LiBθ (•){θ̂ (Zi,B0) − θ0(Zi)}

]

+ op(1). (A.3)

Note that F is not necessarily symmetric. Using standard results, we
have the usual local estimating equation expansion

θ̂ (z,B0, γ0,mem, ξ∗,latent) − θ0(z)

= (h2/2)θ
(2)
0 (z) − n−1

n∑

i=1

Kh(Zi − z)�iθ (•)/{ fZ(z)
(z)}

+ op
(
n−1/2)

, (A.4)

where �iθ (•) = Lθ {Yi,B0, γ0,mem, θ0(Zi), ξ∗,latent}. Consider the
two terms on the right side of (A.4) and substitute each of them
into (A.3). If we assume that nh4 → 0, then the first term disappears.
The second term is easily seen to be −n−1/2 ∑n

i=1 �iθ (•)U(Zi) +
op(1), from which the result follows immediately.

Preliminaries Necessary for Theorem 2

To prove Theorem 2, we first need to establish some relevant geo-
metric structures. Following Bickel, Klaassen, Ritov, and Wellner
(1993), we view the space of all the mean-0 functions f (Y) as a
Hilbert space H, with the inner product defined as the covariance be-
tween two functions. Let η0(X,S,Z) represent the true pdf, p(X,S,Z).
Here all the expectations are calculated under the true distribution
p0{Y,B0, γ0,mem, θ0(Z,B0, γ0,mem), η0(X,S,Z)}. We work within
the framework where θ and η are unknown infinite-dimensional nui-
sance parameters. The model p(Y,B, γmem, θ, η) is semiparametric
in the sense that it contains the infinite-dimensional nuisance para-
meters θ and η. A parametric submodel is defined as a paramet-
ric model that is contained in this semiparametric model and that
contains the truth. The nuisance tangent space � is defined as the
mean squared closure of the linear combination of the nuisance tan-
gent spaces of all of the parametric submodels. The nuisance tangent
space of a parametric model is defined as the mean squared closure
of the linear combination of the derivative of the logarithm of the
pdf with respect to the nuisance parameter. The orthogonal comple-
ment of � in the Hilbert space H is denoted as �⊥. We also use
the notion of a nuisance tangent space with respect to θ , denoted
as �θ . This means that concentrate on the nuisance parameter θ , treat
other nuisance parameters as if they were known, and calculate the
nuisance tangent space; its orthogonal complement in H is denoted
as �⊥

θ . Similar calculations will apply to �η and �⊥
η . Using the de-

finition of �, it is clear that � = �η + �θ and �⊥ = �⊥
η ∩ �⊥

θ .

Using results concerning �η and �⊥
η given by Tsiatis and Ma

(2004), we know that �η can be further decomposed into �η1 ⊕
�η2, where �η1 = [E{h(X,S,Z)|Y} : E{h(X,S,Z)|S,Z} = 0], �η2 =
[h(S,Z) : E{h(S,Z)} = 0], and �⊥

η = [h(Y) : E{h(Y)|X,S,Z} = 0
almost everywhere]. Because there are no constraints on θ(Z), it can

be easily verified that �θ = Sθ (Y)g(Z), where Sθ (Y) is the score
vector obtained by taking partial derivatives of log p(Y,B, γmem, θ, η)

with respect to θ and g(Z) is an arbitrary function of Z. Therefore,
�⊥

θ = [h(Y) : E{h(Y)Sθ (Y)|Z} = 0].
Once we derive � and �⊥, we can derive the influence function

and the asymptotic properties of the estimator by inspecting ψB =
�(LB|�⊥), the projection of LB onto �⊥.

Proof of Theorem 2

Local efficiency implies two properties: (a) If the model that we
assume for p(X|S,Z) is correct, then the estimator is efficient; and (b) if
the model for p(X|S,Z) is incorrect, then the estimator is consistent.
We focus on property (a) first. Decompose LB into LB = ψB + φr ,
where ψB is the projection of LB onto �⊥ [i.e., ψB = �(LB|�⊥)]
and φr is the residual of the projection (i.e., φr ∈ �). The right side
of (11) can then be written as

n−1/2
n∑

i=1

{ψiB(•) + φir(•) − �i,θ (•)U(Zi)} + op(1).

Because �θ is constructed through projecting Sθ , the score vector with
respect to θ , onto �⊥

η , it follows that �θ(•) = Sθ − �(Sθ |�η). Us-
ing the construction of �θ , it follows that SθU(Z) ∈ �θ ⊂ �. Write
�(Sθ |�η) as �(Sθ |�η1) ⊕ �(Sθ |�η2).

Due to the description of �η2, for an arbitrary mean-0 func-
tion f (Y), we have �( f |�η2) = E( f |S,Z); in particular, for Sθ ,
we have �(Sθ |�η2) = E(Sθ |S,Z). Moreover, E{E(Sθ |S,Z)U(Z)} =
E{E(Sθ |Z)U(Z)} = 0, where the last equality holds because E(Sθ |
Z) = E{∂ log p(Y|Z)/∂θ |Z} = 0. Thus we have that �(Sθ |�η2)U(Z) ∈
�η2. Obviously, �(Sθ |�η1)U(Z) ∈ �η1, so �θ(•)U(Z) ∈ �. Thus
we can rewrite (11) as

n1/2(B̂ −B0) = −n−1/2
n∑

i=1

{F−1ψiB +F−1ri} + op(1),

where F−1r ∈ �. For any regular asymptotic linear semiparametric
estimator B̂, we have that n1/2(B̂ − B0) = n−1/2 ∑n

i=1 ψ̃iB + op(1)

for some influence function ψ̃B ∈ �⊥ (Newey 1990, after thm. 2.1).
Hence we have that

n−1/2
n∑

i=1

(ψ̃iB +F−1ψiB +F−1ri) = op(1). (A.5)

Note that each individual term in (A.5) has mean 0 because they
are functions in H; hence the left side of (A.5) has the same or-
der as the standard deviation of ψ̃B + F−1ψB + F−1r. Because
ψ̃B + F−1ψB ∈ �⊥ (the sum of two elements of �⊥ is still in �⊥)
and F−1r ∈ �, we have ψ̃B + F−1ψB ⊥ F−1r. Note that the vari-
ance is the square of the length of a function in the Hilbert space H;
hence the variance of ψ̃B+F−1ψB+F−1r is the sum of the variance
of ψ̃B +F−1ψB and the variance of F−1r. Obviously, both variances
need to be op(1) to satisfy (A.5), which implies that ψ̃B +F−1ψB =
op(1) almost everywhere and F−1r = op(1) almost everywhere. This
shows that n−1/2 ∑n

i=1 F−1ri = op(1). Hence (11) reduces to

n1/2(B̂ −B0) = −n−1/2
n∑

i=1

F−1ψiB + op(1). (A.6)

Note that ψB is constructed by projecting the score SB onto �⊥, so
this in fact guarantees that ψB is the efficient score, that is, ψB =
�{�(SB|�⊥

η )|�⊥} = �(SB|�⊥).
We have thus demonstrated that the backfitting estimator has the

same influence function as the one corresponding to the efficient score;
that is, the backfitting estimator is exactly the efficient estimator.
Hence property (a) is shown.
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When the model for p(X|S,Z) is incorrect, from Theorem 1, we
still have E{LB(•) − �θ(•)U(Z)} = 0. Hence the estimator remains
consistent, and property (b) is shown.

Proof of Corollary 1

Comparing (A.6) and (11), we know that F−1ψB(•) = F−1 ×
LB(•) − F−1�θ(•)U(Z). Under the correct model for p(X|S,Z),
−F−1ψB(•) is the efficient influence function, so E(−F−1ψB ×
ST
B) = I. Because ψB = �(SB|�⊥), where SB is the score function

with respect to B, we obtain E(−F−1ψBψT
B) = I. Therefore, we have

F = −cov{ψB(•)} = −cov{LB(•) − �θ(•)U(Z)} = −�. Thus, un-
der a correctly specified model, p(X|S,Z), F = −� is a symmetric
matrix, and the variance F−1�F−T of the estimator B̂ simplifies
to �−1.

Expressions for a and b in the Partially Linear Model Example

Calculating the conditional density of p(X|δ) under normality, we
obtain

a = (
−1 + ATB−1A)−1(
−1µ − ATB−1α)

and

b = (
−1 + ATB−1A)−1ATB−1,

where α = θξlatentβ/σ 2
ε , A = I + ξlatentββT/σ 2

ε , and B = ξlatent +
ξlatentββTξlatent/σ

2
ε .

Proof of Equivalence in the Partially Linear Model Example

We calculate U(Z) first. For simplicity, denote c = 1/(1 +
βTξlatentβ/σ 2

ε ). We have �θθ = −c. Because the first component
of Lβ is A1 = �θ(a + bδ), we have A1θ = −c(a + bδ) + �θ aθ ,
where we use the fact that b and δ do not depend on θ . The par-
tial derivative of the second component A2 with respect to θ is
A2θ = −2�θ . Thus E(A1θ |Z) = −c{a + bE(δ|Z)} and E(A2θ |Z) = 0.
Hence U(Z) = [{a + bE(δ|Z)}T,0]T.

We now inspect Lβ − �θ U(Z). It consists of a first component,
Ã1 = A1 − �θ {a + bE(δ|Z)} = �θ b{δ − E(δ|Z)}, and a second com-
ponent, A2. The corresponding estimator is

n∑

i=1

{Yi − WT
i β − θ(Zi)}{δi − E(δ|Zi)} = 0, (A.7)

n∑

i=1

{Yi − WT
i β − θ(Zi)}2 − nσ 2

ε − nβTξlatentβ = 0, (A.8)

and

n∑

i=1

Kh(Zi − z){Yi − WT
i β − θ(z)} = 0. (A.9)

Denote Ỹi = Yi − E(Yi|Zi) and W̃i = Wi − E(Wi|Zi); then Yi −
WT

i β − θ(Zi) = Ỹi − W̃T
i β . We next show that the set of equations

(A.7), (A.8), and (A.9) is equivalent to the set of equations (A.10),
(A.8), and (A.9), with

n∑

i=1

W̃i(Ỹi − W̃T
i β) + nξlatentβ = 0. (A.10)

Because δ = W + Yξlatentβ/σ 2
ε , (A.7) is equivalent to

0 =
n∑

i=1

σ 2
ε W̃i(Ỹi − W̃T

i β) +
n∑

i=1

Ỹi(Ỹi − W̃T
i β)ξlatentβ. (A.11)

Multiplying βT from the left side on (A.11), in conjunction with (A.8),

we obtain

0 =
n∑

i=1

W̃T
i β(Ỹi − W̃T

i β)σ 2
ε +

n∑

i=1

Ỹi(Ỹi − W̃T
i β)βTξlatentβ

= −
n∑

i=1

(Ỹi − W̃T
i β)2σ 2

ε +
n∑

i=1

Ỹi(Ỹi − W̃T
i β)(σ 2

ε + βTξlatentβ)

= −n(σ 2
ε + βTξlatentβ)σ 2

ε +
n∑

i=1

Ỹi(Ỹi − W̃T
i β)(σ 2

ε + βTξlatentβ).

Because σ 2
ε + βTξlatentβ is positive, we obtain

n∑

i=1

(Ỹi − W̃T
i β)Ỹi = nσ 2

ε . (A.12)

Similarly, multiplying βT from the left side of (A.10), in conjunction
with (A.8), we obtain

0 =
n∑

i=1

(Ỹi − W̃T
i β)W̃T

i β + nβTξlatentβ

= −
n∑

i=1

(Ỹi − W̃T
i β)2 +

n∑

i=1

(Ỹi − W̃T
i β)Ỹi + nβTξlatentβ

=
n∑

i=1

(Ỹi − W̃T
i β)Ỹi − nσ 2

ε ,

which also leads to (A.12). As long as (A.12) holds, (A.11) and (A.10)
are equivalent, and hence the two sets of equations are equivalent.

Finally, we can easily verify that (A.10), (A.8), and (A.9) leads to
the estimator given in (5), (9), and (8) of Liang et al. (1999).

[Received June 2005. Revised January 2006.]
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