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Abstract

We study the regression relationship among covariates in case-control data, an area known
as the secondary analysis of case-control studies. The context is such that only the form of
the regression mean is specified, so that we allow an arbitrary regression error distribution,
which can depend on the covariates and thus can be heteroscedastic. Under mild regularity
conditions we establish the theoretical identifiability of such models. Previous work in this
context has either (a) specified a fully parametric distribution for the regression errors, (b)
specified a homoscedastic distribution for the regression errors, (c) has specified the rate of
disease in the population (we refer this as true population), or (d) has made a rare disease
approximation. We construct a class of semiparametric estimation procedures that rely
on none of these. The estimators differ from the usual semiparametric ones in that they
draw conclusions about the true population, while technically operating in a hypothetic
superpopulation. We also construct estimators with a unique feature, in that they are
robust against the misspecification of the regression error distribution in terms of variance
structure, while all other nonparametric effects are estimated despite of the biased samples.
We establish the asymptotic properties of the estimators and illustrate their finite sample
performance through simulation studies, as well as through an empirical example on the
relation between red meat consumption and heterocyclic amines. Our analysis verified the
positive relationship between red meat consumption and two forms of HCA, indicating that
increased red meat consumption leads to increased levels of MeIQA and PhiP, both being risk
factors for colorectal cancer. Computer software as well as data to illustrate the methodology
are available at http://www.stat.tamu.edu/∼carroll/matlab programs/software.php.

Some Key Words: Biased samples; Case-control study; Heteroscedastic regression; Sec-
ondary analysis; Semiparametric estimation.

Short title: Secondary Analysis of Case-Control Studies



1 Introduction

Population-based case-control designs, hereafter called case-control designs, are popularly

used for studying risk factors for rare diseases, such as cancers. The idealized set up of

such designs is as follows. At a given time, there is an underlying base population, which

we refer to as the true population throughout the paper. Within the true population, there

are two subpopulations, those with the disease, called cases, and those without the disease,

called controls. Separately, a random sample is taken from the case subpopulation, and a

random sample is taken from the control subpopulation. Data on various covariates are then

collected in a retrospective fashion, so that they reflect history prior to the disease. Nested

case-control studies and case-cohort or case-base studies are variations of the retrospective

case-control design.

The primary purpose of case-control designs is to understand the relation between dis-

ease occurrence and the covariates. The secondary analysis of such case-control data (Jiang

et al., 2006; Lin and Zeng, 2009; Li et al., 2010; Wei et al., 2013; He et al., 2012) is based on

the realization that the data further provide information about the relationship among the

covariates. The relation between covariates are often of interest as well, as they can reveal as-

sociations between various covariates such as gene-environment, gene-gene and environment-

environment associations. These analyses become especially important when, as is the case

of retrospective sampling, a random sample from the true population is not available; see the

secondary analysis literature mentioned above for more examples. If we seek to understand

the regression relationship between covariates Y and X in the true population, we generally

cannot use the case-control data set as if it were a random sample from the true population.

Indeed, unless disease is independent of Y given X, the regression of Y on X based on the

case-control sample will lead to a relationship different from that in the true population.

To see this numerically, we first define our notation. There are N0 cases and N1 controls,

with N = N0 + N1. Suppose that N0 = N1 = 500, and that disease status D is related to

covariates (Y,X) in the true population through the linear logistic model

pr(D = d|X = x, Y = y) = f true
D|X,Y (d,x, y) = H(d,x, y, α) =

exp{d(αc + xTα1 + yα2)}
1 + exp(αc + xTα1 + yα2)

, (1)

where for this illustration, α = (αc,α1, α2) = (−5.5, 1.0, 0.5). Suppose further that the
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regression relationship in the true population is that Y = βc + Xβ + ε, with βc = 0, β = 1

and ε ∼ Normal(0, 1). In addition, in the true population, X ∼ Uniform(0, 1). In this setup,

suppose the disease is rare, with pr(D = 1) ≈ 0.01. Thus, while controls are 99% of the true

population, they are only 50% of the case-control study. To understand the bias induced

by ignoring the case-control sampling scheme, we generated 3, 000 case-control studies with

intercept βc = 0 and slope β = 1, and computed the intercept and slope estimates using

all the data. Simply regressing Y on X and ignoring the case-control sampling scheme, the

mean estimated intercept and slope across the 3,000 simulated data sets were 0.150 and 1.174,

respectively, reflecting considerable bias, which leads to a coverage rate of only 67% for a

nominal 95% confidence interval. Figure 1 shows the attained regression function compared

to the true regression function. Using the method that we develop in this paper, our method

yields the average intercept and slope estimates of 0.0024 and 1.0035, thus eliminating the

bias caused by ignoring the case-control sampling scheme.

The bias in the secondary analysis is in stark contrast to what happens in the primary

analysis, where estimating (α1, α2) is of interest. It is well known that α1 and α2 can be

estimated consistently via ordinary logistic regression of D on (Y,X) by treating the case-

control sample as if it were a random sample of the true population (Prentice and Pyke,

1979).

Our goal is to estimate the regression of Y on X in the true population, using case-control

data, where for a function m(·) known up to a parameter β,

Y = m(X, β) + ε, (2)

where we make only the assumption that E(ε|X) = 0. Two solutions to estimating β have

been proposed in the literature. (Lin and Zeng, 2009) and, obliquely, (Chen et al., 2008)

proposed to assume a particular fully parametric distribution for ε and then perform a semi-

parametric efficient analysis, where the distribution of X is nonparametric. There is excellent

software for this problem in the case that ε = Normal(0, σ2), i.e., homoscedastic and nor-

mally distributed (http://www.bios.unc.edu/∼lin/software/SPREG/). To implement this

software, however, one must either specify the disease rate pr(D = 1) in the true popu-

lation or one must make a “rare-disease” assumption, which is implemented by assuming
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pr(D = 1) < 0.01. When the disease rate is known, reweighting the observations also cor-

rects the biases (Scott and Wild, 2002). Wei, et al. (2012) dispense with the normality

assumption, but still assume a homoscedastic distribution for ε independent of X and make

a rare disease approximation.

In practice, the disease rate in the population being sampled is not known. In addition,

it might not be rare. As an example, in Section 6, we use data from a case-control study

of colorectal adenoma, a precursor to colorectal cancer, relating measures of heterocyclic

amines to red meat consumption. While colorectal cancer is rare, colorectal adenomas are

not, being on the order of 7% or more depending on the population being sampled (Yamaji

et al., 2004; Corley et al., 2014). In this data set, one of the regressions is also heavily

heteroscedastic. We will demonstrate that both approaches mentioned above have problems

when some of the assumptions, such as the rare disease assumption, the known disease rate

assumption and the known error distribution assumption, are violated (Tables 1-6).

In order to relax such assumptions, novel methods are needed. In this paper, we do

not assume any distributional form for ε or ε | X, we do not assume that the regression

is homoscedastic, we do not require the disease rate to be known and we do not make a

rare disease approximation. We do this by adopting the concept of a superpopulation (Ma,

2010): a similar idea is called an alternative characterization of the case-control study by

Chen et al. (2009).

The main idea behind a superpopulation is to enable us to view the case-control sample

as a sample of independent and identically distributed (iid) observations from the superpopu-

lation. Conceptually, superpopulation is simply a proportional expansion of the case-control

sample to infinity. Why a superpopulation constructed through such expansion achieves the

purpose of viewing the case-control sample as an iid sample is studied carefully Ma (2010).

The ability of viewing the case-control sample as a random sample permits us to use classical

semiparametric approaches (Bickel et al., 1993; Tsiatis, 2006), regardless if the disease rate

in the real population is rare or not, or is known or not.

We derive a class of semiparametric estimators and identify the efficient member. We

further construct a member of the family that is relatively simple to compute, and illustrate

how to construct the efficient estimator, applicable to both rare and common diseases. The
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derivation of semiparametric estimators in this context is challenging because the calcula-

tions must use quantities defined in the unknown true population to perform analysis in the

superpopulation, since the models under the true population and the superpopulation share

common parameters. In addition, as established in Ma (2010), the resulting semiparamet-

ric estimators further retain asymptotic consistency, a root-n convergence rate, asymptotic

normality and semiparametric efficiency with respect to the true population as well. For

example, our efficient estimator has the usual property that its asymptotic variance cannot

be further reduced by any other device or by taking into account the case-control sampling

structure.

The rest of the paper is organized as follows. Under conditions, we first establish the tech-

nical identifiability of our problem in Section 2. In Section 3, we formulate the problem into a

classic semiparametric one by using the superpopulation notion and carry out analytic calcu-

lations to prepare for the estimation procedure. In Section 4, we describe details of implemen-

tation and the asymptotic theory. Simulation studies are performed in Section 5 to illustrate

the finite sample performance of the procedure, showing that our method is robust, efficient

and maintains nominal coverage for confidence intervals. An empirical analysis is provided in

Section 6. Section 7 contains a short discussion. Technical details are given in an Appendix,

as well as in the Supplementary Material. Computer code and data to illustrate our

method are available http://www.stat.tamu.edu/∼carroll/matlab programs/software.php.

2 The Superpopulation Model Framework

The primary disease model is the linear logistic model (1), with α = (αc,α
T
1 , α2)

T. Here and

throughout the text, we use superscript “true” to represent quantities or operations related

to the underlying true population, and also to distinguish it from a superpopulation that will

be formally introduced later. In addition, in this underlying true population, Y is believed

to be related to X through (2), which we rewrite as the regression model

f true
Y |X(x, y) = η2{y −m(x,β),x}, (3)
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where m(·) is the regression mean function known up to the parameter β and η2 is an

unknown probability density function that has mean zero given X. Defining ε = Y −
m(X,β), then E(ε | X) = 0. The distribution of ε, whether conditional on X or marginally,

is left unspecified. In particular, heteroscedasticity is allowed. Making the identification

η2(ε,X) = η2{Y − m(X,β),X}, this means that η2 ≥ 0 satisfies
∫

εη2(ε,x)dµ(ε) = 0 and
∫

η2(ε,x)dµ(ε) = 1, but its form is unknown. Here and throughout the text, we use µ(·)
to denote a Lebesgue measure for a continuous random variable and a counting measure

for a discrete random variable. The distribution of the covariate X in the underlying true

population is also unspecified, and its density or mass function is f true
X (x) = η1(x), where

η1 ≥ 0 satisfies
∫

η1(x)dµ(x) = 1.

The superpopulation framework of Ma (2010) is that one can think of the case-control

sample as a random sample from an imaginary infinite superpopulation, in which the disease

to non-disease ratio is N1/N0. Let Nd = N0 when d = 0 and Nd = N1 when D = 1. Define the

true probability that D = d as ptrue
D (d, α,β, η1, η2) =

∫
η1(x)η2(ε,x)H(d,x, y, α)dµ(x)dµ(y).

The density of (D,Y,X) in the superpopulation is defined as

fX,Y,D(x, y, d) =
Nd

N

η1(x)η2(ε,x)H(d,x, y, α)

ptrue
D (d, α,β, η1, η2)

. (4)

Although β appears in ε, for notational brevity, we do not explicitly write ε(β). In the

secondary analysis framework, the main interest is β. However we formally treat θ =

(αT, βT)T as the parameter of interest. We treat η1(·) and η2(·, ·) as the infinite dimensional

nuisance parameters, thus bypassing the need to estimate them.

Remark 1. When no assumptions are made about the relationship between Y and X in

the true population, the logistic intercept αc is not identified (Prentice and Pyke, 1979),

and neither is the regression of Y on X. Thus, if consistency of estimation is desired, truly

nonparametric regression in a case-control study of our type is not possible. We believe

that the key to identification lies in placing a restriction on the joint distribution of (Y, X)

in the base population. For example, Chatterjee and Carroll (2005) show that if Y and

X are independent, then αc is generally identified, and they show this explicitly when one

of the two is discrete. In our case, the restriction is a parametric model for E(Y |X). It
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is a reasonable conjecture that such a restriction is enough for the identifiability of αc, a

conjecture that we confirm next.

2.1 Identifiability

We first establish identifiability of the parameters α, β in the superpopulation. For

greater generality, we consider the slightly more flexible model H(d,x, y) = exp[d{αc +

u(x, y, α1, α2)}]/[1+exp{αc +u(x, y, α1, α2)}, where u(0, 0,α1, α2) = 0 for all α1, α2. Obvi-

ously, this model contains the original linear logistic model we are studying. We assume that

there is no (αT
1 , α2)

T 6= (α̃T
1 , α̃2)

T such that for all (x, y), u(x, y, α1, α2) = u(x, y, α̃1, α̃2).

These are natural minimal conditions that are usually satisfied automatically as long as

the parameterizations of u and m are not redundant. We also assume the following two

conditions.

Assumption 1. Assume that the second moment of ε is bounded marginally and η2 is

a bounded function, i.e., E(ε2) < ∞ and supx,ε η2(ε,x) < ∞. For any fixed parameters

α1, α2,β, and any δ > 0, there exists a constant vector c1, a constant c2 ∈ [0, 1] and a region

D with complement Dc such that when x → c1,

sup
ε∈Dc

lim
x→c1

|(1 + exp[αc + u{x,m(x,β) + ε, α1, α2}])−1 − c2| = 0,

and limx→c1 pr(ε ∈ D | X = x) < δ. In addition, for any element e ∈ D, |e| ≥ 1. Typically

we expect Dc = [−K, K] for some large K, c1 = ∞ or −∞ or contains ±∞ as components,

and c2 = 0 or 1, although this is not required.

Assumption 2. c(β, β̃) = limx→c1{m(x, β̃)−m(x, β)} 6= 0 for β̃ 6= β.

Remark 2. Assume that pr(|ε| > K|X = x) → 0 as K → ∞ uniformly in x. We can

easily verify that when both m and u are linear functions, where we write m(x, β) =

xTβ1 + βc, both assumptions are satisfied except when α1 + β1α2 = 0. When this hap-

pens, u{m(x,β), α1, α2} degenerates to a constant, and we can verify that although β1 is

still identifiable, βc and αc are no longer identifiable, see the Supplementary Material for

details of verification of both the identifiability and the non-identifiability verification.
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We state the identifiability result in Proposition 1 and provide the proof in Appendix

A.1.

Proposition 1. Make Assumptions 1-2. Also assume that there are constants (C1, C2) such

that 0 < C1 < N0/N1 < C2 < ∞. Then the parameters α and β are identifiable.

Remark 3. Identifiability under some specific situations has been considered in the litera-

ture. For example, Chatterjee and Carroll (2005), Chatterjee et al. (2006) and Chen et al.

(2009) considered the case that X and Y are independent, while Chen et al. (2008) and

Lin and Zeng (2009) explicitly studied the identifiability issue when the disease rate model

is linear logistic and the secondary model is fully parametric. The model we consider here

is more general, in that only a mean function is assumed for the secondary model. These

authors all note that while in practice, it may be difficult to estimate αc, estimation of the

other parameters can still be performed effectively, see also Lobach et al. (2008).

3 Analytic Derivations

3.1 True and Conjectured Models

The major point of our article is that we only propose a model for E(Y | X), denoted

m(X,β), and we specifically want to avoid positing a model for the density function of the

regression errors ε = Y −m(X, β) conditional on X. We will accomplish this by a two-step

process. First, in Section 3.2, we will derive the semiparametric efficient estimating equation

in the superpopulation for estimating (α,β) when the density of Y given X in the true

population is known. Recognizing that we do not want to make such an assumption, in

Section 4, we will show how to modify the estimating equation so that it has mean zero

asymptotically, even if the conjectured model for the regression errors is false, thus resulting

in model-robust consistent estimation.
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3.2 Analysis Under a True Model

As described in Section 3.1, here we will derive the form of the semiparametric efficient

estimating equation when the conjectured model for the regression errors in (3) is true.

Later in Section 4, we will modify the estimating function to make it model-robust.

Viewing the observations as randomly sampled from the superpopulation, we can perform

a conventional semiparametric analysis. Of course, all the calculations need to be done with

respect to the superpopulation, and all the probability statements need to be with respect

to Lebesgue measure for continuous random variables and counting measure for discrete

random variables in the superpopulation, and they will be if not otherwise pointed out. The

functions (η1, η2, H), which are probability density/mass functions in the true population,

do not represent the corresponding probabilities density/mass functions in the superpop-

ulation. They are merely functions that satisfy η1(x) ≥ 0,
∫

η1(x)dµ(x) = 1, η2(ε,x) ≥
0,

∫
η2(ε,x)dµ(ε) = 1,

∫
εη2(ε,x)dµ(ε) = 0, H(d,x, y) ≥ 0, H(0,x, y) + H(1,x, y) = 1. In

fact, we introduced these symbols to discourage the mistake of automatically viewing them

as the corresponding density or mass functions in the superpopulation.

Using model (4), calculating the partial derivative of the loglikelihood with respect to α

and β, it is easy to see that the score function has the form Sθ(X, Y, D, θ) = S(X, Y,D, θ)−
E(S | D), where θ = (αT,βT)T, Sθ = (ST

α ,ST
β )T, and

S(x, y, d, θ) =





∂log{H(d,x, y, α)}/∂α

∂log{η2(ε,x)}/∂β



 . (5)

Explicitly,

Sα(X, Y,D, θ) = ∂log{H(D,X, Y, α)}/∂α− E [∂log{H(D,X, Y, α)}/∂α | D] ;

Sβ(X, Y,D, θ) = ∂log{η2(ε,X)}/∂β − E [∂log{η2(ε,X)}/∂β | D] .

In Appendix A.2, we further derive the nuisance tangent space Λ and its orthogonal com-

plement space Λ⊥ as

Λ = {g(ε,X)− E(g | D) : Etrue(g) = Etrue(εg | X) = 0 a.s.} ;

Λ⊥ =
[
h(D, ε,X) : E(h) = 0, E{h− E(h | D) | ε,X}

×
∑

d

(Nd/N)H(d,X, y)/ptrue
D (d) = εa(X) a.s.

]
,
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where g(ε,x) and h(D, ε,x) are arbitrary functions that satisfy their respective constraints

described above, a(x) is an arbitrary function of x, and a.s. stands for almost surely with

respect to the true superpopulation distribution.

Having obtained both the score function and the two spaces Λ and Λ⊥, conceptually, we

only need to project the score function onto Λ⊥ to obtain the efficient score Seff . Doing this is,

however, extraordinarily technical, and hence we defer the details to the Supplementary

Material. Here we merely state the result in Proposition 2, which requires a series of

definitions, as follows.

Define π0 = ptrue
D (0) =

∫
η1(x)η2(ε,x)H(0,x, y)dµ(x)dµ(y);

π1 = ptrue
D (1) =

∫
η1(x)η2(ε,x)H(1,x, y)dµ(x)dµ(y);

b0 = E{fD|X,Y (1,X, Y ) | D = 0}; b1 = E{fD|X,Y (0,X, Y ) | D = 1};
c0 = E(S | D = 0)− E{E(S | ε,X) | D = 0};
c1 = E(S | D = 1)− E{E(S | ε,X) | D = 1};
κ(x, y) =

[∑1
d=0{NdH(d,x, y)}/(Nπd)

]−1
; t1(X) = [Etrue {ε2κ(X, Y ) | X}]−1

;

t2(X) = Etrue {εE(S | ε,X) | X} − (c0/b0)Etrue

{
εfD|X,Y (0,X, Y ) | X}

;

t3(X) = −b−1
0 Etrue

{
εfD|X,Y (0,X, Y ) | X}

; a(x) = t1(x){t2(x) + t3(x)u0};
u0 = (1− E [εt1(X)t3(X)κ(X, Y ) | D = 0])−1 E [εt1(X)t2(X)κ(X, Y ) | D = 0];
u1 = −(N0/N1)u0; v0 = (π1/b0)(u0 + c0); v1 = −(π0/b0)(u0 + c0);
g(ε,x) = E(S | ε,X = x)− εa(x)κ(x, y)−v0fD|X,Y (0,x, y)−v1fD|X,Y (1,x, y).

(6)

Proposition 2. Make the definitions (6). In the superpopulation, the semiparametric effi-

cient score function is S(Xi, Yi, Di) − g{Yi −m(Xi,β),Xi} − (N0/N)v0 − (N1/N)v1. The

semiparametric efficient estimator is obtained by solving

∑N
i=1[S(Xi, Yi, Di)− g{Yi −m(Xi,β),Xi} − (1−Di)v0 −Div1] = 0. (7)

We emphasize here that the estimator in Proposition 2 is not only efficient with respect

to the superpopulation, it is also efficient with respect to the true population. This is a

direct consequence of the general result that if an estimator is efficient with respect to the

superpopulation, it is also efficient with respect to the true population. A careful justification

of this claim is given in Ma (2010). Logically, this result can be understood because if we

could find a more efficient estimator with respect to the true population, this estimator would

also be more efficient with respect to the superpopulation, which causes a contradiction.
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Intuitively, the special sampling strategy is in fact already absorbed into the formulation

when we construct the superpopulation, hence no information has been lost during the

conversion between populations.

4 Estimator Construction

4.1 Basic Calculations

The estimating equation (7) derived in Proposition 2 is not useful however, because it involves

various calculations that rely on the unknown η1 and η2, which were assumed to be correctly

conjectured in Section 3. If either are misspecified, the corresponding calculation will lead

to inconsistent estimation of θ. The purpose of this section is to define estimators that are

consistent for estimating θ based upon a posited score function, which we denote by S∗. As

it turns out, if the posited score function is correct, then in addition to being consistent, the

estimator of θ has the additional property of being efficient. If the posited score function is

incorrect, then the estimator of θ is still consistent. So our method can be thought of as a

locally efficient estimator.

A careful inspection of the estimation procedure given in Proposition 2 and the definition

of the related quantities suggests that the critical points lie in obtaining π0 and π1, in

calculating E(h | ε,X) and E(h | D) for any function h(D,X, Y ), and in calculating Etrue(h |
X) for any function h(D,X, Y ).

Our algorithm is detailed as Algorithm 1, and is based upon the following considerations.

• First, we have that

Nd = NpD(d) = N

∫
fX,Y (x, y)fD|X,Y (d,x, y)dµ(x)dµ(y)

= N

∫
fX,Y (x, y)(NdH/Nπd) {

∑
d(NdH)/(Nπd)}−1 dµ(x)dµ(y).

If we estimate the last term by
∑N

i=1{NdH(d,Xi, Yi)/Nπd} {
∑

d{NdH(d,Xi, Yi)/(Nπd)}−1

and remember that π0 + π1 = 1, we see that we can estimate π0 by solving

π0 =
∑N

i=1H(0,Xi, Yi)
[∑

dNdH(d,Xi, Yi)/{π1−d
0 (1− π0)}πd

]−1
.
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Algorithm 1: Computing the Locally Efficient Score Function

The first two steps are done only once.

• Posit a model for η2(ε,x) which has mean zero, and calculate (5), calling the result

S∗(X, Y, D). Use S∗(·) in place of S(·) in (6)-(7).

• Estimate fX|D(x, d) by a kernel density estimate among the data with Di = d, with result

f̂X|D(x, d).

The rest of the steps are done iteratively in the estimation algorithm.

• Solve π̂0 =
∑N

i=1H(0,Xi, Yi){N0H(0,Xi, Yi)/π̂0 +N1H(1,Xi, Yi)/(1− π̂0)}−1 to obtain π̂0

and set π̂1 = 1− π̂0.

• In the definition of κ(x, y) in (6), form κ̂(x, y) by replacing πd by π̂d. Define κ̂i = κ̂(Xi, Yi).

• Define f̂di = f̂D|X,Y (d,Xi, Yi) = NdH(d,Xi, Yi)κ̂i/(Nπ̂d).

• For any function h(d,x, y) in (6), estimate E{h(D,X, Y ) | X, D = d) by nonparametric

regression among observations with Di = d.

• For any function h(d,x, y) in (6), estimate E{h(D,X, Y ) | D = d) as Ê{h(D,X, Y ) |
D = d) =

∑N
i=1 h(d,Xi, Yi)f̂di/

∑N
i=1 f̂di.

• For any function h(d,x, y) in (6), estimate E{h(D,Y,X)|ε,X} by Ê{h(D, Y,X)|ε,X} =∑1
d=0 NdH(d,X, Y )h(d, Y,X)κ̂(X, Y )/(Nπ̂d).

• For any function h(d,x, y) in (6), estimate Etrue{h(D,X, Y ) | X) by Êtrue{h(D,X, Y ) |
X) =

∑1
d=0 π̂dÊ{h(d,X, Y ) | X, D = d)f̂X|D(X, d)/

∑1
d=0 π̂df̂X|D(X, d).

Application to the terms in (6) yields ĝ(εi,Xi) and v̂d, and we then form Ŝ∗eff(D,Xi, Yi) =

S∗(X, Y,D)− ĝ(ε,X)− (1−D)v̂0 −Dv̂1.

We have described the algorithm when X is continuous. When X is discrete, one simply re-

places the density estimators and various nonparametric regressions with the corresponding

averages associated with the different x values.

• Next we have that

E(h | ε,X) =
∑

dhfD|X,Y (d,X, Y )

=
∑

d{NdH(d,X, Y )h(d,X, Y )/(Nπd)} {
∑

dNdH(d,X, Y )/(Nπd)}−1 .

• In addition,

Etrue(h | X) =

∫
h
∑

dπdf
true
X,Y |D(X, y, d)dµ(y)∫ ∑

dπdf true
X,Y |D(X, y, d)dµ(y)

=

∫
h
∑

dπdfX,Y |D(X, y, d)dµ(y)∫ ∑
dπdfX,Y |D(X, y, d)dµ(y)

=

∑
dπd

∫
hfX,Y |D(X, y, d)dµ(y)∑

dπdfX|D(X, d)
=

∑
dπd

∫
hfY |X,D(X, y, d)dµ(y)fX|D(X, d)∑

dπdfX|D(X, d)

=
∑

dπdE(h | X, d)fX|D(X, d)/
∑

dπdfX|D(X, d),

11



where in the last expression, both fX|D(x, d) and E(h | x, d) need to be estimated

nonparametrically.

• Finally, we have

E(h | D = d) =

∫
fx,y(x, y)h(d,x, y)fD|X,Y (d,x, y)dµ(x)dµ(y)∫

fx,y(x, y)fD|X,Y (d,x, y)dµ(x)dµ(y)
,

which can be estimated as

Ê(h | D = d) =
∑N

i=1h(d,Xi, Yi)fD|X,Y (d,Xi, Yi)/
∑N

i=1fD|X,Y (d,Xi, Yi).

4.2 Distribution Theory

Because the locally efficient estimator is derived from well-established semiparametric pro-

cedures, while replacing the unknown quantities with nonparametric estimation in the pro-

posed model, it is not surprising that it is asymptotically normally distributed with standard

parametric rates of convergence. In addition, it achieves the semiparametric efficiency if the

proposed model is correct. We describe the asymptotic properties of our estimator in Theo-

rems 1, and provide a sketch of the proof for Theorem 1 in the Appendix. We first list the

set of regularity conditions that Theorem 1 requires.

C1: There exists constants 0 < C < ∞ such that limN→∞ N1/N2 = C. In addition, the

identifiability Assumptions 1 and 2 hold.

C2: The univariate kernel function is a function that integrates to 1 and has support (−1, 1)

and order r, i.e.,
∫

K(x)xtdx = 0 if 1 ≤ t < r and
∫

K(x)xrdx 6= 0. The d-dimensional

kernel function, still represented with K, is a product of d univariate kernel functions,

that is, K(x) =
∏d

i=1 K(xi) for a d-dimensional x.

C3: For d = 1, 0, fX|D(x | D = d), E(ε2κ | X, D = d), E(εµs | X, D = d), E(εf0 | X, D =

d), E(εf1 | X, D = d) have compact support and have continuous rth derivatives.

C4: The bandwidth h = N−τ where 1/(2p) > τ > 1/(4r), where p is the dimension of x.

This includes the optimal bandwidth h = O(N−1/(2r+p)) as long as we choose a kernel

of order 2r > p.
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Condition C1 ensures that there are a sufficient number of both cases and controls in the

sample, which occurs in all case-control studies of the type we are studying (see the in-

troductory paragraph). Conditions C2 and C4 are standard requirements on an rth order

kernel function and on the bandwidth in the kernel smoothing literature (Ma and Zhu, 2013).

Condition C3 is not the weakest possible. We impose this condition to simplify the technical

proof. It can be replaced with weaker conditions in the region where ‖x‖ is large, at the

expense of a more tedious technical treatment.

Theorem 1. We emphasize that for any random vector S(D, Y, X), expectation and co-

variance in the superpopulation is linked to expectation and covariance in the case-control

sampling scheme (conditional on disease status) through

E{S(D, Y, X)} =
∑1

d=0(Nd/N)E{S(D, Y,X)|D = d}
cov{S(D, Y, X)} =

∑1
d=0(Nd/N)cov{S(D, Y,X)|D = d}.

Under the regularity conditions C1-C4, in the case-control study, as N →∞, the estimator

θ̂ obtained from solving the estimating equation
∑N

i=1 Ŝ∗eff(Di,Xi, Yi, θ̂) = 0 satisfies

N1/2(θ̂ − θ0) → Normal{0,A−1B
(
A−1

)T}

where A = E
{
∂S∗eff(D,X, Y, θ0)/∂θT

}
and B = cov {S∗eff(D,X, Y, θ0)}.

5 Simulations

5.1 Setup

We performed a series of simulation studies in order to evaluate the finite sample performance

of the various methods. In total, we considered 72 different cases. First, we considered a

balanced design, where N0 = N1 = 500, and an imbalanced design with N0 = 666 and

N1 = 334, i.e., 2 controls for every case. Second, we considered 3 disease rates: a relatively

rare disease rate of 4.5%, an extremely rare disease rate of 0.5% and a common disease rate

of 10%. The balanced design in rare or extremely rare disease cases is representative of a

typical case-control study.
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Third, we considered three settings for the logistic regression. We generated X from

a Uniform(0,1) distribution. The logistic regression model was pr(D = 1|Y, X) = H(αc +

α1X + α2Y ), where α1 = 1 and we varied α2 = 0.00, 0.25, 0.50. The regression model for Y

given X is Y = β1 + β2X + ε, with β1 = 0 and β2 = 1.

Finally, we varied the distribution of the regression errors and whether they were ho-

moscedastic or not, as follows.

• In the first set of simulations, we generated homoscedastic errors ε. The distribution

of ε was either Normal(0, σ2) with σ2 = 1 or is a centered and standardized Gamma

distribution with shape parameter 0.4, normalized to have mean zero and variance

σ2 = 1. To achieve an approximate 4.5% disease rate, for α2 = (0.00, 0.25, 0.50)

we set αc = (−3.6,−3.8,−4.0). To achieve an approximate 0.5% disease rate, for

α2 = (0.00, 0.25, 0.50) we set αc = (−5.8,−6.0,−6.2). To achieve an approximate 10%

disease rate, for α2 = (0.00, 0.25, 0.50) we set αc = (−2.7,−2.9,−3.1).

• In the second set of simulations, we generated heteroscedastic errors as follows. The

same distributions for ε were used, except that ε was multiplied by (1+X2)3/4/2 in all

the cases, so that var(ε|X) = (1 + X2)3/2/4. To achieve an approximate 4.5% disease

rate, for α2 = (0.00, 0.25, 0.50) we set αc = (−3.60,−3.75,−3.95). To achieve an ap-

proximate 0.5% disease rate, for α2 = (0.00, 0.25, 0.50) we set αc = (−5.8,−5.95,−6.2).

To achieve an approximate 10% disease rate, for α2 = (0.00, 0.25, 0.50) we set

αc = (−2.7,−2.9,−3.1).

With respect to the method described in Section 4.1, we mention the following details.

The posited model η∗2 being a standard normal model in step 1. This yields the second

component in S∗ as (y−β1−β2x)(1, x)T. In performing the many nonparametric calculations

in steps 4, 5, 6, 7, we used a kernel estimates with a same bandwidth h throughout. We

set the bandwidth at h = cn
−1/3
0 , and experimented with different values c between c = 0.5

and c = 2.0, with little change in the results. To assess variability, we used the asymptotic

results in Theorem 1, with the A and B matrices replaced by their corresponding sample

averages evaluated at the estimated parameter values.
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We compared our method with three others. The first was ordinary least squares among

the controls, with sandwich standard errors: the sandwich method is used to adjust confi-

dence intervals for possible heteroscedasticity. The second was the semiparametric efficient

method that assumes normality and homoscedasticity, with standard errors obtained by in-

verting the Hessian of the loglikelihood (Lin and Zeng (2009)). The third was the method

of Wei et al. (2013) that assumes homoscedasticity, but otherwise does not specify any par-

ticular error distribution model: we used the bootstrap to obtain standard errors for this

method.

A striking conclusion of these simulations is that our methods, which assumes none of

rare disease, normal errors or homoscedasticity, uniformly has coverage probabilities that

achieve the nominal rates.

5.2 Homoscedastic Case

Results for the homoscedastic case are given in Tables 1-3. We display the mean estimate, the

standard deviation across the simulations, the mean estimated standard deviation, coverage

probabilities for nominal 90% and 95% confidence intervals, and the mean squared error

efficiency of the methods relative to using only the controls.

The case α2 = 0.00 is interesting, because here Y is independent of D given X. Hence, all

methods should achieve nominal coverage probabilities for estimating β, which is indeed seen

in Table 1. Surprisingly, our method, which assumes neither normality nor homoscedasticity,

is as efficient in terms of mean squared error as the semiparametric efficient method that

assumes both, and is of course much more efficient than using only the controls.

For α2 6= 0, and when ε is normally distributed, our method remains comparably as effi-

cient as the semiparametric efficient method which assumes both normality and homoscedas-

ticity. However, when the errors were not normally distributed, our method has much smaller

bias and is much more efficient. In addition, the semiparametric efficient method has poor

coverage probabilities when α2 = 0.50. While the method of Wei et al. (2013) maintains

good coverage probabilities in all cases, our methods also maintains coverage, has smaller

bias and is much more efficient.
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5.3 Heteroscedastic Case

The results for the heteroscedastic case, with various disease rates and equal or unequal

case-control rations are given in Tables 4-6.

The results are much in line with the homoscedastic case, with a few important ex-

ceptions. The semiparametric efficient method, which assumes both homoscedasticity and

normality, has a noticeable loss of coverage probability when α2 6= 0, largely caused by bias.

Because they used a bootstrap to compute standard errors, the method of Wei et al. (2013)

maintains good coverage probability except when α2 = 0.50, where the bias causes deterio-

ration in the coverage rates. Our method maintains good coverage probabilities in all cases,

and because of its lack of bias, noticeably increased mean squared error efficiency.

6 Empirical Example

Epidemiological studies have led to the general belief that heterocyclic amines (HCA), such

as MelQx and PhlP, are significant risk factors associated with various forms of cancers, in-

cluding colorectal cancer and breast cancer (Barrett et al., 2003; Sinha et al., 2001; De Stefani

et al., 1997). One of the important food sources contributing to carcinogenic HCA, among

many other potential sources, is red meat, which produces the agents during the cooking

process. In addition, red meat contains other nutrients such as saturated fat which is also be-

lieved to relate to the occurrence of cancer. Due to this link, epidemiological and nutritional

studies of cancer often include both red meat consumption and HCA as covariates to as-

sess the risk of developing cancer, while simultaneously studying the relation between HCA

amount and red meat consumption. Understanding this relation helps to understand the

health impact of red meat consumption and is important in formulating food consumption

guidelines for the general public.

We implemented our method on a data set involving colorectal adenoma, with 640 cases

and 665 controls. The cases and controls were defined by the occurrence of colorectal ade-

noma (D). In our analysis, X is red meat consumption in grams. We used two different

versions of Y , namely the heterocyclic amines MeIQx and PhIP that are produced during
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the cooking of meat.

PhIP, MeIQx and red meat were transformed by adding 1.0 and taking logarithms to

alleviate the heavy skewness of these measurements on the original scale. We also analyzed

the subset of the study who were smokers. For the controls-only analysis, standard errors

of the slope estimate were computed using the usual formula for least squares and also by

the sandwich method. For our semiparametric analysis, we computed standard errors by

the asymptotic formula of Theorem 1 and by the bootstrap, with 1,000 bootstrap samples.

Given the results of the simulation, we do not expect any significant difference between these

two estimates of standard errors for our method, with the asymptotic formula being much

faster computationally.

We performed a preliminary analysis using only the controls. In the original data scale,

all the covariates (PhiP, MelPx and red meat consumption) are very skewed and heavy-

tailed, see Figures S.1-S.2 in the Supplementary Material. The transformed data were

much better behaved, see Figures S.3-S.4 in the Supplementary Material. Numerically,

the skewness of MeIQx in the original and transformed data scales are 3.46 and -0.19, re-

spectively. The skewness of PhIP in the original and transformed data scales are 7.93 and

-0.20, respectively. Finally, the skewness of Red Meat in the original and transformed data

scales are 1.78 and -0.58, respectively. These numbers and the plots indicate that the trans-

formation did an acceptable to very good job of removing skewness.

Further preliminary analysis of the controls included scatterplots of the transformed data,

both of which were reasonably well-behaved and indicated an increasing trend for increasing

red meat consumption, consistent with a linear trend, see Figure S.5 in the Supplementary

Material. To check this, we fit a quadratic model to the transformed data: in both cases,

the p-value for the quadratic term exceeded 0.20, see Figure 2. Thus, we adopted a linear

function for the mean m(·) in the subsequent secondary analysis. In addition, the regression

of PhIP on red meat consumption is heavily heteroscedastic, while the regression of MeIQx

on red meat is passably homoscedastic. This is shown in Figure 3, where we fit a regression

of the absolute residuals from a quadratic fit against red meat consumption (Davidian and

Carroll, 1987): the plots from a linear regression are essentially the same.

The results of this secondary analysis are given in Table 7. For MeIQx, the ordinary least
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squares standard errors when using only the controls are roughly the same and that of the

sandwich method, which makes sense since the regression is homoscedastic. In this case, as

expected from the theory, our semiparametric approach has smaller standard errors, with the

least squares standard errors being approximately 30% larger. For PhIP, where the regression

is distinctly homoscedastic, the sandwich standard errors for ordinary least squares among

the controls is roughly 30% larger than the standard error that assumes homoscedasticity,

and roughly 40% larger than our semiparametric approach. As expected from the theory,

where homoscedasticity is not assumed, the standard errors for our semiparametric approach

are nearly the same using either the asymptotic formula or the bootstrap.

As a comparison, we also implemented the parametric method of Lin and Zeng (2009)

as well as the robust method by Wei et al. (2013). Standard errors of the former were

assessed both by using the inverse of the Hessian of the loglikelihood and by the bootstrap,

while standard errors of the latter were assessed by the bootstrap alone. The parametric

method’s asymptotic standard error clearly under-estimates the variability for PhIP when

compared to the bootstrap, something expected because of the heteroscedasticity in PhIP.

For MeIQx, where the error is homoscedastic, the parametric method, the robust method

and our semiparametric approach are almost identical.

In summary, in analyzing this data set, we verified the previous observation based on

the control only data that the regression error from MeIQx and red meat consumption has

homoscedastic error, while that from the PhIP and red meat consumption has heteroscedastic

error. Our analysis also verified the positive relationship between red meat consumption and

these two forms of HCA, indicating that increased red meat consumption leads to increased

levels of MeIQA and PhiP, both being risk factors for colorectal cancer. The first order

accuracy of the variability of the estimated slope for our method is validated though its

near-identical result with the bootstrap, and of course through the simulation results.

7 Discussion

We have developed a locally efficient semiparametric estimator for the secondary analysis

of case-control studies, where only a mean model is specified to describe the relationship
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between the covariates. Despite this relatively weak assumption, we have shown that the

problem is still identifiable under certain conditions. Through introducing the notion of

a superpopulation, we are able to establish an estimation methodology via a conceptually

tractable semiparametric procedure, although the derivation is highly non-standard and not

trivial. The locally efficient estimator provides consistent estimation, and can achieve optimal

efficiency if a posited regression error model happens to be true. Although the analysis is

performed under the superpopulation concept, the general statements of consistency and

local efficiency are valid in the case-control sampling scheme (Ma, 2010). In addition, the

general methodology is applicable even if the linear logistic model (1) is replaced by other

parametric models such as probit model, etc., as long as identifiability can be established.

Implementing the locally efficient estimator via Algorithm 1 requires several nonpara-

metric regressions conditional on the covariates, which may be difficult when the dimension

of the covariates increases. In such situations, dimension reduction techniques can be a good

choice to achieve a balance between model flexibility and feasibility of parameter estimation

and inference (Ma and Zhu, 2012). Further exploration of this is needed.
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Appendix: Sketch of Technical Arguments

A.1 Proof of Proposition 1

Assume the contrary. That is, assume the problem is not identifiable. This means we can

find parameters αc,α1, α2,β, η2, η1 and α̃c, α̃1, α̃2, β̃, η̃2, η̃1 so that, denoting ε̃ = Y −m(x, β̃),

πd =

∫
η1(x)η2{y −m(x, β),x} exp{dαc + du(x, y, α1, α2, )}

1 + exp{αc + u(x, y, α1, α2)}dµ(x)dµ(y);

π̃d =

∫
η̃1(x)η̃2{y −m(x, β̃),x} exp{dα̃c + du(x, y, α̃1, α̃2)}

1 + exp{α̃c + u(x, y, α̃1, α2)}dµ(x)dµ(y),
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we have that

1

πd

η1(x)η2{y −m(x, β),x} exp{dαc + du(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}

=
1

π̃d

η̃1(x)η̃2{y −m(x, β̃),x} exp{dα̃c + du(x, y, α̃1, α̃2)}
1 + exp{α̃c + u(x, y, α̃1, α̃2)} (A.1)

for all (x, y, d). Take the ratio of the above expression at d = 1 and d = 0 respectively, we

obtain that for all (x, y),

π0

π1

exp{αc + u(x, y, α1, α2)} =
π̃0

π̃1

exp{α̃c + u(x, y, α̃1, α̃2)}.

This yields that u(x, y, α1, α2) − u(x, y, α̃1, α̃2) is a constant. Since it is zero at (x, y) = 0,

hence we have u(x, y, α1, α2) − u(x, y, α̃1, α̃2) ≡ 0. Thus, α1, α2 = α̃1, α̃2, exp(αc)π0/π1 =

exp(α̃c)π̃0/π̃1 and

1

π0

η1(x)η2{y −m(x,β),x}
1 + exp{αc + u(x, y, α1, α2)} =

1

π̃0

η̃1(x)η̃2{y −m(x, β̃),x}
1 + exp{α̃c + u(x, y, α1, α2)}

for all (x, y). This gives

η̃1(x)η̃2{y −m(x, β̃),x} =
π̃0

π0

1 + exp{α̃c + u(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}η1(x)η2{y −m(x,β),x}. (A.2)

Integrating (A.2) and the product of (A.2) and y with respect to y, we obtain

η̃1(x) =
π̃0

π0

η1(x)

∫
1 + exp{α̃c + u(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}η2{y −m(x, β),x}dy;

η̃1(x)m(x, β̃) =
π̃0

π0

η1(x)

∫
1 + exp{α̃c + u(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}η2{y −m(x, β),x}ydy

respectively. Further taking ratios, we find
∫

1 + exp{α̃c + u(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}η2{y −m(x,β),x}ydy

= m(x, β̃)

∫
1 + exp{α̃c + u(x, y, α1, α2)}
1 + exp{αc + u(x, y, α1, α2)}η2{y −m(x,β),x}dy.

If αc = α̃c, then we obtain m(x, β) = m(x, β̃), hence β = β̃. We also obtain η̃1(x) =

η1(x)π̃0/π0. Since both η̃1(x) and η1(x) are valid density functions, we have η̃1(x) = η1(x)

and π0 = π̃0, π1 = π̃1. This subsequently yields η2 = η̃2 contradicting our assumptions. Thus

we obtain that αc 6= α̃c.

Denote

r(ε,x) =
1 + exp[α̃c + u{x, m(x,β) + ε, α1, α2}]
1 + exp[αc + u{x, m(x,β) + ε, α1, α2}]{ε−m(x, β̃) + m(x,β)}

= exp(α̃c − αc){ε−m(x, β̃) + m(x,β)}

+(1− exp(α̃c − αc))
ε−m(x, β̃) + m(x, β)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}] .
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By definition, η2 is a valid conditional density function and it satisfies
∫

εη2(ε,x)dε = 0, and

we have that

0 =

∫
r(ε,x)η2(ε,x)dε

= − exp(α̃c − αc){m(x, β̃)−m(x,β)}

+(1− exp(α̃c − αc))

∫
ε−m(x, β̃) + m(x, β)

1 + exp[αc + u{x,m(x,β) + ε,α1, α2}]η2(ε,x)dε

for all x. This means

{m(x, β̃)−m(x, β)} exp(α̃c − αc)

1− exp(α̃c − αc)
=

∫
εη2(ε,x)

(1 + exp[αc + u{x,m(x,β) + ε,α1, α2}])dε

−
∫ {m(x, β̃)−m(x, β)}η2(ε,x)

1 + exp[αc + u{x,m(x, β) + ε, α1, α2}]dε

for all x. If we let x → c1, then

c(β, β̃) exp(α̃c − αc)

1− exp(α̃c − αc)
= c2

∫

Dc

εη2(ε, c1)dε− c2c(β, β̃)

∫

Dc

η2(ε, c1)dε

+ lim
x→c1

∫

D

εη2(ε,x)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε

− lim
x→c1

∫

D

c(β, β̃)η2(ε,x)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε

= −c2c(β, β̃)− c2

∫

D
εη2(ε, c1)dε + c2c(β, β̃)

∫

D
η2(ε, c1)dε

+ lim
x→c1

∫

D

εη2(ε,x)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε

− lim
x→c1

∫

D

c(β, β̃)η2(ε,x)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε.
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Thus,

∣∣∣ exp(α̃c − αc)

1− exp(α̃c − αc)
+ c2

∣∣∣

=
∣∣∣− c2

∫

D

εη2(ε, c1)

c(β, β̃)
dε + c2

∫

D
η2(ε, c1)dε

+ lim
x→c1

∫

D

εη2(ε,x)/c(β, β̃)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε

− lim
x→c1

∫

D

η2(ε,x)

1 + exp[αc + u{x,m(x,β) + ε, α1, α2}]dε
∣∣∣

≤ 2

|c(β, β̃)|

∫

D
|ε|η2(ε, c1)dε + 2

∫

D
η2(ε, c1)dε

≤ 2

|c(β, β̃)|
[
E{ε2I(ε ∈ D) | c1}pr(ε ∈ D | c1)

]1/2
+ 2pr(ε ∈ D | c1)

≤ 2

|c(β, β̃)|
{
E(ε2)δ

}1/2
+ 2δ.

We can make the upper bound of the above expression arbitrarily small by choosing δ

arbitrarily close to zero, while the quantity on the left had side is a constant. Hence we in

fact have obtained

exp(α̃c − αc)

1− exp(α̃c − αc)
= −c2

However, −c2 is between −1 and 0, simple calculation shows that these two constants cannot

be equal, hence our problem is indeed identifiable.

A.2 Derivation of Λ and Λ⊥

Consider the nuisance tangent space associated with η1 and η2 respectively, we have

Λ1 = {g(x)− E(g | d) : ∀g such that Etrue(g) = 0};
Λ2 = {g(ε,x)− E(g | d) : ∀g such that Etrue(g | X) = Etrue(εg | X) = 0 a.s.}.

Hence Λ = Λ1 + Λ2 = {g(ε,x) − E(g | d) : ∀g such that Etrue(g) = Etrue(εg | X) = 0 a.s.}.
It is easily seen that Λ⊥1 = [h : E(h) = 0, E{h − E(h | D) | X} = 0 a.s.]. This is because

from

0 = E[hT{g(X)− E(g | D)}]
= E[{h− E(h | D)}T{g(X)− E(g | D)}]
= E[{h− E(h | D)}Tg]

= E(E[{h− E(h | D)}T | X]g),
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we obtain E{h− E(h | D) | X}∑d

∫
fX,Y,D(X, y, d)dµ(y)/η1(X) = c a.s. for some constant

c. Since E[E{h− E(h | D) | X}] = 0 a.s., we obtain

0 =

∫
E{h− E(h | D) | x}∑d

∫
fX,Y,D(x, y, d)dµ(y)dµ(x) =

∫
cη1(x)dµ(x) = c a.s..

Hence c = 0 and E{h − E(h | D) | X}∑1
d=0

∫
fX,Y,D(X, y, d)dµ(y)/η1(X) = 0 a.s., which

yields E{h− E(h | D) | X} = 0 a.s..

Now we are in position to show

Λ⊥ = Λ⊥1 ∩ Λ⊥2 =
[
h(d, ε,x) : E(h) = 0, E{h− E(h | D) | ε,X}

×∑
d

Nd

N

H(d,X, Y )

ptrue
D (d)

= εa(X) a.s.
]
,

where a(x) is an arbitrary function of x. This is because for any h ∈ Λ⊥1 , h ∈ Λ⊥2 is equivalent

to

0 = E[hT{g(ε,X)− E(g | D)}]
= E[{h− E(h | D)}T{g(ε,X)− E(g | D)}]
= E[{h− E(h | D)}Tg]

= E(E[{h− E(h | D)}T | ε,X]g).

Hence E{h − E(h | D) | ε,X}∑dfX,Y,D(X, Y, d)/{η1(X)η2(ε,X)} = εa(X) + c(X) a.s..

Because h ∈ Λ⊥1 , we have E[E{h− E(h | D) | ε,X} | X] = 0 a.s.. Hence

0 =

∫
E{h− E(h | D) | ε,X}

∑
dfX,Y,D(X, y, d)∫ ∑

dfX,Y,D(X, y, d)dµ(y)
dµ(y)

=

∫ {εa(X) + c(X)}η1(x)η2(ε,X)dµ(y)∫ ∑
dfX,Y,D(X, y, d)dµ(y)

=
c(X)η1(X)∫ ∑

dfX,Y,D(X, y, d)dµ(y)
a.s.,

hence c(X) = 0 a.s. and E{h − E(h | D) | ε,X}∑dfX,Y,D(X, Y, d)/{η1(X)η2(ε,X)} =

εa(X) a.s.. This means that E{h − E(h | D) | ε,X}∑d(Nd/N)H(d,X, Y )/ptrue
D (d) =

εa(X) a.s..

A.3 Sketch of Proof of Theorem 1

For simplicity of proof, we split the N observations randomly into two sets. The first set

contains n1 = N − N1−δ observations and the second set contains n2 = N1−δ observations,

where δ is a small positive number. We form and solve the estimating equation using data

in the first set, while calculating all the hatted quantities described in the algorithm using
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data in the second set. We use this only as a technical device, although in our simulations

and empirical example we used all the data.

In the algorithm, the approximations involve either replacing expectation with averag-

ing, or standard kernel regression estimation or kernel density estimation, hence the dif-

ferences between the quantities with hat and without hat have either mean zero, stan-

dard deviation O(n
−1/2
2 ), or mean O(hr), standard deviation O{(n2h

p)−1/2}. In particular,

Ŝ∗eff(Di,Xi, Yi,θ0)−S∗eff(Di,Xi, Yi,θ0) has bias O(hr) and standard deviation O{(n2h
p)−1/2}.

Recall the definition of expectation and covariance in the superpopulation explicitly written

out in the statement of Theorem 1. Then

0 = n
−1/2
1

n1∑
i=1

Ŝ∗eff(Di,Xi, Yi, θ̂)

= n
−1/2
1

n1∑
i=1

S∗eff(Di,Xi, Yi, θ0) + n
−1/2
1

n1∑
i=1

{
Ŝ∗eff(Di,Xi, Yi,θ0)− S∗eff(Di,Xi, Yi, θ0)

}

+E

{
∂S∗eff(Di,Xi, Yi, θ0)

∂θT
+ op(1)

}
n

1/2
1 (θ̂ − θ0)

= n
−1/2
1

n1∑
i=1

S∗eff(Di,Xi, Yi, θ0) + E

{
∂S∗eff(Di,Xi, Yi,θ0)

∂θT

}
n

1/2
1 (θ̂ − θ0)

+n
−1/2
1

n1∑
i=1

{
Ŝ∗eff(Di,Xi, Yi, θ0)− S∗eff(Di,Xi, Yi,θ0)

}
+ op(1).

We see that Ŝ∗eff(Di,Xi, Yi,θ0) differs from S∗eff(Di,Xi, Yi,θ0) in that all the unknown quanti-

ties, except S∗, are estimated. This is equivalent to estimating the unknown functions η1(x),

η2(ε,x) in (4) and using the estimate η̂1(x), η̂2(ε,x) in calculating S∗eff from the posited S∗.
Thus, denoting η̂ = (η̂1, η̂2), we can approximate

n
−1/2
1

n1∑
i=1

{
Ŝ∗eff(Di,Xi, Yi, θ0)− S∗eff(Di,Xi, Yi,θ0)

}

= n
−1/2
1

n1∑
i=1

{S∗eff(Di,Xi, Yi,θ0, η̂)− S∗eff(Di,Xi, Yi,θ0, η0)}

= {n−1/2
1

n1∑
i=1

∂S∗eff(Di,Xi, Yi,θ0, η0)/∂η}(η̂ − η0) + Op{n1/2
1 (η̂ − η0)

2}+ op(1), (A.3)

where ∂S∗eff(Di,Xi, Yi,θ0, η0)/∂η is pathwise derivative. However, S∗eff is the projection of S∗
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to Λ⊥ so S∗eff ∈ Λ⊥. Thus, for any parametric submodel of η involving parameter γ, we have

E{∂S∗eff(Di,Xi, Yi,θ0, γ)/∂γT}
=

∫
∂S∗eff(Di,Xi, Yi,θ0, γ)

∂γT
fX,Y,D(x, y, d)dµ(x)µ(y)dµ(d)

= −
∫

S∗eff(Di,Xi, Yi,θ0, γ)
∂log{fX,Y,D(x, y, d)}

∂γT
fX,Y,D(x, y, d)dµ(x)µ(y)dµ(d)

= −E{S∗eff(Di,Xi, Yi,θ0, γ)ST
γ } = 0.

The last equality is because by definition Sγ ∈ Λ which is orthogonal to Λ⊥ and S∗eff ∈ Λ⊥.

Here, fX,Y,D(x, y, d) is defined in (4). Because γ is parameter of any arbitrary submodel of

η, we actually have obtained

E{∂S∗eff(Di,Xi, Yi,θ0, η0)/∂η} = −E{S∗eff(Di,Xi, Yi,θ0, η0)S
T
η } = 0,

where Sη is the nuisance score function along the arbitrarily chosen specific path of the

pathwise derivative. Thus, the first term of (A.3) is of order op(1). On the other hand,

Op{n1/2
1 (η̂ − η0)

2} = Op{n1/2
1 h2r + n

1/2
1 (n2h

p)−1} = op(1). We therefore obtain

0 = n
−1/2
1

n1∑
i=1

S∗eff(Di,Xi, Yi,θ0) + E

{
∂S∗eff(Di,Xi, Yi, θ0)

∂θT

}
n

1/2
1 (θ̂ − θ0) + op(1).

This yields n
1/2
1 (θ̂ − θ0) → Normal{0,A−1B(A−1)T}, and hence

N1/2(θ̂ − θ0) → Normal{0,A−1B(A−1)T}

when N →∞.
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Figure 1: Illustration of the bias induced by the case-control sampling scheme. The red solid
line is the true regression function, while the blue dashed line is the regression function when
using all the data and ignoring the case-control sampling scheme.
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Figure 2: The fitted curves from a quadratic regression of MeIQx (solid red line) and PhIP
(dashed blue line) on red meat consumption, using the controls. The fitted values were
normalized to fit on the same plot. Neither have a statistically significant quadratic term.
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Figure 3: Plots to diagnose heteroscedasticity, with the curves representing relative stan-
dard deviation as a function of red meat consumption. Plotted are the fitted curves from
a linear regression of the absolute residuals of the regression of MeIQx (solid red line) and
PhIP (dashed blue line) on red meat consumption, using the controls. The fitted values
were normalized to be equal at the minimum value of red meat consumption. The essen-
tially flat curve for MeIQx indicates homoscedasticity, while that for PhIP is very strongly
heteroscedastic. The latter has implications for data analysis, see Table 7 and the discussion
in Section 6.



Normal Gamma
α2 = 0.00 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.998 0.998 1.001 1.008 0.996 1.000 0.997 1.001
s.d. 0.151 0.110 0.114 0.109 0.155 0.110 0.120 0.110
Est. sd 0.155 0.110 0.122 0.130 0.154 0.110 0.122 0.116
90% 0.903 0.900 0.921 0.910 0.898 0.894 0.910 0.912
95% 0.952 0.955 0.957 0.959 0.958 0.954 0.956 0.959
MSE Eff 1.878 1.734 1.909 1.966 1.663 1.987

α2 = 0.25 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.980 0.983 0.976 0.998 0.977 0.962 0.961 0.993
s.d. 0.151 0.113 0.116 0.113 0.151 0.139 0.115 0.093
Est. sd 0.154 0.111 0.119 0.115 0.148 0.140 0.120 0.103
90% 0.906 0.878 0.895 0.900 0.895 0.902 0.895 0.912
95% 0.947 0.939 0.953 0.966 0.939 0.948 0.943 0.963
MSE Eff 1.785 1.663 1.816 1.129 1.599 2.682

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.974 0.969 0.946 0.992 0.954 0.799 0.958 1.002
s.d. 0.146 0.106 0.119 0.116 0.139 0.179 0.133 0.099
Est. sd 0.154 0.112 0.122 0.126 0.139 0.173 0.132 0.103
90% 0.918 0.909 0.884 0.915 0.885 0.681 0.892 0.917
95% 0.961 0.955 0.943 0.964 0.934 0.787 0.943 0.961
MSE Eff 1.780 1.270 1.627 0.295 1.092 2.186

Table 1: Results of the simulation study with n1 = 500 cases and n0 = 500 controls, dis-
ease rate of approximately 4.5%, with homoscedastic errors. Here ”Normal” means that
ε = Normal(0, 1), while ”Gamma” means that ε is a centered and scale Gamma random
variable with shape 0.4, mean zero and variance one. The analyses performed were using
controls only (”Controls”), the semiparametric efficient method that assumes normality and
homoscedasticity (”Param”), the method of Wei, et al. (2012), (”Robust”), and our method
(”Semi”). Over 1, 000 simulations, we computed the mean estimated β (”Mean”), its stan-
dard deviation (”s.d.”), the mean estimated standard deviation (”Est. sd”), the coverage
for a nominal 90% confidence interval (”90%”), the coverage for a nominal 95% confidence
interval (”95%”), and the mean squared error efficiency compared to using only the controls
(”MSE Eff”).



Normal Gamma

disease rate 10%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.913 0.876 0.784 0.979 0.885 0.885 0.929 0.993
s.d. 0.120 0.121 0.159 0.117 0.124 0.124 0.108 0.109
Est. sd 0.119 0.123 0.154 0.117 0.153 0.126 0.110 0.109
90% 0.806 0.746 0.600 0.893 0.870 0.792 0.847 0.897
95% 0.867 0.837 0.723 0.956 0.926 0.891 0.908 0.948
MSE Eff 0.731 0.305 1.554 0.951 1.628 2.279

disease rate 0.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.991 0.996 0.987 1.010 0.978 0.854 1.029 0.991
s.d. 0.165 0.114 0.118 0.121 0.148 0.231 0.155 0.097
Est. sd 0.155 0.112 0.120 0.122 0.149 0.223 0.160 0.096
90% 0.876 0.893 0.904 0.898 0.902 0.830 0.904 0.895
95% 0.925 0.942 0.949 0.938 0.945 0.904 0.950 0.945
MSE Eff 2.099 1.938 1.852 0.300 0.900 2.359

Table 2: Results of the simulation study with n1 = 500 cases and n0 = 500 controls, α2 = 0.5,
homoscedastic errors. Here “Normal” means that ε = Normal(0, 1), while “Gamma” means
that ε is a centered and scale Gamma random variable with shape 0.4, mean zero and variance
one. The analyses performed were using controls only (”Controls”), the semiparametric effi-
cient method that assumes normality and homoscedasticity (”Param”), the method of Wei,
et al. (2012), (”Robust”), and our method (”Semi”). Over 1, 000 simulations, we computed
the mean estimated β (“Mean”), its standard deviation (”s.d.”), the mean estimated stan-
dard deviation (“Est. sd”), the coverage for a nominal 90% confidence interval (“90%”),
the coverage for a nominal 95% confidence interval (“95%”), and the mean squared error
efficiency compared to using only the controls (“MSE Eff”).



Normal Gamma

disease rate 4.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.962 0.960 0.956 0.994 0.951 0.856 0.936 0.996
s.d. 0.133 0.106 0.108 0.113 0.128 0.153 0.123 0.101
Est. sd 0.133 0.110 0.113 0.121 0.120 0.152 0.120 0.108
90% 0.892 0.884 0.893 0.901 0.845 0.751 0.844 0.916
95% 0.957 0.943 0.954 0.952 0.925 0.848 0.910 0.960
MSE Eff 1.491 1.407 1.494 0.426 0.977 1.839

disease rate 10%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.921 0.850 0.831 0.991 0.937 0.879 0.927 1.060
s.d. 0.106 0.114 0.134 0.082 0.129 0.117 0.107 0.082
Est. sd 0.103 0.113 0.136 0.080 0.133 0.117 0.110 0.077
90% 0.797 0.621 0.673 0.900 0.872 0.739 0.840 0.908
95% 0.881 0.752 0.780 0.949 0.932 0.845 0.909 0.949
MSE Eff 0.492 0.375 2.568 0.727 1.228 1.996

disease rate 0.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 1 0.997 0.991 1.004 0.997 0.901 1.018 1.000
s.d. 0.133 0.107 0.113 0.110 0.129 0.191 0.134 0.100
Est. sd 0.134 0.111 0.111 0.113 0.130 0.190 0.142 0.099
90% 0.904 0.911 0.894 0.904 0.890 0.858 0.925 0.897
95% 0.944 0.959 0.943 0.945 0.947 0.921 0.966 0.953
MSE Eff 1.544 1.377 1.460 0.360 0.911 1.665

Table 3: Results of the simulation study with n1 = 334 cases and n0 = 666 controls, α2 = 0.5,
homoscedastic errors. Here “Normal” means that ε = Normal(0, 1), while “Gamma” means
that ε is a centered and scale Gamma random variable with shape 0.4, mean zero and variance
one. The analyses performed were using controls only (”Controls”), the semiparametric effi-
cient method that assumes normality and homoscedasticity (”Param”), the method of Wei,
et al. (2012), (”Robust”), and our method (”Semi”). Over 1, 000 simulations, we computed
the mean estimated β (“Mean”), its standard deviation (”s.d.”), the mean estimated stan-
dard deviation (“Est. sd”), the coverage for a nominal 90% confidence interval (“90%”),
the coverage for a nominal 95% confidence interval (“95%”), and the mean squared error
efficiency compared to using only the controls (“MSE Eff”).



Normal Gamma
α2 = 0.00 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.996 0.996 1.000 1.005 0.992 0.994 1.000 1.002
s.d. 0.099 0.071 0.071 0.076 0.099 0.070 0.073 0.077
Est. sd 0.096 0.070 0.072 0.082 0.096 0.070 0.071 0.078
90% 0.887 0.892 0.895 0.898 0.887 0.903 0.893 0.898
95% 0.932 0.953 0.949 0.950 0.944 0.946 0.947 0.951
MSE Eff 1.948 1.961 1.692 1.971 1.847 1.663

α2 = 0.25 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.986 1.044 0.973 0.997 0.983 1.063 0.964 0.995
s.d. 0.100 0.072 0.066 0.077 0.094 0.082 0.069 0.071
Est. sd 0.096 0.071 0.070 0.081 0.094 0.083 0.072 0.074
90% 0.880 0.838 0.907 0.912 0.894 0.825 0.863 0.904
95% 0.936 0.907 0.953 0.959 0.946 0.900 0.934 0.950
MSE Eff 1.415 1.984 1.717 0.852 1.516 1.801

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.972 1.088 0.949 0.991 0.962 1.145 0.906 0.993
s.d. 0.099 0.072 0.068 0.083 0.095 0.096 0.076 0.082
Est. sd 0.096 0.072 0.071 0.102 0.090 0.100 0.076 0.105
90% 0.877 0.664 0.842 0.897 0.857 0.591 0.655 0.900
95% 0.936 0.789 0.914 0.946 0.909 0.714 0.756 0.935
MSE Eff 0.816 1.479 1.519 0.343 0.717 1.546

Table 4: Results of the simulation study with n1 = 500 cases and n0 = 500 controls, dis-
ease rate of approximately 4.5%, with heteroscedastic errors. Here ”Normal” means that
ε = Normal(0, 1), while ”Gamma” means that ε is a centered and scale Gamma random
variable with shape 0.4, mean zero and variance one. The analyses performed were using
controls only (”Controls”), the semiparametric efficient method that assumes normality and
homoscedasticity (”Param”), the method of Wei, et al. (2012), (”Robust”), and our method
(”Semi”). Over 1, 000 simulations, we computed the mean estimated β (”Mean”), its stan-
dard deviation (”s.d.”), the mean estimated standard deviation (”Est. sd”), the coverage
for a nominal 90% confidence interval (”90%”), the coverage for a nominal 95% confidence
interval (”95%”), and the mean squared error efficiency compared to using only the controls
(”MSE Eff”).



Normal Gamma

disease rate 10%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.905 0.897 1.078 0.990 0.950 0.931 1.065 1.001
s.d. 0.083 0.073 0.091 0.117 0.101 0.073 0.071 0.108
Est. sd 0.083 0.072 0.089 0.115 0.100 0.072 0.072 0.111
90% 0.676 0.600 0.770 0.895 0.847 0.765 0.781 0.895
95% 0.766 0.698 0.850 0.947 0.914 0.851 0.859 0.955
MSE Eff 0.998 1.107 1.154 1.258 1.370 1.089

disease rate 0.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.997 1.113 0.973 1.007 0.991 1.296 0.890 0.995
s.d. 0.098 0.073 0.067 0.082 0.102 0.113 0.087 0.072
Est. sd 0.101 0.072 0.070 0.088 0.098 0.112 0.084 0.071
90% 0.906 0.541 0.892 0.897 0.895 0.145 0.630 0.907
95% 0.951 0.663 0.957 0.942 0.937 0.231 0.745 0.941
MSE Eff 0.531 1.842 1.419 0.104 0.533 2.013

Table 5: Results of the simulation study with n1 = 500 cases and n0 = 500 controls, α2 = 0.5,
heteroscedastic errors. Here “Normal” means that ε = Normal(0, 1), while “Gamma” means
that ε is a centered and scale Gamma random variable with shape 0.4, mean zero and variance
one. The analyses performed were using controls only (”Controls”), the semiparametric effi-
cient method that assumes normality and homoscedasticity (”Param”), the method of Wei,
et al. (2012), (”Robust”), and our method (”Semi”). Over 1, 000 simulations, we computed
the mean estimated β (“Mean”), its standard deviation (”s.d.”), the mean estimated stan-
dard deviation (“Est. sd”), the coverage for a nominal 90% confidence interval (“90%”),
the coverage for a nominal 95% confidence interval (“95%”), and the mean squared error
efficiency compared to using only the controls (“MSE Eff”).



Normal Gamma

disease rate 4.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.977 1.052 0.961 0.996 0.961 1.085 0.926 0.994
s.d. 0.084 0.070 0.063 0.077 0.083 0.087 0.066 0.082
Est. sd 0.087 0.072 0.064 0.083 0.08 0.087 0.067 0.090
90% 0.883 0.825 0.859 0.913 0.827 0.735 0.702 0.918
95% 0.939 0.892 0.930 0.952 0.905 0.831 0.806 0.954
MSE Eff 0.998 1.382 1.276 0.568 0.855 1.244

disease rate 10%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.911 0.909 1.021 1.001 0.956 0.937 1.027 1.000
s.d. 0.072 0.064 0.080 0.079 0.084 0.066 0.070 0.087
Est. sd 0.072 0.065 0.080 0.076 0.087 0.065 0.072 0.094
90% 0.654 0.595 0.895 0.901 0.867 0.772 0.877 0.906
95% 0.749 0.700 0.949 0.951 0.927 0.851 0.933 0.952
MSE Eff 1.058 1.915 2.099 1.080 1.597 1.188

disease rate 0.5%

α2 = 0.50 Controls Param Robust Semi Controls Param Robust Semi
Mean 0.997 1.073 0.979 1.007 0.994 1.189 0.920 0.997
s.d. 0.088 0.073 0.066 0.078 0.084 0.100 0.071 0.070
Est. sd 0.087 0.072 0.063 0.086 0.085 0.099 0.073 0.069
90% 0.891 0.728 0.871 0.901 0.899 0.384 0.725 0.911
95% 0.950 0.820 0.929 0.952 0.953 0.539 0.829 0.960
MSE Eff 0.727 1.616 1.264 0.155 0.620 1.445

Table 6: Results of the simulation study with n1 = 334 cases and n0 = 666 controls, α2 = 0.5,
heteroscedastic errors. Here “Normal” means that ε = Normal(0, 1), while “Gamma” means
that ε is a centered and scale Gamma random variable with shape 0.4, mean zero and variance
one. The analyses performed were using controls only (”Controls”), the semiparametric effi-
cient method that assumes normality and homoscedasticity (”Param”), the method of Wei,
et al. (2012), (”Robust”), and our method (”Semi”). Over 1, 000 simulations, we computed
the mean estimated β (“Mean”), its standard deviation (”s.d.”), the mean estimated stan-
dard deviation (“Est. sd”), the coverage for a nominal 90% confidence interval (“90%”),
the coverage for a nominal 95% confidence interval (“95%”), and the mean squared error
efficiency compared to using only the controls (“MSE Eff”).



All Data

Controls only Parametric
OLS Sandwich Asymptotic Bootstrap

Estimate se se Estimate se se
MeIQx 0.868 0.034 0.035 0.862 0.026 0.026
PhIP 0.742 0.064 0.080 0.751 0.046 0.056

Robust Semiparametric
Bootstrap Asymptotic Bootstrap

Estimate se Estimate se se
MeIQx 0.862 0.028 0.862 0.027 0.027
PhIP 0.751 0.057 0.750 0.057 0.058

Smokers only

Controls only Parametric
OLS Sandwich Asymptotic Bootstrap

Estimate se se Estimate se se
MeIQx 0.816 0.050 0.057 0.847 0.036 0.037
PhIP 0.619 0.095 0.132 0.737 0.063 0.080

Robust Semiparametric
Bootstrap Asymptotic Bootstrap

Estimate se Estimate se se
MeIQx 0.847 0.038 0.846 0.036 0.039
PhIP 0.737 0.084 0.736 0.082 0.087

Table 7: Results of data analysis when Y is either MeIQx or PhIP. For the controls only,
“OLS se” is the ordinary least squares standard error estimate, while “Sandwich se” is the
sandwich method standard error estimate. For the parametric and semiparametric analysis,
“Asymptotic se” is the standard error estimate from asymptotic theory, while “Bootstrap
se” is the bootstrap standard error. For the robust analysis, only bootstrap standard error is
available. The regression of PhIP on red meat (X) is heteroscedastic, reflected in the differ-
ence between the OLS standard error and the Sandwich standard error for the controls only
analysis, as well as the difference between the asymptotic standard error and the bootstrap
standard error of the parametric estimator.
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S.1 Derivation of the Efficient Score

Having obtained both the score function and the two spaces Λ and Λ⊥, we only need to

project the score function onto Λ⊥ to obtain the efficient score Seff . To do this, we write

Sθ = S − E(S | D) = g(ε,X) − E(g | D) + Seff , where Etrue(g) = Etrue(εg | X) = 0. We

alternatively write Seff = S− g(ε,X)−E(S− g | D) and Seff satisfies E{Seff −E(Seff | D) |
ε,X}∑

d(Nd/N)H(d,x, Y )/ptrue
D (d) = εa(X) and E(Seff) = 0. However, E(Seff | d) = 0 au-

tomatically, hence we can ignore the second requirement and the first requirement simplifies

to E(Seff | ε,X)
∑

d(Nd/N){H(d,X, Y )/ptrue
D (d)} = εa(X). This gives

εa(X)

{∑

d

Nd

N

H(d,X, Y )

ptrue
D (d)

}−1

= E(S− g | ε,X)− E {E(S− g | D) | ε,X} .

It follows that

fD|X,Y (d,x, y) =
Nd

N

H(d,x, y)

ptrue
D (d)

{∑

d

Nd

N

H(d,x, y)

ptrue
D (d)

}−1

.
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To simplify notation, in the following calculation we denote

π0 = ptrue
D (0) =

∫
η1(x)η2(ε,x)H(0,x, y)dµ(x)dµ(y);

π1 = ptrue
D (1) =

∫
η1(x)η2(ε,x)H(1,x, y)dµ(x)dµ(y);

b0 = E{fD|X,Y (1,X, Y ) | D = 0};
b1 = E{fD|X,Y (0,X, Y ) | D = 1};
c0 = E(S | D = 0)− E{E(S | ε,X) | D = 0};
c1 = E(S | D = 1)− E{E(S | ε,X) | D = 1};

κ(x, y) =
[∑1

d=0{NdH(d,x, y)}/(Nπd)
]−1

;

u0 = E {εa(X)κ(X, Y ) | D = 0} ;

u1 = E {εa(X)κ(X, Y ) | D = 1} ;

v0 = E(S− g | D = 0);

v1 = E(S− g | D = 1).

Note that π0 + π1 = 1, b0N0 = b1N1, c0N0 + c1N1 = 0 and v0π0 + v1π1 = 0.

Under a true model, π0, π1, b0, b1, c0, c1 are known quantities, while u1,u1,v0,v1 are not

known because g = g(ε,x) and a = a(x) are not specified. To further obtain u1,u1,v0,v1,

εa(x)κ(x, y) = E(S− g | ε,X = x)− v0fD|X,Y (0,x, y)− v1fD|X,Y (1,x, y)

= E(S | ε,X = x)− g − v0fD|X,Y (0,x, y)− v1fD|X,Y (1,x, y).

Alternatively, we also have

g(ε,x) = E(S | ε,X = x)− εa(x)κ(x, y)− v0fD|X,Y (0,x, y)− v1fD|X,Y (1,x, y). (S.1)

Since v0 = E(S− g | D = 0), we obtain

v0 = E(S | D = 0)− E
{
E(S | ε,X)− εa(X)κ(X, Y )

−v0fD|X,Y (0,X, Y )− v1fD|X,Y (1,X, Y ) | D = 0
}

= c0 + u0 + v0(1− b0) + v1b0.

Thus, we have b0v0 − b0v1 − u0 = c0. Similarly, from v1 = E(S− g | D = 1), we obtain

v1 = E(S | D = 1)− E
{
E(S | ε,X)− εa(X)κ(X, Y )

−v0fD|X,Y (0,X, Y )− v1fD|X,Y (1,X, Y ) | D = 1
}

= c1 + u1 + v0b1 + v1(1− b1).
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Thus, we have −b1v0 + b1v1 − u1 = c1. Since

E {εa(X)κ(X, Y )} = 0,

we have u0N0 + u1N1 = 0. Since Etrue(S− g) = 0, we have

0 =
∑

d

∫
(S− g)fX,Y |D(x, y, d){f true

X,Y,D(x, y, d)/fX,Y |D(x, y, d)}dµ(x)dµ(y)

=
∑

d

∫
(S− g)fX,Y |D(x, y, d){f true

X,Y,D(x, y, d)/f true
X,Y |D(x, y, d)}dµ(x)dµ(y)

=
∑

d

∫
(S− g)fX,Y |D(x, y, d)ptrue

D (d)dµ(x)dµ(y)

= π0v0 + π1v1.

Combining the above relations, we have obtained N0u0 + N1u1 = 0, π0v0 + π1v1 = 0,

b0v0− b0v1− u0 = c0 and −b1v0 + b1v1− u1 = c1. The last two equations are equivalent so

one is redundant. Using these relations, we can rewrite u1,v0,v1 as a function of u0:

u1 = −(N0/N1)u0, v0 = (π1/b0)(u0 + c0), v1 = −(π0/b0)(u0 + c0). (S.2)

We cannot obtain a more explicit expression for u0 at this stage, but we can further obtain

a(x) as a function of u0. Using (S.1) and since Etrue(εg | X) = 0, we have

Etrue {εE(S | ε,X) | X} − Etrue

{
ε2κ(X, Y ) | X}

a(X)

−v0Etrue

{
εfD|X,Y (0,X, Y ) | X}− v1Etrue

{
εfD|X,Y (1,X, Y ) | X}

= 0.

Hence

a(X) =
[
Etrue

{
ε2κ(X, Y ) | X}]−1

[
Etrue {εE(S | ε,X) | X} − v0Etrue

{
εfD|X,Y (0,X, Y ) | X}

−v1Etrue

{
εfD|X,Y (1,X, Y ) | X}]

=
[
Etrue

{
ε2κ(X, Y ) | X}]−1 [

Etrue {εE(S | ε,X) | X}
−(π1/b0)(u0 + c0)Etrue

{
εfD|X,Y (0,X, Y ) | X}

+(π0/b0)(u0 + c0)Etrue

{
εfD|X,Y (1,X, Y ) | X}]

.

To further simplify notation, denote

t1(X) =
[
Etrue

{
ε2κ(X, Y ) | X}]−1

; (S.3)

t2(X) = Etrue {εE(S | ε,X) | X} − (π1/b0)c0Etrue

{
εfD|X,Y (0,X, Y ) | X}

+(π0/b0)c0Etrue

{
εfD|X,Y (1,X, Y ) | X}

= Etrue {εE(S | ε,X) | X} − (c0/b0)Etrue

{
εfD|X,Y (0,X, Y ) | X}

;

t3(X) = −(π1/b0)Etrue

{
εfD|X,Y (0,X, Y ) | X}

+ (π0/b0)Etrue

{
εfD|X,Y (1,X, Y ) | X}

= −b−1
0 Etrue

{
εfD|X,Y (0,X, Y ) | X}

.
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Then

a(x) = t1(x){t2(x) + t3(x)u0}, (S.4)

hence the definition of u0 yields

u0 = E (ε [t1(X){t2(X) + t3(X)u0}] κ(X, Y ) | D = 0)

= E [εt1(X)t2(X)κ(X, Y ) | D = 0] + E [εt1(X)t3(X)κ(X, Y ) | D = 0]u0.

This yields

u0 = (1− E [εt1(X)t3(X)κ(X, Y ) | D = 0])−1 E [εt1(X)t2(X)κ(X, Y ) | D = 0] . (S.5)

Combining the above results, we have obtained the analytic form of Seff = S−g−E(S−g |
D = d), where g is given in (S.1), a(x) is given in (S.4), v0,v1 are given in (S.2) u0 is given

in (S.5) and the functions t1, t2, t3 are given in (S.3).

In forming the estimating equation
∑N

i=1 Seff = 0, we will have
∑N

i=1[S(Xi, Yi, Di) −
g{Yi −m(Xi, β),Xi}] − N0E(S − g | D = 0) − N1E(S − g | D = 1) = 0. Using (S.1), we

obtain

E(S− g | D = 0) = E(S | D = 0)− E{E(S | ε,X) | D = 0}+ E{εa(X)κ(X, Y ) | D = 0}
+v0E{fD|X,Y (0,X, Y ) | D = 0}+ v1E{fD|X,Y (1,X, Y ) | D = 0}

= c0 + u0 + v0(1− b0) + v1b0

and

E(S− g | D = 1) = E(S | D = 1)− E{E(S | ε,X) | D = 1}+ E{εa(X)κ(X, Y ) | D = 1}
+v0E{fD|X,Y (0,X, Y ) | D = 1}+ v1E{fD|X,Y (1,X, Y ) | D = 1}

= c1 + u1 + v0b1 + v1(1− b1),

hence

N0E(S− g | D = 0) + N1E(S− g | D = 1)

N0{c0 + u0 + v0(1− b0) + v1b0}+ N1{c1 + u1 + v0b1 + v1(1− b1)}
(N0c0 + N1c1) + (N0u0 + N1u1) + (N0v0 + N1v1) + (v1 − v0)(N0b0 −N1b1).

Thus, the estimating equation simplifies to
∑N

i=1[S(Xi, Yi, Di) − g{Yi − m(Xi,β),Xi}] −
N0v0 −N1v1 = 0.
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S.2 Verification of Assumptions 1-2 in the Linear Model

as in Remark 2

Let Dc = [−K, K] for a sufficiently large K. We have assumed that the conditional distri-

bution of ε satisfies the property that pr(|ε| > K|X = x) → 0 as K → ∞ uniformly in x,

and hence pr(ε ∈ D) can be made arbitrarily small uniformly in x.

Without loss of generality, assume the first component of α1 + β1α2 is not zero. We

consider three situations, 1. β̃c − βc 6= 0, 2. β̃c − βc = 0 and the first component of β̃1 − β1

is not zero and 3) β̃c − βc = 0 and the first component of β̃1 − β1 is zero. Note that ε

has conditional mean zero. Thus for most common density functions with bounded variance

function, this requirement is satisfied.

Case 1 and Case 2: If the first component of α1 + β1α2 is positive, let c1 = (∞,0T)T,

otherwise, let c1 = (−∞,0T)T. Let c2 = 0, Dc = [−K,K] for a sufficiently large K. Then

sup
ε∈Dc

lim
x→c1

|(1 + exp[αc + u{x,m(x,β) + ε, α1, α2}])−1 − c2|

= sup
−K≤ε≤K

lim
x→c1

|[1 + exp{αc + xT(α1 + β1α2) + βcα2 + εα2}]−1|
= 0.

Finally, since D = (−∞,−K) ∪ (K,∞), we have that every element u ∈ D satisfies u > 1

as long as K > 1. We have thus verified Assumption 1.

We have c(β, β̃) = cT
1 (β̃1 − β1) + (β̃c − βc), which is not zero if β̃c − βc 6= 0 (case 1),

and is also not zero if the first component of β̃1−β1 is not zero (case 2). Thus, Assumption

2 also holds.

Case 3: Since β̃ 6= β, without loss of generality, we assume the second component of

β̃1−β1 is not zero in this case. We select c1 as follows. If the first component of α1 + β1α2

is positive and the second component of α1 + β1α2 is non-negative, let c1 = (∞,∞,0T)T.

If the first component of α1 + β1α2 is positive and the second component of α1 + β1α2

is negative, let c1 = (∞,−∞,0T)T. If the first component of α1 + β1α2 is negative and

the second component of α1 + β1α2 is non-negative, let c1 = (−∞,∞,0T)T. If the first

component of α1 + β1α2 is negative and the second component of α1 + β1α2 is negative,

let c1 = (−∞,−∞,0T)T. The selection of c2,D, K remains the same as in Cases 1 and

2. We an see the same arguments lead to the verification of Assumption 1. In addition,

c(β, β̃) = cT
1 (β̃1 − β1), which is either ∞ or −∞, and is thus not zero. Thus, Assumption

2 also holds.
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S.3 Verification of Nonidentifiability in the Special

Case in Remark 2

Here, we provide the details of the proof of the nonidentifiability result in Remark 2, which

happens when when m(x,β) = xTβ1 + βc and u(x, y, α1,αc) = xTα1 + yα2 + αc, and

α1 + β1α2 = 0. We first exclude a special case when α2 = 0. This special case implies

α1 = 0 and α2 = 0, hence the case-control sampling is in fact random sampling. Thus, in

the following, we assume α2 6= 0, We point out that

m1 ≡
∫

ε
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε) 6= 0.

This is because we can use the mean value theorem for integration to obtain

∫
ε
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε)

=

∫ 0

−∞
ε
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε) +

∫ ∞

0

ε
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε)

=
1 + exp(α̃c + βcα2 − k1α2)

1 + exp(αc + βcα2 − k1α2)

∫ 0

−∞
εη2(ε)dµ(ε) +

1 + exp(α̃c + βcα2 + k2α2)

1 + exp(αc + βcα2 + k2α2)

∫ ∞

0

εη2(ε)dµ(ε)

=

{
1 + exp(α̃c + βcα2 + k2α2)

1 + exp(αc + βcα2 + k2α2)
− 1 + exp(α̃c + βcα2 − k1α2)

1 + exp(αc + βcα2 − k1α2)

} ∫ ∞

0

εη2(ε)dµ(ε)

=
{exp(α̃c)− exp(αc)} exp(βcα2){exp(k2α2)− exp(−k1α2)}
{1 + exp(αc + βcα2 + k2α2)}{1 + exp(αc + βcα2 − k1α2)}

∫ ∞

0

εη2(ε)dµ(ε) 6= 0,

where k1, k2 are positive constants.

Following the notation in the proof of Proposition 1, we define η2(ε,x) = η2(ε),

η̃1(x) =
π̃0

π0

η1(x)

∫
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε);

β̃c = βc +

{∫
1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε)

}−1

m1;

η̃2(ε) = c0
1 + exp(α̃c + β̃cα2 + εα2)

1 + exp(αc + β̃cα2 + εα2)
η2(ε + β̃c − βc),

where

c−1
0 =

∫
1 + exp(α̃c + β̃cα2 + εα2)

1 + exp(αc + β̃cα2 + εα2)
η2(ε + β̃c − βc)dµ(ε).
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Obviously
∫

η̃2(ε)dµ(ε) = 1. We can easily verify that

∫
η̃1(x)dµ(x) =

π̃0

π0

∫
η1(x)

1 + exp(α̃c + βcα2 + εα2)

1 + exp(αc + βcα2 + εα2)
η2(ε)dµ(ε)dµ(x)

=
π̃0

π0

{π0 + exp(α̃c − αc)π1}

= π̃0 +
π̃0 exp(α̃c)π1

π0 exp(αc)
= π̃0 + π̃1 = 1,

using the intermediate results in the proof of Proposition 1. We can also obtain

∫
εη̃2(ε)dµ(ε) = c0

∫
ε
1 + exp(α̃c + β̃cα2 + εα2)

1 + exp(αc + β̃cα2 + εα2)
η2(ε + β̃c − βc)dµ(ε)

= c0

∫
(t + βc − β̃c)

1 + exp(α̃c + βcα2 + tα2)

1 + exp(αc + βcα2 + tα2)
η2(t)dµ(ε) = 0.

Now we can easily verify that the two parameter sets {αc,α1, α2,β1, βc, η1(x), η2(ε)} and

{α̃c, α1, α2,β1, β̃c, η̃1(x), η̃2(ε)} satisfy (A.1), hence the problem is not identifiable.



Red Meat MeIQx PhIP

Original Scale

Figure S.1: Boxplots of the variables in the original data scale among the controls. Each
variable has been normalized to have maximum value 1.0. This and Figure S.2 indicate a
need for data transformation.
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Figure S.2: Kernel density estimates in the original data scale, among the controls. This
and Figure S.1 indicate a need for data transformation.
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Red Meat MeIQx PhIP

Transformed Scale

Figure S.3: Boxplots of the variables in the transformed data scale, among the controls.
Each variable has been normalized to have maximum value 1.0. Contrast with the boxplots
in the original data scale in Figure S.1.
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Figure S.4: Kernel density estimates in the transformed data scale, among the controls.
Contrast with the boxplots in the original data scale in Figure S.2
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Figure S.5: Scatterplots of transformed MeIQX and PhIP against transformed Red Meat,
among the controls.


