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S

We study the heteroscedastic partially linear model with an unspecified partial baseline
component and a nonparametric variance function. An interesting finding is that the
performance of a naive weighted version of the existing estimator could deteriorate when
the smooth baseline component is badly estimated. To avoid this, we propose a family of
consistent estimators and investigate their asymptotic properties. We show that the optimal
semiparametric efficiency bound can be reached by a semiparametric kernel estimator in
this family. Building upon our theoretical findings and heuristic arguments about the
equivalence between kernel and spline smoothing, we conjecture that a weighted partial-
spline estimator could also be semiparametric efficient. Properties of the proposed
estimators are presented through theoretical illustration and numerical simulations.

Some key words: Double robustness; Kernel estimation; Influence function; Partial spline; Semiparametric
efficiency bound.

1. I

We study a partially linear regression model,

Y
i
=XT
i
b+g(Z

i
)+e
i
, E(e

i
|X
i
, Z
i
)=0 (i=1, . . . , n), (1)

where X and Z are random variables. In (1), the parametric component XTb provides a
simple summary of covariate effects which are of main scientific interest, while the smooth
baseline component g ( . ) is included to enrich model flexibility. Since its introduction by
Engle et al. (1986), this model has been widely applied in diverse disciplines. Härdle et al.
(2000, § 1.1) provides a comprehensive literature review. Even though an equal-variance
assumption for e was often not made in various earlier papers, such as Liang et al. (1999),
the proposed estimators often do not account for the heteroscedasticity of the model.
Härdle et al. (2000, eqn 2.1.4) proposed a direct weighted extension of the estimator given
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in Liang et al. (1999) with the weights being inversely proportional to the variances.
Nonetheless, our investigation indicates that this direct extension is still not efficient.
Furthermore, when one cannot obtain a consistent estimator of g, the estimator of b will
be inconsistent. An intriguing finding here is that, when a constant weight function is
adopted, the estimator of b remains consistent even when g is inconsistently estimated.
Motivated by the robustness property of using a constant weight function, we derive a
semiparametric efficient estimator which has the same robustness under nonconstant
weights.

2. W    

Our goal for this section is to present an interesting finding about the relationship
between weighted versus unweighted estimators and the consistency of b@ when the nuisance
parameter g cannot be consistently estimated. We suspect that this may be a rationale
behind the use of unweighted estimators even when there exists heteroscedasticity.
Nevertheless, to the best of our knowledge, this point has not been discussed in the
literature. To ease the presentation of consistency considerations among different
estimators, we present each estimator as a solution to an estimating equation. If the
estimator is consistent, then the estimating equation converges to zero. Throughout, we
denote the weight function by w(X, Z). The commonly used inverse-to-variation weights
have w(X, Z)=var (e|X, Z)−1. We consider the following set of estimating equations:

0=Y(Y , X, Z, w, b, ǧ)=n−1 ∑
n

i=1
w
i
{Y
i
−XT
i
b− ǧ(Z

i
, b)}{X

i
−EC (X|Z

i
)}, (2)

where ǧ(z, b) could be a given or estimated function of z and may or may not be a
function of b, EC ( . |z) denotes a consistent estimator of E(. |Z=z), and w

i
=w(X

i
, Z
i
) denotes

the weights. Almost all commonly seen b@ can be presented as solutions to one of these
estimating equations. We focus on the case where ǧ does not equal or converge to g and
evaluate, respectively, the limits of Y for w¬1 and for w in general. To concentrate on
the main concept, we temporarily assume here that E(X|Z) is known.
We rewrite the right-hand side of (2) as

n−1 ∑
i

w(X
i
, Z
i
){e
i
+g(Z

i
)− ǧ(Z

i
)}{X
i
−E(X|Z

i
)}. (3)

When w¬1, the solution to (2) gives an unweighted estimator. Since the last term inside
the curly brackets in (3) has mean zero given Z, (3) converges to zero. In contrast, for a
weighted estimator, (3) converges to

E([E{w(X, Z)X|Z}−E{w(X, Z)|Z}E(X|Z)]{g(Z)− ǧ(Z)}),

which is zero if w(X, Z) is independent of X given Z, but may not be zero, otherwise; that
is, the inclusion of weights in the commonly used estimating equations has a tendency to
lead to inconsistent b@ when a wrong g is in place.

3. W     

Given that weights are commonly included for various purposes, such as accounting
for sampling strategies, and that g could simply be a nuisance parameter, it seems desirable
to construct an estimation scheme which does not mandate a well-estimated g but still
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accommodates the inclusion of weights. Indeed, we can achieve this goal with a slight
modification of (2). We consider a new family of weighted estimating equations,

0=n−1 ∑
n

i=1
w(X
i
, Z
i
){Y
i
−XT
i
b− ǧ(Z

i
, b)}CXi−EC {w(X, Z)X|Z

i
}

EC {w(X, Z)|Z
i
} D . (4)

If we use equivalent derivations to those in § 2 and note that

E[w{X−E(wX|Z)/E(w|Z)}|Z]=0,

it is easily seen that the right-hand side of (4) converges to zero even when ǧ is mis-
specified. This implies that even a wrong choice of ǧ¬0 still leads to a consistent b@ .
Since (4) is a simple modification of (2), many theoretical or numerical tools developed
under (2) can be easily adapted. For a given ǧ and kernel/local-polynomial estimator
EC ( . |z), asymptotic normality such as that given in Theorem 2.1.1, with w

i
¬1, or

Theorems 2.1.2 and 2.1.3, the weighted versions, of Härdle et al. (2000) can be obtained
and proved, following similar techniques. For illustrative purposes, we provide the
asymptotic normality result when ǧ=0 in the Appendix. The scenario of ǧ=0 could be
viewed as a ‘worse-case’ scenario when g(z)N0, in that one completely ignores Z as a
predictor of Y .
The consistency and asymptotic normality properties described above apply to weights

chosen for any reasons. When focusing on the purpose of increasing efficiency for a
heteroscedastic partially linear model, we note that Chamberlain (1992) has given the
semiparametric efficiency bound. However, none of the weighted estimators given in
Härdle et al. (2000, § 2) has reached this bound. In what follows, we derive the semi-
parametric efficient score for b and propose a semiparametric efficient estimator as the
solution to a member of (4), which mimics the score. The semiparametric efficient score
is defined as the projection of the score vector on to the orthogonal complement of the
nuisance tangent space; for details, see Bickel et al. (1993, p. 70).

P 1. Assume that the conditional probability density function of e given (X, Z),
p
e
(e|X, Z), is diVerentiable with respect to e and that 0<E(e2 |X, Z)<2 almost everywhere.

In estimating b in model (1), write w=w(X, Z)=E(e2 |X, Z)−1. T he semiparametric
eYciency score is

Seff=weqX−E(wX|Z)

E(w|Z) r . (5)

The expression for Seff suggests that, by carefully choosing w and ǧ in (4), we should
obtain a semiparametric efficient b@ as the solution to (4). A sketch of derivations that
lead to Proposition 1 is given in the Appendix.
It is well known that, in terms of numerical estimation, high-dimensional estimation

suffers from the curse of dimensionality. To focus our presentation on the main concepts,
we assume that there exists a variable j=j(X, Z) such that var (e|X, Z)=var (e|j). We will
also concentrate on the case where the dimensions of Z and j are 1. It is worth noting
that the structure holds in general. The model can be extended to include intermediate
multivariate models as components, for example with additive structures, so that the
univariate convergence rates remain achievable and that the structure is still very flexible.
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If we use nonparametrically estimated g, w, E(w|Z) and E(wX|Z), the estimator can be
written as the solution to

0= ∑
n

i=1
{Y
i
−XT
i
b−g@ (Z

i
, b)}w@ (X

i
, Z
i
)CXi−EC {w@ (X, Z)X|Z

i
}

EC {w@ (X, Z)|Z
i
} D . (6)

Up to this point, Z can be continuous or discrete. Hereafter, we assume that Z is a
continuous random variable and estimate E(. |Z ) by local-linear kernel estimation on Z.
Note that Z can obviously be discrete but different assumptions are needed to ensure that
certain desirable convergence properties of nonparametrically estimated g, E(w|Z) and
E(wX|Z) still hold.
One option for g@ (Z

i
, b) is

EC (wY |Z
i
)/EC (w|Z

i
)−{EC (wX|Z

i
)/EC (w|Z

i
)}b, (7)

even though other consistently estimated g could reach equivalent asymptotic properties.
Müller & Stadtmüller (1987) and Chiou & Müller (1999) give thorough discussions about
nonparametric variance estimation. Chiou & Müller (1999) also use inverse-to-variation
weights in semiparametric estimation. In this respect, our estimated w or var(e|j) is simply
a direct application of their work; see the original papers for details.

P 2. Assume that b@ solves (6). T hen, under the regularity conditions given in
the Appendix, when n�2,

√n(b@−b)�N(0, V )

in distribution, where

V={E(SeffSTeff )}−1=CEqwXXT−
E(wX|Z)E(wX|Z)T

E(w|Z) rD−1. (8)

A sketch of the proof of Proposition 2 is given in the Appendix. Note that Chamberlain
(1992) gave the same efficiency bound as in (8), although an estimator to achieve this
bound has not been derived. The above results suggest that various approaches to non-
parametric estimation do not cause any efficiency loss. In other words, b@ is asymptotically
equivalent to the solution to (6) with known g, w, E(w|Z) and E(wX|Z).
There are several slightly different ways of calculating the estimator. We outline our
way of implementation below.

Step 1. Estimate E(Y |Z) and E(X|Z) nonparametrically and obtain the initial estimates
b@=[{X−EC (X|Z)}T{X−EC (X|Z)}]−1[{X−EC (X|Z)}T{Y−EC (Y |Z)}], and

g@ (Z
i
)=EC (Y |Z

i
)−EC (X|Z

i
)Tb@ .

Step 2. Calculate e@
i
=Y
i
−XT
i
b@−g@ (Z

i
).
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Step 3. Obtain nonparametrically estimated w@
i
=EC (e@2 |X

i
, Z
i
)−1, for i=1, . . . , n.

Step 4. For the set of {w@
i
}, obtain EC (w@

i
|Z
i
), EC (w@X|Z

i
) and EC (w@ Y |Z

i
), for i=1, . . . , n, in

the form of local-linear estimators.

Step 5. Let XB
i
=X
i
−EC (w@X|Z

i
)/EC (w@ |Z

i
) and YB

i
=Y
i
−EC (w@ Y |Z

i
)/EC (w@ |Z

i
), and let W be a

diagonal matrix with w@
i
being the ith diagonal element. Calculate

b@= (XB TWXB )−1XB TW YB , (9)

and g@ as in (7) with b=b@ .

Step 6. Iterate Steps 2 to 5 until convergence and use the sandwich covariance estimate
based on (9) to estimate the asymptotic variance matrix of b@ , with the estimated variance
matrix of YB being a diagonal matrix with ith diagonal element equal to EC (e@2 |X

i
, Z
i
).

While we focus on kernel methods in demonstrating the efficiency of our estimator, in
practice, estimating g by a spline estimator is as common as estimating g by the kernel
method. Heckman (1986), Rice (1986) and others adopted smoothing spline techniques
in the estimation of b and g in model (1). Ruppert et al. (2003, Ch. 7, 9) provide various
applications using partially linear penalised splines. A weighted version of spline estimation
is given in (4.4) of Green & Silverman (1994):

arg min
b,g
∑
n

i=1
w
i
{Y
i
−XT
i
b−g(Z

i
)}2+l P g◊(z)2dz.

Although the pointwise asymptotic equivalence between kernel- and spline-estimated g
has been established for both uncorrelated data (Silverman, 1984; Nychka, 1995) and
correlated data (Lin et al., 2004), without uniform equivalence results, it is nontrivial to
establish rigorously equivalence between the ways of estimating b. The arguments given
below nonetheless suggest that such equivalence could be established provided that
‘uniform’ equivalence between regular spline and kernel estimators existed.
Consider a model, Y *=g(Z

i
)+e, let

g@S (z)=n−1 ∑
i
cS (z, Zi )Y *i , g@K (z)=n−1 ∑

i
cK (z, Zi )Y *i ,

and let GS and GK denote the hat matrices with their (i, j )th elements being cS (Zi , Zj ) and
cK (Zi , Zj ), with the subscripts ‘S’ and ‘K’ standing for spline and kernel, respectively. It
is straightforward to show that b@K satisfies

XT (I−GK )TW (I−GK )Xb
@
K=XT (I−GK )TW (I−GK )Y ,

while, by Green & Silverman (1994, § 4.2), b@ S satisfies XTW (I−GS )Xb
@
S=XTW (I−GS )Y .

As noted in Hu et al. (2004, § 3) and Opsomer & Ruppert (1999) for independent errors
and with proper undersmoothing, b@K is asymptotically equivalent to b

@*K which solves
XTW (I−GK )Xb

@*K=XTW (I−GK )Y . If the uniform equivalence between GS and GK were
established, then one should be able to identify a proper l corresponding to the under-
smoothed version of the kernel estimator, b@*K , and show that b

@
S and b

@*K share the same
asymptotic distribution. A rigorous proof to show the uniform equivalence is nonetheless
beyond the scope of this paper.
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4. S

We use a small simulation study to examine the finite-sample performance of seven
different estimators, all with the estimating equation structure of

n−1 ∑
i

w
i
r
i
H(X
i
, Z
i
)=0,

where r is the residual from fitting Y :
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i
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i
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i
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)

EC (w@ |Z
i
) r=0,
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2
(Z
i
)}qXi−EC (w@X|Z

i
)

EC (w@ |Z
i
) r=0,
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i=1
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i
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i
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−EC (X|Z

i
)}=0,(f )

n−1 ∑
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i=1
w@
i
{Y
i
−XT
i
b−p

2
(Z
i
)}{X
i
−EC (X|Z

i
)}=0,(g)

where p2 (Z) in (e) and (g) represents a quadratic polynomial function of Z. Estimator (a)
is the semiparametric efficient kernel estimator we propose, which is calculated as described
in § 3. Estimators (b) and (c) correspond to two existing weighted and unweighted partially
linear kernel estimators described in Härdle et al. (2000, § 2), respectively. Estimators (d)
and (f ) correspond to the scenario in which ǧ=0; that is, one does not consider Z as a
covariate in the main component of the asymptotically unbiased estimating equation but
only includes Z through H(X, Z). Estimators (e) and (g) correspond to the scenario in
which ǧ is approximated by a quadratic polynomial. Since the choices of both not including
Z in r

i
and specifying ǧ as quadratic are incorrect, the residuals may not be centred at

zero. We thus use the estimated weights obtained in (a) here. The theoretical outcomes
suggest that estimators (a)–(e) are asymptotically unbiased. We expect estimators (f )
and (g) to be biased, as explained in § 2. In practice, estimator (d) or estimator (e) could
provide a quick assessment of b. One can simply let w(X

i
, Z
i
)¬1 or use historical weights,

if appropriate, to obtain a consistent solution.
We generated Z

i
from a Un(2, 4) distribution, X

i
from a N(2Z

i
, 4Z2
i
) distribution, and

Y
i
from a normal distribution with mean X

i
+10 sin(2Z

i
) and variance var(e

i
|X
i
, Z
i
)=

w−1
i
=X2
i
+1. Thus, the true regression parameter b is 1 and the true g(Z) is

g(Z
i
)=t sin(2Z

i
) with t=10. Simulations with sample size n=250 were repeated 1000

times. The simulation results are presented in Table 1, where the bias, standard error and
mean squared error are sample statistics calculated from the estimates of 1000 replicates.
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Table 1: Simulation results for estimators (a)–(g). T he results are based on 1000 replicates
of data with sample size 250 for g(Z)=t sin(2z), and t=10, 5 and 1, respectively.

t=10 t=5 t=1
Est Bias   Bias   Bias  

(a) 0·0001 0·1007 0·0101 −0·0010 0·0984 0·0097 −0·0017 0·0970 0·0094
(b) 0·0161 0·1111 0·0126 0·0085 0·1105 0·0123 0·0028 0·1111 0·0123
(c) −0·0016 0·1371 0·0188 −0·0016 0·1371 0·0188 −0·0015 0·1370 0·0188
(d) −0·0093 0·1164 0·0136 −0·0060 0·1096 0·0121 −0·0023 0·1122 0·0126
(e) −0·0045 0·1065 0·0114 −0·0047 0·1139 0·0130 −0·0045 0·1217 0·0148
(f ) 0·3443 7·8879 62·3383 −0·1267 12·7871 163·5264 0·0513 0·4473 0·2027
(g) 0·0017 2·5419 6·4613 −0·1880 4·0902 16·7652 −0·2949 13·8599 192·1851

Est, estimator; Bias, Monte Carlo average of the estimates minus the true value; , Monte Carlo standard
error; , mean squared error of the estimates.

We repeated the simulation with t=5 and t=1, that is g(Z)=5 sin(2Z) and
g(Z)=sin(2Z). Unlike in the previous set-up, the signals from g are smaller in scale and
thus it is harder to identify them correctly with the existing noise level. The results from
all three sets of simulations are reported in Table 1.
The Monte Carlo biases for the semiparametric estimators (a)–(e) are relatively small,

whereas the biases for estimators (f ) and (g) are large compared to those of the estimators
(a)–(e). In addition, estimator (a) has the smallest Monte Carlo standard errors and mean
squared errors. When t=10, 5 and 1, the Monte Carlo standard errors are 0·1007, 0·0984
and 0·097, while the averages of the estimated standard errors of estimator (a) are 0·0963,
0·0946 and 0·0932, respectively. The latter set of values are somewhat smaller than the
former. The corresponding coverage probabilities for 95% confidence intervals are 92·7%,
92·9% and 92·6%, respectively. Apparently, even though there should be no effect
asymptotically resulting from the estimation of w, it is not exactly the case when the
sample size is 250. When we increase the sample size to 500, all three coverage probabilities
are between 94% and 95%.
When the magnitude of g(Z) decreases with t, the mean function is increasingly

dominated by the linear part, Xb, and the performance of estimator (d) improves while
that of estimator (g) deteriorates badly. In all the scenarios we studied, the semiparametric
efficient estimator (a) consistently performed well.

5. C

Our final note is to point out that this estimator has the so-called double robustness
feature; that is, its consistency is ensured if either g or E(wX|Z)/E(w|Z) can be consistently
estimated. Estimating both quantities nonparametrically seems also to provide an
estimator with a small finite-sample bias, as observed in our simulation study.
Equivalent arguments and conclusions hold when model (1) is generalised to the

scenario in which the partially linear function XT
i
b+g(Z

i
) is replaced by an arbitrary

semiparametric function m(X
i
, Z
i
, b, g). The estimator will have the form

∑
n

i=1
{Y
i
−m@
i
(b)}w@

iC∂m@ i (b)∂b
−

EC {w@
i
∂m@
i
(b)/∂b|Z

i
}

EC (w@
i
|Z
i
) D=0,
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where m@
i
(b)=m(X

i
, Z
i
, b, g@ ). The estimator remains consistent and efficient provided that

E(w@ ∂m@ /∂b|Z) and E(w@ |Z) are properly estimated nonparametrically.
Finally, when the dimensions of Z and j are high, the partially additive model
represents one strategy to overcome the curse of dimensionality. To be specific, one lets
g(Z)=W

j
g
j
(Z
j
) and v(j)=W

j
v(j
j
), where Z

j
and j

j
are the jth components of Z and j.

The method and procedure can be extended to obtain efficient estimators for such partially
additive linear models. Recent progress in this area has been nicely summarised in Fan
& Li (2003).
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A

T echnical details

We briefly outline the essential technical materials here. The detailed conditions and derivations
can be obtained from Y. Ma.

Asymptotic normality of b@ with ǧ=0. Let

A=ECwqX−E(wX|Z)

E(w|Z) rXTD ,
B=ECw2 (Y−XTb)2qX−E(wX|Z)

E(w|Z) rqX−E(wX|Z)

E(w|Z) rTD ,
and note that the influence function is proportional to w(Y−XTb){X−E(wX|Z)/E(w|Z)}. When
A−1 exists, the estimator is consistent. Furthermore, as n�2, √n(b@−b0 )�N(0, A−1BA−T ) in
distribution.

Proof of Proposition 1. Denote the score function for b by S
b
. We obtain that

S
b
=−Xp∞

e
(e|X, Z)/p

e
(e|X, Z),

where p∞
e
( . |X, Z) is the derivative with respect to e. It can be verified that the nuisance tangent

space L, for the three nuisance parameters p(X, Z), p
e
(e|X, Z) and g(Z), is

L={ f (X, Y , Z) : E( f )=0, E(e f |X, Z) being a function of Z only},

and its orthogonal complement L)={e f (X, Z) : E( f |Z)=0}. The function Seff , as defined in (5),
certainly satisfies SeffµL). For an arbitrary element e f (X, Z)µL), E( f |Z)=0, and, dropping the
arguments (X, Z) from f (X, Z), we have that E{(S

b
−Seff )Te f } equals

EC−XT f EAep∞ep
e

|X, ZB−E(e2 |X, Z)wqXT f−E(wXT |Z)

E(w|Z)
frD .
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Note that w=E(e2 |X, Z)−1 and E(ep∞
e
/p
e
|X, Z)=−1, and consequently we obtain

E{(S
b
−Seff )Te f (X, Z)}=EqXT f−XT f+

E(wXT |Z)

E(w|Z)
fr

=EqE(wXT |Z)

E(w|Z)
E( f |Z)r=0.

Thus, Seff is the projection of Sb on to L). %

Regularity conditions and Proof of Proposition 2. The regularity conditions are analogous to
(M1–M7) and (K1–K4) of Chiou & Müller (1999).

Condition 1. The errors e
i
(i=1, . . . , n) are independent and 0<E(e2

i
)<2 and var(e2

i
)>0.

Condition 2. There exist a variance function, v(. ), j
i
=j(X

i
, Z
i
) and a positive constant c, such

that E(e2 |x
i
, z
i
)=v(j

i
), with v(. )>c>0.

Condition 3. The functions g(z), E(X|z), E(Y |z), v(j), E(w|z) and E(wX|z) are twice continuously
differentiable with finite derivatives. As a function of (x, z), j is three times differentiable with finite
derivatives.

Condition 4. There exists a function m4 ( . ) such that E(e4
i
)=m
4
(j
i
). The function m4 ( . ) is continuous;

furthermore, there exists an s>2 such that max
1∏i∏n

Ee2s
i
<c<2 for some c>0. This condition

is necessary for obtaining uniform consistency of the estimator for the variance function v( . ).

Condition 5. Assume that the random variables X
i
have a density, f

X
, and that the support of

f
X
is a compact interval. This condition ensures that XT

i
b is bounded.

Condition 6. Assume that the random variables j
i
and Z

i
have densities, f

j
and f

Z
, respectively,

that the supports of f
j
and f

Z
are compact intervals and that f

j
and f

Z
are twice continuously

differentiable, satisfying 0< inf f
j
( . )∏sup f

j
( . )<2 and 0< inf f

Z
( . )∏sup f

Z
( . )<2. This condition

enables us to simplify asymptotic expressions of certain sums of functions of variables. This con-
dition also excludes pathological cases where the number of observations in a window defined by
the bandwidth may not increase to infinity when n�2.

Condition 7. The kernel function K is symmetric and continuously differentiable with compact
support [−1, 1].

Condition 8. The bandwidth h used in the kernel estimators satisfies h� 0, nh3�2 and nh8� 0
as n�2, and

lim inf
n�2

(nh/log n)1/2n−2/r>0

for a constant r (0<r<s) where s is given in Condition 4.

Condition 9. The estimators of the variance function v( . ) are such that v@
n
( . ) are truncated below by

a sequence f
n
>0, where f

n
� 0. This sequence satisfies h/f

n
� 0, nh2f2

n
�2 and nhf2

n
/log n�2.

The sketch of the proof is as follows. Following the equivalent steps that prove Theorems 4.1
and 4.2 in Chiou & Müller (1999), we can show that va@r(e|j) converges uniformly to var (e|j) and
that b@ , based on the estimated w, shares the same asymptotic distribution as that of b@ based on
the known w. Therefore, we only outline the procedures under the scenario of known w.
Under the true b, write g(Z)=g(Z, b)=E(wY |Z)/E(w|Z)−E(wX|Z)/E(w|Z)b, and use local-

linear estimation to replace E(. |Z) by EC ( . |Z) in g@ (Z, b). Note that this equality in g(Z, b) holds for
general choices of weights. Let

D=ECwqX−E(wX|Z)

E(w|Z) rqX−E(wX|Z)

E(w|Z) rTD .
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Some derivations lead to

√nD(b@−b)+o
p
(1)=

1

√n
∑
n

i=1
e
i
w
iqXi−E(wX|Z

i
)

E(w|Z
i
) r

−
1

√n
∑
n

i=1
e
i
w
iqEC (wX|Z

i
)

EC (w|Z
i
)
−

E(wX|Z
i
)

E(w|Z
i
) r (A1)

−
1

√n
∑
n

i=1
{g@ (Z
i
, b)−g(Z

i
)}w
iqXi−E(wX|Z

i
)

E(w|Z
i
) r (A2)

+
1

√n
∑
n

i=1
{g@ (Z
i
, bA )−g(Z

i
)}w
iqEC (wX|Z

i
)

EC (w|Z
i
)
−

E(wX|Z
i
)

E(w|Z
i
) r . (A3)

If we use the properties of local-linear regression and note that E(e)=0, it is easy to show that (A1)
is o
p
(1). Similarly, using the fact that E[w{X−E(wX|Z)/E(w|Z)}|Z]=0 and g@ (Z, b)=g(Z)+o

p
(1),

one can prove (A2) to be o
p
(1). Finally, with n1/2h4� 0 and (nh)−1� 0, we have that (A3) is o

p
(1).

Hence √n(b@−b)�N(0, S
b
) in distribution with S

b
=D−1 var[we{X−E(wX|Z)/E(w|Z)}]D−1.

Note that Seff (Yi , Xi , Zi , b)=w
i
e
i
{X
i
−E(wX|Z

i
)/E(w|Z

i
)}. Recall that, in Proposition 2, w=w(j)=

var−1 (e|j). It is easily seen that S
b
=D−1=V , where V is defined in (8). %
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