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Abstract. In this paper, the problem of the robustness of the sample autocovariance
function is addressed. We propose a new autocovariance estimator, based on a highly
robust estimator of scale. Its robustness properties are studied by means of the
in¯uence function, and a new concept of temporal breakdown point. As the theoretical
variance of the estimator does not have a closed form, we perform a simulation study.
Situations with various size of outliers are tested. They con®rm the robustness
properties of the new estimator. An S-Plus function for the highly robust auto-
covariance estimator is made available on the Web at http://www-math.mit.edu/
�yanyuan/Genton/Time/time.html. At the end, we analyze a time series of monthly
interest rates of an Austrian bank.

Keywords. autocovariance, breakdown point, in¯uence function, robustness, scale
estimation.

1. INTRODUCTION

The autocovariance function plays an important role in time series analysis. For
example, it is often used to study the underlying dependence structure of the
process (Box and Jenkins, 1976; Brockwell and Davis, 1991). This is an
important step towards constructing an appropriate mathematical model for the
data. Therefore, it is important to have a sample autocovariance function which
remains close to the true underlying autocovariance function, even when outliers,
i.e. faulty observations, are present in the data. Otherwise, important goals of the
time series analysis such as inference or forecasting can be non-informative. In
fact, experience from a broad spectrum of applied sciences shows that measured
data may contain 10±15% of outlying values (Hampel, 1973) due to gross errors,
round-off errors, measurement mistakes, faulty recording, etc., and this
proportion can even reach 30% (Huber, 1977). Unfortunately, the widely used
sample autocovariance function based on the methods of moments is not robust
against outlying values in the data. In this paper, we propose and study a new
estimator for the autocovariance function, based on a highly robust estimator of
scale.

Consider a time series fXt: t 2 Zg and assume that it satis®es the hypothesis
of second-order stationarity:
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(i) E(X 2
t ) ,1 8t 2 Z

(ii) E(X t) � ì � constant 8t 2 Z
(iii) cov(X t�h, Xt) � ã(h) 8t, h 2 Z

where ã(h) is the autocovariance function of X t at lag h. The classical estimator
for the autocovariance function, based on the method of moments, on a sample
x � (X 1, . . ., X n)T, is

ã̂M(h, x) � 1

nÿ h

Xnÿh

i�1

(X i�h ÿ X )(X i ÿ X ) 0 < h < nÿ 1 (1)

where

X � 1

n

Xn

i�1

X i

Note that, to ensure positive de®niteness of the sampling autocovariance matrix,
each entry should be estimated by

nÿ h

n
ã̂M(h, x)

In the next section, we propose a new sample autocovariance estimator based
on a highly robust scale estimator. Section 3 introduces a concept of temporal
breakdown point of an autocovariance estimator and discusses its link with the
classical breakdown point. The in¯uence function for autocovariance estimators
is computed in Section 4, as well as the formula for their asymptotic variance.
These results are completed with a simulation study in Section 5, on AR(1) and
MA(1) models. The behaviour of the classical and highly robust autocovariance
estimator in the presence of outliers is also studied. In Section 6, a time series
of monthly interest rates of an Austrian bank is analysed.

2. THE ROBUST ESTIMATOR

The autocovariance function describes the covariance between observations at
different time lag distances h. Traditionally, covariance estimation between two
random variables X and Y is based on a location approach, because

cov(X , Y ) � E[(X ÿ E(X ))(Y ÿ E(Y ))]

yielding, for example, the sample autocovariance function (1). However,
covariance estimation can also be based on a scale approach, by means of the
following identity (Huber, 1981; Gnanadesikan, 1997):

cov(X , Y ) � 1

4áâ
[var(áX � âY )ÿ var(áX ÿ âY )] 8á, â 2 R (2)

In general, X and Y may be measured in different units, and the choice
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á � 1��������������
var(X )
p and â � 1�������������

var(Y )
p

is recommended (Gnanadesikan and Kettenring, 1972). However, in the time
series setting, X and Y represent the same variable and we set á � â � 1.

In the context of scale estimation, Rousseeuw and Croux (1992, 1993)
proposed a simple, explicit and highly robust estimator Qn:

Qn(z) � cfjZi ÿ Zjj; i , jg(k) (3)

where z � (Z1, . . ., Zn)T is the sample

k � int

n

2

� �
� 2

4

24 35
� 1

and int(´) denotes the integer part. The factor c is for consistency: at the
Gaussian distribution c � 2:2191. This means that we sort the set of all absolute
differences jZi ÿ Zjj in increasing order for i , j and then compute its kth order
statistic (approximately the 1

4
quantile for large n). This value is multiplied by c,

thus yielding Qn. Note that this estimator computes the kth order statistic of the
(n
2 ) interpoint distances. It is of interest to remark that Qn does not rely on any

location knowledge and is therefore said to be location-free. This is in contrast to
the classical sample autocovariance function. At ®rst sight, the estimator Qn

appears to need O(n2) computation time, which would be a disadvantage.
However, it can be computed using no more than O(n log n) time and O(n)
storage, by means of the fast algorithm described in Croux and Rousseeuw
(1992).

Using the identity (2) and the de®nition (3) of the scale estimator Qn, we
de®ne the highly robust autocovariance function estimator as follows. Extract
the ®rst nÿ h observations of x � (X1, . . ., Xn)T to produce a vector u with
length nÿ h and the last nÿ h observation of x to produce a vector v of
length nÿ h, as shown in Figure 1. Then:

ã̂Q(h, x) � 1
4
[Q2

nÿh(u� v)ÿ Q2
nÿh(uÿ v)] (4)

This turns out to be a highly robust estimator of autocovariance. As shown at the
end of Section 3, it has a temporal breakdown point of 25%, which is the highest
possible value in the autocovariance case. Note that the highly robust
autocovariance estimator ã̂Q(h, x) can also be carried out with O(n log n) time
and O(n) storage.

Another approach to obtain a robust estimator for the autocovariance is by
truncating large terms in the sum of equation (1). However, we prefer the scale
approach suggested by (2), because it allows the use of the highly robust
estimator of scale Qn, which has a remarkably high asymptotic Gaussian
ef®ciency of 82.27%. For instance, Qn has already been successfully used in
the context of regression (HoÈssjer et al., 1994; Croux et al., 1994), as well as
for variogram estimation (Genton, 1998a) in spatial statistics. Note that rank-
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based methods to estimate autocovariances have been proposed by Hallin and
Puri (1994) and may have some robustness properties.

Finally, to obtain a highly robust estimator of the autocorrelation function,
one could divide the estimator ã̂Q(h, x) in (4) by Qn(u) and Qn(v). However,
this would not be a natural autocorrelation estimator because it would not be
bounded between ÿ1 and 1. Therefore, a highly robust autocorrelation
estimator r̂Q would be:

r̂Q(h, x) � Q2
nÿh(u� v)ÿ Q2

nÿh(uÿ v)

Q2
nÿh(u� v)� Q2

nÿh(uÿ v)

so as to insure jr̂Q(h, x)j < 1. Note that ã̂Q depends upon the choice of the
constant c appearing in (3), whereas r̂Q is independent of the choice of c.
Nevertheless, c can be computed for various distributions, although the Gaussian
case is usually preferred.

3. TEMPORAL BREAKDOWN POINT

Outliers in time series can seriously affect the estimation and inference of
parameters (Martin and Yohai, 1985; Bustos and Yohai, 1986). The main
problem is that estimators which take account of the time series structure are not
invariant under permutation of the data, as in the case of estimators for i.i.d.
observations. Consequently, distinction between outliers occurring in isolation, in
patches, or periodically, becomes important. Three types of outliers are generally
considered (Denby and Martin, 1979): innovation outliers (IO), which affect all
subsequent observations, and additive outliers (AO) or replacement outliers
(RO), which have no effect on subsequent observations. Consider a second-order
stationary ARMA( p, q) process (X t: t 2 Zg such that for every t:

X t ÿ r1 X tÿ1 ÿ � � � ÿ r p X tÿp � Zt � è1 Z tÿ1 � � � � � èq Z tÿq (5)

where r1, . . ., rp and è1, . . ., èq are real parameters, and the innovations are
white noise fZtg �WN(0, ó 2). Subsequently, we assume that the parameters of
the ARMA process are de®ned such that the process is causal and invertible.
More details on these notions, as well as necessary and suf®cient conditions for
causality and invertibility, can be found in Brockwell and Davis (1991).

The ARMA( p, q) process fX t: t 2 Zg is said to have innovation outliers
(IO) if it satis®es (5), but the innovations fZtg have a heavy-tailed distribution,
for instance

Få � (1ÿ å)F � åH

where å is small and H is an arbitrary distribution with greater dispersion than F.
The important characteristic of this kind of outliers is that even when the Zt

have outliers, (5) is satis®ed and therefore fXt: t 2 Zg is a perfectly observed
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ARMA( p, q) process. Robust estimators, like M-estimators, can typically cope
with IO (Bustos and Yohai, 1986).

The process fX t: t 2 Zg is said to have additive outliers (AO) if it is not
itself an ARMA( p, q) process, but rather de®ned by

X t � Vt � BtWt

where Vt is an ARMA( p, q) process satisfying (5), Bt is a Bernoulli process
with P(Bt � 1) � å, P(Bt � 0) � 1ÿ å, and Wt is an independent sequence of
variables, independent of the sequences Vt and Bt. Therefore, the ARMA( p, q)
process Vt is observed with probability 1ÿ å, whereas the ARMA( p, q) process
Vt plus an error Wt is observed with probability å. AO are known to be much
more dangerous than IO. Note also that additive outliers have the same effect as
replacement outliers (RO), where

Xt � (1ÿ Bt)Vt � BtWt

This means that the ARMA( p, q) process Vt is observed with probability 1ÿ å,
and replaced by an error Wt with probability å. In the sequel, we consider RO.

In the context of robust statistics, the breakdown point of an estimator is an
important feature of reliability. It indicates how many data points need to be
replaced by arbitrary values to destroy the estimator. In time series,
autocovariance estimators are based on measurements taken at various time
lag distances. Therefore, the classical notion of breakdown point needs to be
extended to a temporal one depending on the construction of the most
unfavourable con®gurations of perturbation. The classical notion of breakdown
point of a scale estimator is given in De®nition 1.

Definition 1. Let z � (Z1, . . ., Zn)T be a sample of size n and let ~z be
obtained by replacing any m observations of z by arbitrary values. The sample
breakdown point of a scale estimator Sn(z) is:

å�n (Sn(z)) � max
m

n
: sup

~z
Sn(~z) ,1 and inf

~z
Sn(~z) . 0

� �

Roughly speaking, the classical breakdown point gives the maximum fraction of
outliers with which the scale estimator can cope. It indicates how many data
points can be replaced by arbitrary values before the scale estimator explores
(tends to in®nity) or implodes (tends to zero). Further discussions of this concept
can be found in Hampel (1971, 1974, 1976), Huber (1981, 1984), Donoho and
Huber (1983), Lucas (1997), and Genton (1998c). The sample breakdown point
å�n of most scale estimators is known, or can be computed. However, by using a
scale estimator to compute the covariance, it is on the level of sums and
differences (see (2)) that the estimator is applied. Similarly, we can de®ne the
sample breakdown point of a scale-based covariance estimator, using (2).
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Definition 2. Let

x � (X 1, . . ., X n)T and y � (Y1, . . ., Yn)T

be two samples of size n. Let z � (x, y) and let ~z be obtained by replacing any m
pairs of z by arbitrary values. The sample breakdown point of a covariance
estimator

ĈSn
(z) � 1

4áâ
[S2

n(áx� ây)ÿ S2
n(áxÿ ây)]

based on a scale estimator Sn is:

å�n (ĈSn
(z)) � max

m

n
: sup

~z
ĈSn

(~z) ,1 and inf
~z

ĈSn
(~z) .ÿ1 and

�
inf

~z
Sn(~z:(á â)T) . 0 and inf

~z
Sn(~z:(á ÿ â)T) . 0

�
In the particular case of time series, we typically have

u � (X 1, . . ., X nÿh)T and v � (X h�1, . . ., X n)T

to form z � (u, v). In this case, we denote å�nÿh(ĈSnÿ h
(z)) by å�n (ã̂Sn

(h, x)),
where x � (X 1, . . ., X n)T (see Proposition 1). However, in time series, one is
much more interested in the breakdown point related to the initial data, which
are located in time. Therefore, the previous de®nition loses its meaning because
the time location of the outlier becomes important. In fact, the effect of the
perturbation of a point located close to the boundary of the time domain can be
quite different from one located in the middle of the time domain, and the effect
depends notably on the time lag distance h. Therefore, we introduce the
following de®nition of a temporal sample breakdown point of an autocovariance
estimator based on (2).

Definition 3. Let x � (X 1, . . ., X n)T be a sample of size n of a time
series and let ~x be obtained by replacing any m observations of x by arbitrary
values. Denote by Im a subset of size m of f1, . . ., ng. The temporal sample
breakdown point of an autocovariance estimator ã̂(h, x) is:

å t
n(ã̂(h, x)) � max

m

n
: sup

I m

sup
~x

Snÿh(~u� ~v) ,1 and inf
I m

inf
~x

Snÿh(~u� ~v) . 0

�
and sup

I m

sup
~x

Snÿh(~uÿ ~v) ,1 and inf
I m

inf
~x

Snÿh(~uÿ ~v) . 0

�
where ~u and ~v are derived from ~x as in (4) (t is used to emphasize temporal).

Note that, in opposition to De®nition 2, the con®guration (i.e. the temporal
location) of the perturbation is now taken into account, by adding the supremum
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and in®mum on Im. This de®nition is justi®ed by the fact that an autocovariance
estimator can be destroyed by a single con®guration of perturbation, indexed in
Im. Therefore, it is quite possible to ®nd other con®gurations, with more than
å t

n(ã̂(h, x)) of perturbations, which do not demolish the estimator. Notice,
furthermore, that this de®nition is local, in the sense that it is valid for a ®xed h.

Consider a ®xed temporal lag distance h 2 R. For m � 1 perturbed data
point, it follows that, if h , n=2, one perturbation at time i, with
h , i < nÿ h, generates the perturbation of two sums u� v and two
differences uÿ v, whereas for 0 , i < h or nÿ h , i < n, a single sum (resp.
difference) is perturbed. Finally, if h > n=2, one perturbation at time i, with
0 , i < nÿ h or h , i < n, affects one sum (resp. difference), and none in the
other cases. Therefore, to one perturbed observation corresponds at most two
perturbed sums (resp. differences). For general m > 1, we are interested in
®nding the most unfavourable con®guration of perturbed data for a ®xed h.
Such a con®guration is shown in Figure 1 for the case h � 3, m � 7 and
n � 21. White points represent unperturbed observations, whereas black points
represent perturbed observations. There are m black points. Construction of this
con®guration consists in placing h unperturbed observations, followed by h
perturbed observations, followed by h unperturbed observations, and so on until
exhaustion of the m black points. This con®guration ensures that the most
possible sums (resp. differences) are perturbed (i.e. each black point perturbs 2
sums (resp. differences)). Moreover, perturbations do not overlap for a given
lag distance h, which means that no sum (resp. difference) between two
perturbed observations is ever taken. Let vmax(h, m, n) be the maximal number
of perturbed sums (resp. differences) for given h, m and n. This function
depends on the relation between m and h. Let p and q be the two non-negative
integers such that m � ph� q and q , h. By disjunction of cases, it is then
possible to compute the function vmax(h, m, n) explicitly:

h v

u h

xnx1 x2 x3

Figure 1. The most unfavourable con®guration of perturbation for the case h � 3, m � 7 and
n � 21; white points represent unperturbed observations, whereas black points represent perturbed

observations

HIGHLY ROBUST ESTIMATION OF THE AUTOCOVARIANCE FUNCTION 669

# Blackwell Publishers Ltd 2000



vmax(h, m, n) �

nÿ h if m � n

2

or
n

2
. m > h, q � 0, nÿ 2m , h

or
n

2
. m > h, q > 1, h� q . nÿ 2 ph > 0

or m , h, m� 2h . n, m > nÿ h

2m if
n

2
. m > h, q � 0, nÿ 2m > h

or
n

2
. m > h, q > 1, nÿ 2 ph > 2h� q

or m , h, m� 2h < n, nÿ 2m , h

nÿ 2h� q if
n

2
. m > h, q > 1, 2h� q . nÿ 2 ph > 2h

2 ph� q if
n

2
. m > h, q > 1, 2h . nÿ 2 ph > h� q

m� nÿ 2h if m , h, m� 2h . n, m , nÿ h, h ,
n

2

m if m , h, m� 2h . n, m , nÿ h, h >
n

2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Notice that the case m . n=2 makes no sense because it implies that more than
half of the differences are perturbed. No equivariant scale estimator can be that
resistant (Huber, 1981). The following proposition examines the relation between
the classical sample breakdown point (usually known) and the temporal one.

Proposition 1. For each h 2 f0, . . ., nÿ 1g and for each integer
M � nå�n (ã̂(h, x)) < n=2, the sample breakdown point and the temporal sample
breakdown point of an autocovariance estimator ã̂(h, x) satisfy the double
inequality

2å t
n(ã̂(h, x)) < å�n (ã̂(h, x)) <

2n

nÿ h
å t

n(ã̂(h, x))

The ®rst equality holds if and only if h � n=2 or M � n=2, and the second
equality holds if and only if vmax(h, M , n) � 2M .

Proof. To prove the ®rst inequality, consider the function

ä(h, m, n) � vmax(h, m, n)

nÿ h
ÿ 2

m

n

We have to show that the function ä is non negative for all possible integers m.
If vmax(h, m, n) � nÿ h, then
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ä(h, m, n) � 1ÿ 2m

n
> 0

because n=2 . m. If vmax(h, m, n) � 2m, then

ä(h, m, n) � 2m

nÿ h
ÿ 2m

n
> 0

because nÿ h , n. If vmax(h, m, n) � nÿ 2h� q, then

ä(h, m, n) � nÿ 2h� q

nÿ h
ÿ 2m

n

� n2 ÿ ( p� 2)hn� m(2hÿ n)

n(nÿ h)

>
n2 ÿ ( p� 2)hn� h( p� 1)(2hÿ n)

n(nÿ h)

because m , h( p� 1) and 2hÿ n , 0. So,

ä(h, m, n) � nÿ 2( p� 1)h

n
> 0

because nÿ 2 ph > 2h. If vmax(h, m, n) � 2 ph� q, then

ä(h, m, n) � 2 ph� q

nÿ h
ÿ 2m

n

� 2mhÿ nq

n(nÿ h)

>
2mhÿ 2hq( p� 1)

n(nÿ h)

because nÿ 2h( p� 1) , 0. So

ä(h, m, n) � 2hp(hÿ q)

n(nÿ h)
> 0

because h . q. If vmax(h, m, n) � m� nÿ 2h, then

ä(h, m, n) � m� nÿ 2h

nÿ h
ÿ 2m

n

� m(2hÿ n)� n(nÿ 2h)

n(nÿ h)

>
ÿh(nÿ 2h)� n(nÿ 2h)

n(nÿ h)

because m , h. So,
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ä(h, m, n) � nÿ 2h

n
> 0

because h , n=2. If vmax(h, m, n) � m, then

ä(h, m, n) � m

nÿ h
ÿ 2m

n

� m(2hÿ n)

n(nÿ h)
> 0

because h , n=2. Finally, if h � n=2 or m � n=2, then ä(h, m, n) � 0 and
therefore equality is reached. The second inequality follows from the fact that a
perturbation on a single observation generates the perturbation of at most two
sums (resp. differences). Thus, the perturbation of m observations generates the
perturbation of at most 2m sums (resp. differences), i.e. vmax(h, m, n) < 2m.
Consequently, we have the inequality

å�n (ã̂(h, x)) � vmax(h, M , n)

nÿ h
<

2M

nÿ h
� 2n

nÿ h

M

n
� 2n

nÿ h
å t

n(ã̂(h, x))

with equality if and only if vmax(h, M , n) � 2M . j

Remark 1. By writing the inequality in Proposition 1 slightly differently,
we can bound the temporal sample breakdown point with the classical sample
breakdown point:

nÿ h

2n
å�n (ã̂(h, x)) < å t

n(ã̂(h, x)) <
1

2
å�n (ã̂(h, x))

The classical sample autocovariance function is based on the classical scale
estimator (standard deviation) whose sample breakdown point is zero.
Therefore, by Remark 1, the temporal sample breakdown point of this
estimator is also zero, for every lag h. This means that a single outlier in the
data can destroy it. Figure 2 shows the temporal sample breakdown point
å t

100(ã̂Q(h, x)) of the highly robust autocovariance estimator, for each lag
distance h, represented by the black curve. The upper and lower bounds given
in Remark 1 are represented by the light grey curves. As it was stated, the
temporal sample breakdown point equals its lower bound as long as
vmax(h, M , n) � 2M , and equals its upper bound if h � n=2. The interpretation
of this ®gure is as follows. For a ®xed h, if the percentage of perturbed
observations is below the black curve, the estimator is never destroyed. If the
percentage is above the black curve, there exists at least one con®guration
which destroys the estimator. This implies that the highly robust autocovariance
estimator is more resistant at small time lags h or around h � n=2, than at
large time lags h or before h � n=2, according to Figure 2. In practice,
however, lags larger than n=2 are seldom used. Note that from Remark 1,
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asymptotically, the temporal breakdown point of the autocovariance estimator is
half the classical breakdown point.

Recall that Qn has classical asymptotic breakdown point 50%, which means
we can contaminate half of the observations yet still have a reasonable
estimate. Therefore, the highly robust autocovariance estimator has breakdown
point 25%. This is because in forming u and v from the observation x, most
data will appear twice and hence, in the worst case, the number of pairs (ui, vi)
that contain outliers will be twice the number of original outliers in x. Note
that this is the highest possible breakdown point for an autocovariance
estimator. We can give up such high breakdown point by choosing a different
quantile from 1

4
in (3), with the bene®t of higher ef®ciency (Rousseeuw and

Croux, 1992). For example, if we choose the 0.91 quantile, we will reach the
highest ef®ciency (� 99%) for Qn estimator, hence reach the highest ef®ciency
for our estimator too. For the 0.91 quantile, the classical breakdown point is
approximately 4.6% for Qn and therefore the temporal breakdown point of ã̂Q

is 2.3%.

4. INFLUENCE FUNCTION AND ASYMPTOTIC VARIANCE

Consider an estimator Tn(X1, . . ., X n) � Tn(Fn), where

Fn(x) � 1

n

Xn

i�1

ÄX i
(x)

is the empirical distribution, and let T (F) be the corresponding statistical

0 20 40 60 80 100
h

5

10

15

20

25

%

Figure 2. The temporal sample breakdown point (in black) as a function of the temporal lag
distance h, for the highly robust sample autocovariance estimator ã̂Q(h, x); the upper and lower

bounds are drawn in light grey
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functional such that T (Fn) � Tn(Fn). The in¯uence function (Hampel, 1974) is
an important tool to describe the robustness properties of an estimator. For a
statistical functional T at a distribution F, the in¯uence function IF is de®ned by:

IF(x, T , F) � lim
å!0�

T ((1ÿ å)F � åÄx)ÿ T (F)

å
(6)

for x such that this limit exists. The importance of the in¯uence function lies in
its heuristic interpretation: it describes the effect of an in®nitesimal contamina-
tion at the point x on the estimate, standardized by the mass of the
contamination, i.e. it measures the asymptotic bias caused by the contamination
in the observations. When T � S, a statistical functional of scale, there are some
useful equalities on the in¯uence function.

Proposition 2. Suppose F � N(0, ó 2), Ö � N(0, 1). Let S be a statistical
functional of scale, and hence S2 be a statistical functional of variance. More
generally, consider a functional of S denoted by h(S). Then

IF(x, S, F) � ó IF
x

ó
, S, Ö

� �
IF(x, S2, F) � ó 2 IF

x

ó
, S2, Ö

� �
IF(x, h(S), F) � h9(S(F))IF(x, S, F)

(7)

Moreover, the following equalities on the asymptotic variance hold for
independent observations:

var(S, F) � ó 2 var(S, Ö)

var(S2, F) � ó 4 var(S2, Ö)
(8)

Proof. We prove the ®rst equation in detail and brie¯y explain the latter
ones.

IF(x, S, F) � @

@å
S((1ÿ å)F(u)� åÄx(u))jå�0

� @

@å
S (1ÿ å)Ö

u

ó

� �
� åÄx=ó

u

ó

� �� �����
å�0

We use P(u=ó ) to denote the function

(1ÿ å)Ö
u

ó

� �
� åÄx=ó

u

ó

� �
and by the property of equivariance of the scale estimator, we know that

S P
u

ó

� �� �
� ó S(P(u))
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So, we get

IF(x, S, F) � ó
@

@å
(S((1ÿ å)Ö(u)� åÄx=ó (u)))jå�0

� ó IF
x

ó
, S, Ö

� �
The second equality in (7) can be proved similarly as the ®rst one. The third
equality is obvious. To prove the equalities in (8), we use the formula

var(S, F) �
�
jIF(x, S, F)j2 dF(x) and var(S2, F) �

�
jIF(x, S2, F)j2 dF(x)

and the equalities in (7). Note that this result is valid only when the estimator is
carried on independent observations. j

For a covariance estimator based on (2), with X and Y replaced by U and V,
for given á and â, the in¯uence function is a function from R2 to R, de®ned
by Genton and Ma (1999):

IF((u, v), T , F)

� 1

2áâ
[S(F1)IF((áu� âv), S, F1)ÿ S(F2)IF((áuÿ âv), S, F2)] (9)

Here T is estimating ã, S is a scale estimator, with in¯uence function
IF(:, S, Fi), i � 1, 2, and we assume the following distributions:
áU � âV � F1, áU ÿ âV � F2, and F is the joint distribution of U and V.
In the autocovariance case, we have á � â � 1. Let ãQ be the statistical
functional corresponding to the highly robust autocovariance estimator ã̂Q. Under
a bivariate Gaussian distribution F, the in¯uence function of the ãQ

autocovariance estimator is:

IF((u, v), ãQ, F) � 1

2
ó 2

U�V IF
u� v

óU�V

, Q, Ö
� �

ÿ ó 2
UÿV IF

uÿ v

óUÿV

, Q, Ö
� �" #

(10)

where the in¯uence function of Qn at Ö is (Rousseeuw and Croux, 1993):

IF(x, Q, Ö) � c

1

4
ÿÖ x� 1

c

� �
�Ö xÿ 1

c

� �
�
ö y� 1

c

� �
ö(y) dy

(11)

with c � 2:2191 and ö is the standard normal density. Figure 3 shows the plot of
the in¯uence function of ãQ when the covariance is zero. The cases of non-zero
covariance yield similar graphs. Note that the in¯uence function of ãQ is
bounded between
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� [(aÿ b)(ó 2
U � ó 2

V )� 2ja� bjóUó V ]

2

where

a � maxx IF(x, Q, Ö) and b � minx IF(x, Q, Ö)

The bounds can be computed by writing ó 2
U�V as ó 2

U � ó 2
V � 2 cov(U , V ) and

noticing that cov(U , V ) is bounded between �óUó V . To the contrary, the
in¯uence function of ãM is proportional to uv when the covariance is zero, and
therefore unbounded.

Under regularity conditions, ã̂Q is consistent, i.e. ã̂Q ! ãQ in probability as
n!1, since Qn is consistent (Rousseeuw and Croux, 1993). Moreover,���

n
p

(ã̂Q ÿ ãQ) is asymptotically normal with zero expectation and variance
given by (Portnoy, 1977, 1979; Genton, 1998b)

var(ãQ, F) �
��
jIF((u, v), ãQ, F)j2 dF(u, v)

� 2
X1
k�1

�
. . .

�
IF((u1, v1), ãQ, F)

3 IF((u1�k , v1�k), ãQ, F) dF((u1, v1), (u1�k , v1�k)) (12)

Regularity conditions for consistency and asymptotic normality are given by
Huber (1967) for the independent case and by Portnoy (1977, 1979) and Bustos
(1982) for the dependent case. In this latter situation, mixing conditions like á-

21

1

0

22

0

2
22

0

2

v

u

IF (u, v)

Figure 3. The in¯uence function IF((u, v), ãQ, F), where U and V are independent and have
identical standard Gaussian distribution
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mixing or ö-mixing are suf®cient (Billingsley, 1968; Doukhan, 1994). Equation
(12) is valid for any consistent estimator of autocovariance. In particular, for the
classical autocovariance estimator ã̂M, the equation is equivalent to Bartlett's
formula (Priestley, 1981, p. 326). The computation of the asymptotic variance
turns out to be tedious for ã̂Q and a closed form is impossible. However,
Equation (12) can be used for numerical calculation of the asymptotic variance
of ã̂Q.

5. SIMULATIONS

In this section, we present some simulations so that we can compare the ã̂M

and ã̂Q autocovariance estimator on MA(1) � ARMA(0, 1) and AR(1) �
ARMA(1, 0) models, with and without replacement outliers. We start with a
brief description of the experiment.

The standard Gaussian MA(1) and AR(1) models fVtg are considered, with
or without replacement outliers (RO) de®ned by

Xt � (1ÿ Bt)Vt � BtWt

The Bernoulli process satis®es

P(Bt � 1) � å and P(Bt � 0) � 1ÿ å

with å � 0 and å � 10%. The distribution of Wt is chosen to be N(0, ô2), where
ô2 � k2 var(Vt) with k � 3 and k � 10. We generate 1000 samples of sizes 20,
50 and 100 for each model with parameters è (resp. r) equal to 0 and 0.5. The
mean of ã̂M and ã̂Q are computed over the 1000 replications, as well as the
relative ef®ciency (REF) of ã̂Q to ã̂M, i.e. the ratio of their sample variance. We
built an S-Plus function to compute ã̂Q, which is available on the Web.

The results are presented in Tables 1, 2, and 3. From the simulation, we can
see that when there are no outliers, both estimators yield a mean that is close
to the true autocovariance, i.e. are unbiased. The REF is around 80% for large
n. This is considered high for a highly robust autocovariance estimator. In the
presence of outliers, the classical autocovariance estimator shows a weak
resistance in terms of the mean value, and it also has smaller ef®ciency than
the robust estimator. This is particularly clear when the outliers are large
(k � 10). One can also check that the asymptotic variances of ã̂M given by
(12) agree with the ones found in the simulations. Moreover, for the MA(1)
model with è � 0, i.e. the i.i.d. case, the asymptotic variance of ã̂Q can be
computed numerically from (12), which yields 2.482 (to be compared with 2
for ã̂M). This yields an asymptotic relative ef®ciency of 80.6%, which is close
to the one found by simulation in Table 1.

Note that the classical estimator we took is not modi®ed to ensure positive
de®niteness of the sample autocovariance matrix. If we use the modi®ed
version (divided by n instead of nÿ h), then we should also ensure positive
de®niteness of the autocovariance matrix obtained with the highly robust
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TABLE I

The Mean m(ã̂M), m(ã̂Q) and the Relative Efficiency REF of the Autocovariance Estimators at Time Lag h � 0, h � 1 and h � 2 on
MA(1) Model with è � 0, with and without RO Outliers

å � 0 å � 10%, k � 3 å � 10%, k � 10

m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF

ã(0) � 1
n � 20 0.948 1.035 0.566 1.722 1.356 2.913 10.531 1.597 187.1
n � 50 0.983 1.012 0.721 1.784 1.290 4.015 10.842 1.514 262.2
n � 100 0.983 1.000 0.762 1.766 1.268 4.035 10.612 1.467 277.0

ã(1) � 0
n � 20 ÿ0.043 ÿ0.056 0.487 ÿ0.098 ÿ0.121 0.743 ÿ0.519 ÿ0.243 9.2
n � 50 ÿ0.020 ÿ0.027 0.712 ÿ0.030 ÿ0.026 1.006 ÿ0.231 ÿ0.048 12.9
n � 100 ÿ0.005 ÿ0.010 0.728 ÿ0.018 ÿ0.028 1.100 ÿ0.093 ÿ0.044 14.9

ã(2) � 0
n � 20 ÿ0.054 ÿ0.067 0.497 ÿ0.085 ÿ0.107 0.713 ÿ0.497 ÿ0.237 4.7
n � 50 ÿ0.019 ÿ0.019 0.680 ÿ0.049 ÿ0.061 1.039 ÿ0.271 ÿ0.100 14.6
n � 100 ÿ0.018 ÿ0.020 0.741 ÿ0.023 ÿ0.021 1.043 ÿ0.142 ÿ0.034 13.3
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TABLE II

The Mean m(ã̂M), m(ã̂Q) and the Relative Efficiency REF of the Autocovariance Estimators at Time Lag h � 0, h � 1 and h � 2 on
MA(1) Model with è � 0:5, with and without RO Outliers

å � 0 å � 10%, k � 3 å � 10%, k � 10

m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF

ã(0) � 1:25
n � 20 1.134 1.252 0.621 2.120 1.637 2.768 12.700 1.924 167.0
n � 50 1.214 1.254 0.754 2.156 1.589 3.135 13.075 1.855 225.0
n � 100 1.228 1.244 0.801 2.227 1.575 3.787 13.798 1.838 226.1

ã(1) � 0:5
n � 20 0.380 0.434 0.509 0.271 0.466 0.795 ÿ0.278 0.780 7.9
n � 50 0.464 0.481 0.704 0.338 0.515 1.025 0.106 0.882 10.2
n � 100 0.481 0.487 0.800 0.380 0.535 1.061 0.300 0.888 10.8

ã(2) � 0
n � 20 ÿ0.110 ÿ0.137 0.536 ÿ0.156 ÿ0.196 0.696 ÿ0.839 ÿ0.445 5.0
n � 50 ÿ0.046 ÿ0.049 0.711 ÿ0.068 ÿ0.087 0.930 ÿ0.331 ÿ0.115 12.9
n � 100 ÿ0.016 ÿ0.018 0.809 ÿ0.027 ÿ0.037 1.174 ÿ0.147 ÿ0.041 19.1
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TABLE III

The Mean m(ã̂M), m(ã̂Q) and the Relative Efficiency REF of the Autocovariance Estimators at Time Lag h � 0, h � 1 and h � 2 on
AR(1) Model with è � 0:5, with and without RO Outliers

å � 0 å � 10%, k � 3 å � 10%, k � 10

m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF m(ã̂M) m(ã̂Q) REF

ã(0) � 1:333
n � 20 1.158 1.279 0.668 2.143 1.664 2.9 14.739 2.007 181.6
n � 50 1.252 1.293 0.772 2.292 1.647 3.5 14.433 1.933 199.0
n � 100 1.291 1.313 0.803 2.378 1.669 3.3 14.803 1.940 235.1

ã(1) � 0:667
n � 20 0.486 0.550 0.613 0.328 0.568 0.9 ÿ0.321 1.094 3.9
n � 50 0.586 0.609 0.749 0.434 0.668 1.0 0.271 1.126 7.2
n � 100 0.628 0.638 0.804 0.501 0.724 1.0 0.404 1.159 7.6

ã(2) � 0:333
n � 20 0.145 0.172 0.534 0.033 0.121 0.7 ÿ0.499 0.256 5.1
n � 50 0.246 0.254 0.763 0.180 0.258 1.0 0.082 0.497 9.6
n � 100 0.291 0.296 0.778 0.227 0.334 1.0 0.093 0.543 12.0
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autocovariance estimator. This can be done by the shrinking, the eigenvalue or
the scaling method (Rousseeuw and Molenberghs, 1993). A typical application
is then to use the highly robust autocovariance estimator in the Yule±Walker
equations (Brockwell and Davis, 1991) to estimate the parameters of an AR
model robustly.

6. EXAMPLE

We compute the classical autocovariance estimator ã̂M and the highly robust
autocovariance estimator ã̂Q on 91 monthly interest rates of an Austrian bank;
see Figure 4 for the data. This data set has already been analysed by KuÈnsch
(1983, 1984). He pointed out the presence of three outliers for the months
number 18, 28, 29. In Figure 5, we run ã̂M and ã̂Q on the original data in (a) and
(b). Then we replace the three outliers by 9.85 as suggested by KuÈnsch in (c) and
(d). Looking at (c) and (d), we can see that the new estimator ã̂Q behaves
similarly to ã̂M when no outliers are present. Comparing the difference between
(a) and (c) with the difference between (b) and (d), we can see that ã̂Q has better
resistance to the outliers than ã̂M. This effect is particularly visible for small
time lags.

7. CONCLUSION

In this paper, the problem of the robustness of the sample autocovariance
function has been addressed, and a new autocovariance estimator, based on a

Figure 4. Monthly interest rates of an Austrian bank during 91 months
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highly robust estimator of scale Qn, has been proposed. Its robustness properties
were studied by means of the in¯uence function, and a concept of temporal
breakdown point. A simulation study has been carried out, showing the
behaviour of both the classical and highly robust autocovariance estimator in the
presence of outliers. The poor resistance of the classical estimator has been
exhibited, in particular with respect to bias and ef®ciency. Therefore, instead of
using only the highly robust autocovariance estimator in practice, we rather
suggest computing it along with the classical one. If they are very close to each
other, one can assume that outliers had negligible effect. If they are signi®cantly
different, one has to think and act with care. For instance, in the time series of
monthly interest rates of an Austrian bank, outliers were suspected due to the
different results between the two estimators. An S-Plus function for the highly
robust autocovariance estimator is available on the Web at http://www-
math.mit.edu/�yanyuan/Genton/Time/time.html.
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Figure 5. Autocovariance estimator on monthly interest rates of an Austrian bank: (a) classical
ã̂M on original data; (b) highly robust ã̂Q on original data; (c) classical ã̂M on corrected data; (d)

highly robust ã̂Q on corrected data
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