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In this paper, we propose a new componentwise estimator of a dispersion matrix,
based on a highly robust estimator of scale. The key idea is the elimination of a
location estimator in the dispersion estimation procedure. The robustness properties
are studied by means of the influence function and the breakdown point. Further
characteristics such as asymptotic variance and efficiency are also analyzed. It is shown
in the componentwise approach, for multivariate Gaussian distributions, that
covariance matrix estimation is more difficult than correlation matrix estimation.
The reason is that the asymptotic variance of the covariance estimator increases
with increasing dependence, whereas it decreases with increasing dependence for
correlation estimators. We also prove that the asymptotic variance of dispersion
estimators for multivariate Gaussian distributions is proportional to the asymptotic
variance of the underlying scale estimator. The proportionality value depends only
on the underlying dependence. Therefore, the highly robust dispersion estimator is
among the best robust choice at the present time in the componentwise approach,
because it is location-free and combines small variability and robustness properties
such as high breakdown point and bounded influence function. A simulation study
is carried out in order to assess the behavior of the new estimator. First, a com-
parison with another robust componentwise estimator based on the median
absolute deviation scale estimator is performed. The highly robust properties of the
new estimator are confirmed. A second comparison with global estimators such as
the method of moment estimator, the minimum volume ellipsoid, and the minimum
covariance determinant estimator is also performed, with two types of outliers. In
this case, the highly robust dispersion matrix estimator turns out to be an interest-
ing compromise between the high efficiency of the method of moment estimator in
noncontaminated situations and the highly robust properties of the minimum
volume ellipsoid and minimum covariance determinant estimators in contaminated
situations. � 2001 Academic Press
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1. INTRODUCTION

Dispersion matrices, i.e. covariance and correlation matrices, play an
important role in many methods of multivariate statistics. For instance,
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they are the cornerstones of principal component analysis, discriminant
analysis, factor analysis, canonical correlation analysis, and many others
(e.g. Mardia et al., 1979). Moreover, dispersion matrices are themselves
quantities of interest since they represent a measure of association or inter-
dependence between several characteristics. They provide information
about the shape of the ellipsoid of the data cloud in a multidimensional
space. Therefore, reliable estimators of dispersion matrices are of prime
importance. Unfortunately, classical sample dispersion matrices are known
to be very sensitive to outlying values in the data, which can typically be
hidden in the high dimensionality of the space of variables. As a conse-
quence, eigenvalues and eigenvectors of the dispersion matrix inherit this
sensitivity. A principal component analysis could thus reveal an artificial
structure in the data, that does not really exist but is merely created by a
few outliers.

In the past three decades, many attempts to overcome the poor resistance
properties of the classical sample dispersion matrix have been made. The
robust proposals can be classified in two main categories: robust com-
ponentwise estimation and robust global estimation of the dispersion
matrix. The first one can be approached via location estimation, or scale
estimation, as described in Section 3. It has the advantage of being able to
deal with missing values in the data, but is not affine invariant and does
not provide a positive definite matrix directly. The second category usually
insures affine invariance and positive definiteness, but is less appropriate to
deal with missing data.

In this paper, we propose the use of a highly robust estimator of scale,
denoted by Qn , in the componentwise approach. In fact, we show that
it is among the best robust choice available at the present time in the
componentwise approach. Of course, other robust and efficient scales
estimators could be used, for example like the {-scales proposed by Yohai
and Zamar (1988). However, the highly robust estimator of scale Qn possesses
the location-free property and has already been successfully used in the con-
text of regression (Ho� ssjer, Croux, and Rousseeuw, 1994; Croux, Rousseeuw,
and Ho� ssjer, 1994), as well as for variogram estimation (Genton, 1998) in
spatial statistics, and autocovariance estimation (Ma and Genton, 2000) in
time series. In the next section, we start by recalling some of the dispersion
matrix estimators that can be found in the literature. The third section
describes the highly robust estimator of dispersion matrices. Robustness
properties are discussed in Section 4. The influence function for covariance
and correlation estimators are studied, as well as their breakdown point.
The asymptotic variance and efficiency are derived for the new estimator in
the case of multivariate Gaussian distributions. In the end, we compare the
suggested method with some other methods (componentwise and global)
and carry out some simulations.
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In the sequel of the paper, we use the following notations. In the case of
two random variables, we typically use X and Y to represent them and use
x=(x1 , x2 , ..., xn)T, y=( y1 , y2 , ..., yn)T, to represent the observation
vectors. In the case of p random variables, we use Xi , i=1, 2, ..., p to
denote the random variables. The n observations of each random variable
Xi are represented by x1i , x2i , ..., xni , and they are gathered into a vector
x(i) . The n realizations of the random vector (X1 , X2 , ..., Xp) is represented
by x j=(xj1 , x j2 , ..., x jp), j=1, 2, ..., n. Therefore, the data matrix X can be
represented in the following format:

X1 X2 } } } Xp

x11 x12 } } } x1p

X=\x21 x22 } } } x2p+ ,
b b b

xn1 xn2 } } } xnp

or X=(x1 , x2 , ..., xn)T=(x(1) , x(2) , ..., x( p)).

2. DISPERSION MATRIX ESTIMATORS

In this section, we describe some commonly used estimators for the
dispersion matrix, as well as some recent robust proposals. We focus on the
estimation of covariance matrices, since estimation of correlation matrices
can be derived in the same way.

Suppose that the sample x1 , ..., xn , with xi # R p, i=1, ..., n, is independently
and identically distributed according to a multivariate distribution with mean
vector + and covariance matrix 7. Note that estimation of the correlation
matrix R can always be derived from the relation R=D7D, where D=
diag(1�- 711 , ..., 1�- 7pp ). The method of moment estimator (MME) of
the covariance matrix 7 is

7� MME=
1
n

:
n

i=1

(xi&+̂)(x i&+̂)T, (1)

where +̂= 1
n �n

i=1 xi .
The breakdown point is an important feature of reliability of an estimator.

It indicates, roughly speaking, the largest proportion of data that can be
replaced by arbitrary values to bring the estimator to the boundaries of the
parameter space. More details can be found for instance in Donoho and
Huber (1982), Huber (1981, 1984), Hampel et al. (1986). The breakdown
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point of the method of moment estimator (1) is zero, indicating its very
poor resistance.

Affine equivariant M-estimators for dispersion matrices were first suggested
by Hampel (1973), and studied by Maronna (1976) and Huber (1977,
1981). Unfortunately, their breakdown point is at most 1�( p+1). This is
not satisfactory, because it means that the breakdown point becomes
smaller with increasing dimension, where there are more opportunities for
outliers to occur. The performance of some M-estimators were studied by
mean of a Monte Carlo study by Devlin et al. (1975, 1981).

Stahel (1981) and Donoho (1982) were first to independently propose
robust affine equivariant estimators of multivariate location and dispersion
having a high breakdown point (asymptotically 1�2) for any dimension.
They are defined as weighted mean and weighted dispersion, where the
weights are functions of a measure of ``outlyingness'' obtained by considering
all univariate projections of the data. Subsequently, other high breakdown
point equivariant multivariate estimators have been introduced. The most well
known is probably the Minimum Volume Ellipsoid (MVE) estimator, intro-
duced by Rousseeuw (1984, 1985), and discussed in Rousseeuw and Leroy
(1987), Rousseeuw and van Zomeren (1990). The method seeks an ellipsoid of
minimum volume, containing m=w(n+ p+1)�2x points, where w } x denotes
the integer part. More precisely, it consists in finding +̂MVE and 7� MVE such
that the determinant of 7 is minimized subject to

*[i | (xi&+)T 7&1(x i&+)�a2]�m, (2)

where a2 is a fixed constant, for example from /2
p in the case of Gaussian data.

The MVE has a finite sample breakdown point of m, i.e. 500 asymptotically.
Two algorithms (resampling and projection) to compute an approximate
solution of MVE can be found in Rousseeuw and van Zomeren (1990).

The MVE estimator has been generalized to multivariate S-estimators
(Davies, 1987; Lopuhaa� , 1989; Lopuhaa� and Rousseeuw, 1991). Li and Chen
(1985) proposed a dispersion matrix estimator based on robustifying principal
components via projection pursuit techniques. A class of projection estimators
for dispersion matrices were studied by Maronna, Stahel and Yohai (1992).
Tyler (1994) discusses finite sample breakdown point of projection based
estimators, in particular the Stahel-Donoho estimator. Maronna and Yohai
(1995) studied asymptotic and finite-sample behaviors of the Stahel�Donoho
robust multivariate estimators. From a simulation study, they concluded
that they compare favorably with other proposals like multivariate M- or
S-estimators, and Rousseeuw's MVE. However, the main drawback remains
the lack of feasible methods to compute the estimators for dimensions larger
than p=2.
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Recently, Rousseeuw and Van Driessen (1999) proposed a fast algorithm
(FAST-MCD) for the Minimum Covariance Determinant (MCD) estimator.
Originally proposed by Rousseeuw (1984, 1985), the use of this estimator
was until now hampered by the high computation time of existing algorithms.
The MCD objective is to find h observations out of n whose classical covariance
matrix has the lowest determinant. The MCD estimator, 7� MCD , of the
covariance matrix is then the method of moment estimator of these h
observations. Rousseeuw and Van Driessen (1999) have proved that the
finite sample breakdown point of MCD is m defined above, when h=m, i.e.
500 asymptotically. Moreover, Croux and Haesbroeck (1999) showed
that MCD is more efficient than MVE in high dimensions, and therefore
recommend the use of MCD.

3. THE HIGHLY ROBUST ESTIMATOR

3.1. Dispersion between Two Random Variables

Traditionally, covariance estimation between two random variables X
and Y is based on a location approach, since Cov(X, Y)=E[(X&E(X))
(Y&E(Y))], yielding for example the estimator (1) of 7. However,
covariance estimation can also be based on a scale approach, by means of
the following identity (Huber, 1981; Gnanadesikan, 1997):

Cov(X, Y)=
:;
4

[Var(X�:+Y�;)&Var(X�:&Y�;)], \:, ; # R*. (3)

In general, X and Y may be measured in different units, and the choice :=_X

and ;=_Y is recommended (Gnanadesikan and Kettenring, 1972), where
_X=- Var(X) and _Y=- Var(Y). The choice of a robust estimator of the
variance in (3) produces a robust estimator of the covariance between X
and Y.

In the context of scale estimation, Rousseeuw and Croux (1992, 1993)
proposed a simple, explicit and highly robust estimator of scale, Qn ,

Qn(z)=d [ |zi&zj |; i< j, i, j=1, 2, ..., n] (k) , (4)

where z=(z1 , ..., zn)T is a sample of a random variable Z, k=w(( n
2)+2)�4x

+1 and w } x denotes the integer part. The factor d is for consistency: for
the Gaussian distribution, d=2.2191. This means that we sort the set of all
absolute differences |zi&zj | in increasing order for i< j, i, j=1, 2, ..., n and
then compute its k th order statistic (approximately the 1�4 quantile for
large n). This value is multiplied by d, thus yielding Qn . Note that this
estimator computes the k-th order statistic of the ( n

2) interpoint distances.
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It is of interest to remark that Qn does not rely on any location knowledge
and is therefore said to be location-free. This is in contrast to the classical
sample covariance matrix (1), which can be obtained by inserting the
classical sample variance estimator in Eq. (3). Therefore, the use of the
highly robust scale estimator (4) in the identity (3) will produce a highly
robust covariance estimator which is also location-free. At first sight, the
estimator Qn appears to need O(n2) computation time, which would be a
disadvantage. However, it can be computed using no more than O(n log n)
time and O(n) storage, by means of the fast algorithm described in Croux
and Rousseeuw (1992).

Using the identity (3) and the definition (4) of the scale estimator Qn , we
propose the following highly robust estimator to compute the covariance
# between two random variables X and Y. First, use Qn to estimate the
standard deviations _X and _Y of X and Y. Then, use Qn again to estimate
the standard deviations _+ and _& of X�_X+Y�_Y and X�_X&Y�_Y . The
covariance # between X and Y is _X _Y (_2

+&_2
&)�4. Therefore, the highly

robust estimator #̂Q of the covariance # is

#̂Q(x, y)=
:;
4

[Q2
n(x�:+y�;)&Q2

n(x�:&y�;)], (5)

where :=Qn(x), ;=Qn(y). As will be shown in Section 4, it has a break-
down point of 500, which is the same as the Qn estimator. Here, 500

breakdown point means that among the n observation pairs [xi , yi],
i=1, ..., n, half of them can contain contaminated (arbitrary) values and
the estimation will not be totally destroyed. Note that the highly robust
covariance estimator #̂Q can also be carried out with O(n log n) time and
O(n) storage.

In order to obtain a highly robust estimator of the correlation \ between
two random variables X and Y, we could divide the estimator #̂Q(x, y) in
Eq. (5) by Qn(x) and Qn(y), yielding

1
4 [Q2

n(x�:+y�;)&Q2
n(x�:&y�;)], (6)

where :=Qn(x), ;=Qn(y). However, this is not a natural correlation
estimator because it is not bounded between &1 and 1. Therefore, we
consider the following highly robust correlation estimator \̂Q of \,

\̂Q(x, y)=
Q2

n(x�:+y�;)&Q2
n(x�:&y�;)

Q2
n(x�:+y�;)+Q2

n(x�:&y�;)
, (7)

where the denominator is an estimator of the value 4 that insures | \̂Q(x, y)|
�1. Note that #̂Q depends upon the choice of the constant d appearing in
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Eq. (4), whereas \̂Q is independent of the choice of d. Nevertheless, d can
be computed for various distributions, although the Gaussian case is
usually preferred.

3.2. Dispersion between p Random Variables

In the case of n observations of a p-dimensional random vector, we use the
estimator #̂Q to estimate every covariance between Xi and Xj (i, j=1, ..., p,
i{ j) to get the (i, j) entry of the covariance matrix 7. The diagonal entries
are estimated using Q2

n directly on the Xi 's (i=1, ..., p). This provides a highly
robust componentwise estimator 7� Q of the covariance matrix 7.

Using \̂Q , we can estimate the entries of the correlation matrix R similarly
as in the covariance matrix case, thus yielding a highly robust componentwise
estimator R� Q . We set all the diagonal entries of R� Q to 1's.

Note that since the method we propose is componentwise instead of
global, there is no guarantee that we get a positive definite matrix at the
end of the estimation. Rousseeuw and Molenberghs (1993) proposed three
kinds of methods to transform the estimated matrix to a positive definite
matrix. They are respectively the shrinking method, the eigenvalue method,
and the scaling method. When the covariance itself is the quantity of interest,
one should transform it to a positive definite matrix using one of these
methods, while if some particular entries in the matrix are the values of
interest, then the estimated values should provide a good estimation of the
real values.

4. PROPERTIES OF THE ESTIMATOR

4.1. Breakdown Point

It is known that the breakdown point of Qn is 500 (Rousseeuw and
Croux, 1993). Inspecting X�:+Y�; (or X�:&Y�;), we can see that as long
as xi (or yi) is contaminated, then xi�:+ yi�; (or xi �:& yi �;) is contaminated.
So in the pairs (x1 , y1), ..., (xn , yn), we can at most have half of the pairs con-
taining contaminated data. If we look at one pair as one observation, then the
estimators #̂Q and \̂Q are robust against at most half of the contaminated
observations. So, they have breakdown point of 500. In estimating the
covariance matrix 7 and the correlation matrix R, we form pairs of all the
observations of Xi and X j (i, j=1, ..., p), and the estimator allows at most
half of the pairs to be contaminated. Therefore, among the n observation
vectors x1 , x2 , ..., xn , at most half of them can contain contaminated data.
In other words, the breakdown point of the highly robust componentwise
estimators 7� Q and R� Q is 500. Note that in the context of dispersion
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matrix estimation, another interesting type of breakdown point is when
outliers cause the estimated matrix to become singular. However, this
is not the case for our dispersion estimators 7� Q and R� Q . Even without
outliers, they have to be transformed to positive definiteness by means of
one of the three methods mentioned in Section 3.2.

4.2. Influence Function

The influence function (Hampel, 1974) is a tool to describe the robust-
ness properties of an estimator. Its importance lies in its appealing heuristic
interpretation: it measures the asymptotic bias caused by an infinitesimal
contamination of the observations. Denote by #Q , \Q , and Q the statistical
functional (e.g. Huber, 1981; Hampel et al., 1986) corresponding to the
estimators #̂Q , \̂Q , and Qn respectively. The influence function of dispersion
estimators has been derived by Genton and Ma (1999). It is based on the
influence function of the underlying scale estimator. In our case, the influence
function of Qn is (Rousseeuw and Croux, 1993):

IF(u; Q, F )=d
1
4&F(u+d &1)+F(u&d &1)

� f (x+d &1) f (x) dx
, (8)

where f is the density function of the distribution F and d is the same coef-
ficient as in the Qn estimator. Based on (5), the influence function of the
covariance estimator #̂Q is:

IF((u, v); #Q , F)=
1
2 __+IF \ u

_X
+

v
_Y

; Q, F++
&_&IF \ u

_X
&

v
_Y

; Q, F&+& _X _Y . (9)

Here, F+ is the distribution function of X
_X

+ Y
_Y

, F& is the distribution func-
tion of X

_X
& Y

_Y
, F is the bivariate distribution of X and Y, with marginal

distributions FX and FY . The influence functions IF( } ; Q, F+) and IF( } ; Q, F&)
are given by Eq. (8).

More information on the justification and properties of Eq. (9) can be
found in Genton and Ma (1999). One way to understand it intuitively is:
_X and _Y in Eq. (9) can be replaced by any non-zero constants : and ;.
Then from Eq. (5), noticing the connection between the influence function
and the first order derivative, we know Eq. (9) gives the influence function.
In particular, for :=_X and ;=_Y , Eq. (9) still remains valid. One may
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suspect that since _X and _Y themselves have to be estimated first, our
influence function should take the perturbation of these two estimators into
account too, hence should have a more complicated form than the one
given in Eq. (9). Fortunately, this is not the case and we can understand it
in this way: how far the estimated _X and _Y are from the true values does
not have any direct effect on the estimation since even if we take arbitrary
: and ;, the estimator is still valid. The values of : and ; only have an
effect in carrying out the estimation of X

_X
+ Y

_Y
and X

_X
& Y

_Y
, and this is taken

care of in the influence function of these two estimators.
Since the correlation estimator \̂Q(x, y) can be written as in Eq. (7), we

have:

IF((u, v); \Q , F)=
2

(_2
++_2

&)2 _(_2
++_2

&) \_+IF \ u
_X

+
v

_Y
; Q, F++

&_& IF \ u
_X

&
v

_Y
; Q, F&++

&(_2
+&_2

&) \_+IF \ u
_X

+
v

_Y
; Q, F++

+_&IF \ u
_X

&
v

_Y
; Q, F&++& . (10)

Thus, we obtain the following influence function for the correlation
estimator \̂Q :

IF((u, v); \Q , F)=
_+_&

4 __&IF \ u
_X

+
v

_Y
; Q, F++

&_+IF \ u
_X

&
v

_Y
; Q, F&+& . (11)

It can be checked that the influence functions of both the covariance
estimator and the correlation estimator satisfy � IF dF=0.

4.3. Asymptotic Variance
Under regularity conditions, both #̂Q and \̂Q are consistent estimators,

since Qn is consistent (Rousseeuw and Croux, 1993). Moreover, they are
asymptotically normal with asymptotic variance (of order 1�n) given by:

V(#Q , F)=| IF((u, v); #Q , F)2 dF(u, v),

V(\Q , F)=|IF((u, v); \Q , F)2 dF(u, v), (12)

V(Q, F )=| IF(u; Q, F )2 dF(u).
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Subsequently, we assume a bivariate Gaussian distribution F=8 for
(X, Y)T, i.e.:

\X
Y+tN \\0

0+ , \_2
X

#
#

_2
Y ++=N \\0

0+ , \ _2
X

\_X_Y

\_X _Y

_2
Y ++ ,

where # is the covariance and \ is the correlation between X and Y. We
have:

Proposition 1. The asymptotic variance of the covariance estimator #̂Q is

V(#Q , 8)=2V(Q, 8)(_2
X_2

Y+#2)=1.215(_2
X _2

Y+#2), (13)

and the asymptotic variance of the correlation estimator \̂Q is

V(\Q , 8)=2V(Q, 8)(1&\2)2=1.215(1&\2)2, (14)

where 8 represents the standard Gaussian distribution function, i.e. with
mean zero and variance one.

In Table I, we compute the variance of the covariance estimator and of
the correlation estimator for various underlying variances and covariances.
The results are presented in the fourth and fifth columns of Table I. Proposi-
tion 1 is in fact valid for a dispersion estimator based on any statistical
functional of scale. For instance, we can replace the Qn estimator in
Proposition 1 with the maximum likelihood estimator of scale MLE, and
calculate the closed form of the variance of the covariance estimator #̂MLE

and of the correlation estimator \̂MLE :

TABLE I

Asymptotic Variance and Efficiency of the Dispersion Estimators #̂Q and \̂Q ,
in the Case of Gaussian Distributions

_2
X _2

Y # V(#Q , 8) V(\Q , 8) Eff(#Q , 8) Eff(\Q , 8)

1 1 0 1.215 1.215 0.823 0.823
1 1 0.2 1.264 1.120 0.701 0.791
1 1 0.5 1.519 0.683 0.296 0.658
1 1 0.8 1.993 0.157 0.040 0.501
1 2 0.5 2.735 0.930 0.498 0.732
1 3 0.5 3.950 1.021 0.589 0.758
1 10 0.5 12.458 1.155 0.745 0.803

Note. The numerical values of the asymptotic variances were computed with Proposition 1
and the numerical values of the asymptotic efficiencies were computed with Proposition 3.
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Corollary 1. The asymptotic variance of the covariance estimator #̂MLE is

V(#MLE , 8)=_2
X_2

Y+#2, (15)

and the asymptotic variance of the correlation estimator \̂MLE is

V(\MLE , 8)=(1&\2)2. (16)

Thus, the asymptotic variance of covariance estimators increases with
increasing dependence, whereas it decreases with increasing dependence
for correlation estimators. In fact, we see that the asymptotic variance of
dispersion estimators for multivariate Gaussian distributions is propor-
tional to the asymptotic variance of the underlying scale estimator. The
proportionality value depends only on the underlying dependence.

4.4. Fisher Information

For Gaussian distributions, a closed form of the Fisher information of
both covariance and correlation can be obtained:

Proposition 2. The Fisher information of the covariance # is

I(#, 8)=
_2

X_2
Y+#2

(_2
X_2

Y&#2)2 , (17)

and the Fisher information of the correlation \ is

I(\, 8)=
1+\2

(1&\2)2 . (18)

Note that from the Fisher information for the covariance #, it is straight-
forward to get the Fisher information for the correlation, since the correlation
\ is simply #

_X_Y
.

4.5. Efficiency

Efficiency is defined as the inverse of the product of the Fisher informa-
tion and the asymptotic variance of the estimator. Thus, for Gaussian
distributions, we can calculate the asymptotic efficiency of #̂Q and \̂Q .

Proposition 3. The asymptotic efficiency of the covariance estimator #̂Q is

Eff(#Q , 8)=
(_2

X_2
Y&#2)2

2V(Q, 8)(_2
X_2

Y+#2)2=0.823
(_2

X _2
Y&#2)2

(_2
X_2

Y+#2)2 , (19)
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and the asymptotic efficiency of the correlation estimator \̂Q is

Eff (\Q , 8)=
1

2V(Q, 8)(1+\2)
=0.823

1
1+\2 , (20)

We present the efficiency of both the covariance and the correlation
estimators in the sixth and seventh column of Table I, calculated by Proposi-
tion 3. In fact, Proposition 3 is valid for a dispersion estimator based on any
statistical functional of scale. For instance, we can again replace the Qn

estimator in Proposition 3 with the maximum likelihood estimator of scale
MLE, and calculate the closed form of the asymptotic efficiency of the
covariance estimator #̂MLE and of the correlation estimator \̂MLE :

Corollary 2. The asymptotic efficiency of the maximum likelihood
estimator of the covariance #̂MLE is

Eff (#MLE , 8)=
(_2

X_2
Y&#2)2

(_2
X_2

Y+#2)2 , (21)

and the asymptotic efficiency of the maximum likelihood estimator of the
correlation \̂MLE is

Eff(\MLE , 8)=
1

1+\2 . (22)

5. COMPARISONS

We first compare the estimator we proposed here, #̂Q , with the maximum
likelihood one, #̂MLE , and another componentwise robust estimator, #̂MAD ,
based on the median absolute deviation (e.g. Hampel et al., 1986). Next we
compare 7� Q with the global estimators 7� MME , 7� MVE , and 7� MCD . We focus
on covariance estimation here since as we will point out in Section 5.1, it
is more difficult than correlation estimation.

5.1. Comparison with MLE and MAD

As we have pointed out, Proposition 1 is valid for any dispersion estimator
based on an M-estimator of scale (Genton and Ma, 1999). In Fig. 1, we plot
the asymptotic variance of the three covariance estimators #̂Q , #̂MLE and
#̂MAD , for a standardized Gaussian distribution with correlation \. Similarly
we also plot the asymptotic variance of the three corresponding correlation
estimators in Fig. 2. The three curves in Fig. 1 and in Fig. 2 are computed
with the formula in Proposition 1 and in Corollary 1. We can see that
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FIG. 1. The asymptotic variance of the covariance estimators based on Qn , MLE, and
MAD, for a standardized bivariate Gaussian distribution with correlation \. The #̂MLE

estimator has the smallest asymptotic variance, the asymptotic variance of the #̂Q estimator is
slightly larger, whereas #̂MAD has an asymptotic variance much larger than the other two. For
all three estimators, the asymptotic variance increases when the covariance between the two
random variables increases.

when the covariance (correlation) between two random variables increases,
the asymptotic variance of the covariance estimator increases, while the
asymptotic variance of the correlation estimator decreases. As a conse-
quence, correlation estimation is easier than covariance estimation, in the
sense that it has smaller variability. In the independent standard Gaussian
distribution case, i.e. \=0, the asymptotic variance of the covariance
estimator and the correlation estimator have the same value.

FIG. 2. The asymptotic variance of the correlation estimators based on Qn , MLE, and
MAD, for a standardized bivariate Gaussian distribution with correlation \. The \̂MLE

estimator has the smallest asymptotic variance, the asymptotic variance of the \̂Q estimator
is slightly larger, whereas \̂MAD has an asymptotic variance much larger than the other two.
For all three estimators, the asymptotic variance decreases when the covariance between the
two random variables increases.

23ESTIMATION OF DISPERSION MATRICES



TABLE II

The Mean and Variance of the Covariance Estimators #̂Q , #̂MLE , and #̂MAD

Sample size Mean Variance

#̂Q #̂MLE #̂MAD #̂Q #̂MLE #̂MAD

20 &0.007 0.005 &0.002 1.630 0.966 2.684
100 &0.002 &0.002 &0.002 1.257 0.988 2.865
200 &0.003 &0.003 &0.003 1.320 1.057 2.794

Note. The data followed an independent standard Gaussian distribution, and we calculated
the mean and variance after running 1000 samples. The three estimators are all unbiased, and
the variance of the #̂MAD is significantly larger than the other two.

We carried out some simulations to test the mean and variance of the
dispersion estimators based on the Qn , MLE, and MAD estimators. The
simulation was on two standardized Gaussian random variables with
covariance 0 and 0.5, and based on 1000 samples. The sample sizes were
20, 100 and 200. The results are presented in Table II and III. We can see
that the estimators are unbiased and the variance of the estimators
increases as the variance between the two random variables increases.

5.2. Comparison with MME, MVE, and MCD

In order to compare the highly robust componentwise estimator 7� Q with
the global estimators 7� MME , 7� MVE , and 7� MCD , we carried out some

TABLE III

The Mean and Variance of the Covariance Estimators #̂Q , #̂MLE , and #̂MAD

Sample size Mean Variance

#̂Q #̂MLE #̂MAD #̂Q #̂MLE #̂MAD

20 0.526 0.477 0.506 2.018 1.163 3.497
100 0.499 0.493 0.496 1.715 1.302 3.477
200 0.504 0.500 0.500 1.649 1.258 3.254

Note. The data followed a Gaussian distribution with mean zero and variance one, and
the covariance # between the two random variables was 0.5. We calculated the mean and
variance after running 1000 samples. The three estimators are all unbiased, and the variance
of the #̂MAD is significantly larger than the other two.
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simulations on three variables, i.e. 7 is a 3_3 matrix, from a multivariate
Gaussian distribution. In Table IV,

0 1.0 0.9 &0.5

+=\0+ , 7=\ 0.9 1.0 0.2+ , (23)

0 &0.5 0.2 3.0

and in Table V,

1 1.0 0.8 0.5

+=\2+ , 7=\0.8 1.0 0.8+ . (24)

3 0.5 0.8 1.0

Both situations include some large correlations (0.9 in (23) and 0.8 in (24)).
We generated 1000 sets of data, each with sample size 100 and we used the
four estimators to calculate the covariance matrix 7. In the statistical
software S-Plus, the 7� MME , 7� MVE , and 7� MCD estimators are respectively
implemented as var, cov.mve, and cov.mcd8cov (note that the last
two functions yield one-step reweighted estimators based on MVE and
MCD, see e.g. Rousseeuw and Van Driessen (1999)). We implemented 7� Q

in S-Plus from a C-routine provided by Croux and Rousseeuw (1992).
Based on the 1000 estimated covariance matrices, we computed the mean
and the variance of the estimations. The results are presented in Table IV
and V. In the first columns, the data do not contain any outliers, in the
second column, 100 of the data have a covariance matrix 97 (explode
type outliers), in the third column, 100 of the data have a covariance
matrix 7�9 (implode type outliers). In these examples, the matrices 7� Q are
positive definite. In case they are not positive definite, a transformation as
described at the end of Section 3.2 must be applied. For convenience, we
call the sum of the absolute values of all the entries of a matrix the 1-norm
of the matrix, and denote it by & }&1 . The smallest 1-norm in each column
is emphasized by boldface font. From the tables, we can see that when
there is no outliers, 7� MME behaves the best, 7� Q is slightly worse, while
7� MVE and 7� MCD behave the worst. When the outliers are of explode type
(the observation tends to be much larger than the true value), 7� MVE has
the best estimation, followed by 7� MCD and 7� Q , whereas 7� MME gives the
worst result. For outliers that are of implode type (the observation tends
to be much smaller than the true value), 7� MME and 7� Q both give relatively
good estimations, whereas 7� MVE is worse and 7� MCD gives the worst result.
This can be understood if we notice that the estimators 7� MVE and 7� MCD

only take into account half of the observations which are distributed
nearest to an estimated center. Thus exploding outliers will not have much
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effect on the estimators, whereas imploding outliers can bring significant
challenge to the estimators. In other words, 7� MVE and 7� MCD are robust
only against exploding outliers, not imploding outliers. 7� MME gives very
good results in the imploding case because the implode values we tested are
not extreme case and they only take 100 of the data, so under the averag-
ing procedure, the effect of imploding is very small. 7� Q is not the best in
any of the three simulations, but it is relatively good in all three simula-
tions. So, in practice when one does not really know what kind of outliers
exist and how many percentage of the data are contaminated, 7� Q is a
suitable estimator to use. In particular with no outliers, the bias of 7� Q is
almost as small as the bias of 7� MME . Note that the simulation results for
7� Q are valid only for (23) and (24) because our estimator is not affine
invariant. However, the results for (23) and (24) are quite similar.

6. CONCLUSION

A new componentwise estimator of a dispersion matrix, based on a highly
robust estimator of scale, has been proposed in this article. Its robustness
properties were studied by means of the influence function and the breakdown
point. Further characteristics such as asymptotic variance and efficiency were
also analyzed. A major advantage of the novel estimator is that its behavior is
close to the method of moment estimator in noncontaminated situations,
whereas it is highly robust in contaminated ones. It was shown in the
componentwise approach, for multivariate Gaussian distributions, that
covariance matrix estimation is more difficult than correlation matrix
estimation. The reason is that the asymptotic variance of the covariance
estimator increases with increasing dependence, whereas it decreases with
increasing dependence for correlation estimators. We also proved that the
asymptotic variance of dispersion estimators for multivariate Gaussian
distributions is proportional to the asymptotic variance of the underlying scale
estimator. The proportionality value depends only on the underlying
dependence. Therefore, the highly robust dispersion estimator is the best robust
choice at the present time in the componentwise approach, because it combines
small variability and robustness properties such as high breakdown point and
bounded influence function. A simulation study was carried out in order to
assess the behavior of the new estimator. First, a comparison with another
robust componentwise estimator based on the median absolute deviation scale
estimator, was performed. The highly robust properties of the new estimator
were confirmed. Moreover, it has been shown that the behavior of the new
estimator is better than the one based on the MAD, although the latter is
the most B-robust componentwise dispersion estimator (Genton and Ma,
1999). A second comparison with global estimators like the method of
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moment estimator, the minimum volume ellipsoid estimator, and the
minimum covariance determinant estimator, has also been performed, with
two types of outliers. In this case, the highly robust dispersion matrix
estimator turns out to be a compromise between the high efficiency of the
method of moment estimator in noncontaminated situations and the highly
robust properties of the minimum volume ellipsoid and minimum covariance
determinant estimators in contaminated situations, with exploding type of
outliers.

7. PROOFS

7.1. Proof of Proposition 1

The asymptotic variance of #̂Q at 8 is

V(#Q , 8)=|| IF 2((u, v); #Q , 8) d8(u, v)

=
_2

X _2
Y

4 || __+IF \ u
_X

+
v

_Y
; Q, 8++

&_&IF \ u
_X

&
v

_Y
; Q, 8&+&

2

d8(u, v).

The change of variables

\s
t+=\

1
_+ _X

1
_&_X

1
_+_Y

&1
_& _Y

+ \u
v+

yields

ds dt=
2

_+_&_X_Y
du dv

and corresponds to the random variables X
_+ _X

+ Y
_+ _Y

and X
_& _X

& Y
_& _Y

,
each of which follows the standard normal distribution 8 and is independent
of each other. Therefore

V(#Q , 8)=
_2

X _2
Y

4 __4
+ || IF 2(s; Q, 8) d8(s) d8(t)

+0+_4
& || IF 2(t; Q, 8) d8(s) d8(t)& .
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Note that we use the linear property of the influence function (Hampel et al.,
1986): IF(:x; Q, 8:X)=:IF(x; Q, 8X), \: # R. Thus:

V(#Q , 8)=
_2

X _2
Y

4
[_4

++0+_4
& ] V(Q, 8)

=
_2

X_2
Y

4 _\2+2
#

_X_Y+
2

+\2&2
#

_X_Y +
2

& V(Q, 8)

=2V(Q, 8)(_2
X _2

Y+#2)

=1.215(_2
X _2

Y+#2). (30)

Similarly, the asymptotic variance of \̂Q at 8 is

V(\Q , 8)=|| IF 2((u, v); \Q , 8) d8(u, v)

=
16_2

+_2
&

(_2
++_2

&)4 || __&IF \ u
_X

+
v

_Y
; Q, 8++

&_+ IF \ u
_X

&
v

_Y
; Q, 8&+&

2

d8(u, v).

Using the same technique as above, we have:

V(\Q , 8)=
16_2

+_2
&

(_2
++_2

&)4 __2
+_2

& || IF 2(s; Q, 8) d8(s) d8(t)

+0+_2
+_2

& || IF 2(t; Q, 8) d8(s) d8(t)& .

=
16_2

+ _2
&

(_2
++_2

&)4 [2_2
+_2

&] V(Q, 8)

=
32_4

+ _4
&

(_2
++_2

&)4 V(Q, 8)

=2V(Q, 8) \1&
#2

_2
X _2

Y+
=1.215(1&\2)2.
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7.2. Proof of Proposition 2

We write out the probability density function of the bivariate Gaussian
distribution

8(u, v)=
1

2? - ab&#2
exp \&

1
2

(u v) \a
#

#
b+

&1

\u
v++

=
1

2? - ab&#2
exp \bu2+av2&2#uv

&2(ab&#2) +
=

1

? - 2B
exp \&

A
B+ ,

where A=bu2+av2&2#uv and B=2ab&2#2. Following the definition of
the Fisher information, we have

I(#, 8)=|| \ �
�#

log ,(u, v)+
2

,(u, v) du dv

=|| 2 \ #e&A�B

2?(ab&#2)3�2+
\2uv

B
&

4#A
B2 + e&A�B

2?(ab&#2)1�2 +
2

?(ab&#2)1�2

e&A�B du dv

=||
e&A�B

2?
(ab&#2)&9�2 [(ab&#2) #&#(bu2+av2)

+(ab+#2) uv]2 du dv. (25)

Let

{
s=- b u+- a v,

t=- b u&- a v.

Then, we have

bu2+av2=
s2+t2

2
,

uv=
s2&t2

2
,

du dv=
1

2 - ab
ds dt,
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and Eq. (25) becomes

I(#, 8)=||
e&A�B

2?
(ab&#2)&9�2 _(ab&#2) #&#

s2+t2

2

+(ab+#2)
s2&t2

4 - ab&
2 1

2 - ab
ds dt

=
(ab&#2)&9�2

4? - ab || e&(- ab&#) s2+(- ab+#) t2 �[4(ab&# 2) - ab]

__(ab&#2) #+
(- ab&#)2 s2

4 - ab
&

(- ab+#)2 t2

4 - ab &
2

ds dt. (26)

Let p=- s2�[4 - ab (- ab+#)] and q=- t2�[4 - ab (- ab&#)]. Then
Eq. (26) becomes

I(#, 8)=
(ab&#2)&9�2

4? - ab || e&p2&q2
[(ab&#2) #+(- ab+#)(- ab&#)2 p2

&(- ab&#)(- ab+#)2q2]2 } 4 - ab - ab&#2 dp dq

=(ab&#2)&2 (ab+#2).

By the definition of the Fisher information, we know

I(\, 8)=I(#, 8) \d#
d\+

2

,

where #=- ab \ in this case. Using Eq. (17), we get

I(\, 8)=(ab&ab\2)&2 (ab+ab\2)(ab)

=(1&\2)&2 (1+\2).
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