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Summary. We study generalized linear latent variable models without requiring a distributional
assumption of the latent variables. Using a geometric approach, we derive consistent semi-
parametric estimators. We demonstrate that these models have a property which is similar to
that of a sufficient complete statistic, which enables us to simplify the estimating procedure
and explicitly to formulate the semiparametric estimating equations. We further show that the
explicit estimators have the usual root n consistency and asymptotic normality. We explain
the computational implementation of our method and illustrate the numerical performance of
the estimators in finite sample situations via extensive simulation studies.The advantage of our
estimators over the existing likelihood approach is also shown via numerical comparison. We
employ the method to analyse a real data example from economics.
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1. Introduction

Models with latent variables are used extensively in social, economic and health sciences for anal-
ysing relationships between observed (manifest) and unobserved (latent) variables. For instance,
in psychology, theoretical concepts such as intelligence are widely recognized to be important
but cannot be measured directly. Instead, researchers have devised experiments that provide indi-
rect measures of intelligence, e.g. intelligence quotient scores, vocabulary and reading speed.
In economics, welfare and poverty cannot be measured directly; hence income, expenditure
and various other indicators on households are used as substitutes. Similarly, in health studies,
certain personal traits such as one’s appetite or lifestyle are difficult to quantify or measure
and only related answers on questionnaires allow researchers to infer on these traits. Factor
analysis (Spearman, 1904) is probably the most well-known latent variable model, based on the
assumption of multivariate normality for the distribution of the manifest and latent variables. It
has been studied and extended by numerous researchers, such as Jöreskog (1967), Bartholomew
(1980, 1984a, b), Moustaki (1996) and Sammel et al. (1997). Recently, Bartholomew and Knott
(1999) and Moustaki and Knott (2000) proposed a generalized linear latent variable model
(GLLVM) framework that allows the distribution of the manifest variables to belong to the
exponential family, i.e. either continuous or discrete variables. It is closely related to structural
equation models or random-effects (multilevel) models; see also Skrondal and Rabe-Hesketh
(2004) for a comprehensive overview.

As a motivating example for GLLVMs, we consider the survey on Swiss consumption in
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1990 that has been provided by the Swiss Federal Statistical Office. The data set contains both
continuous and discrete (binary) manifest variable components. The continuous components
are household expenses on food, clothing and leisure, whereas the binary components are the
indicator of purchasing a dishwasher and a car in that year. It is perceptible that these elements
are inherently related to the wealthiness of a household, which can be considered as the latent
variable. Our interest is in quantifying how the household wealthiness affects these expenditures.
Conditionally on this latent variable, we model the continuous components with a normal dis-
tribution and the binary components with a binomial distribution. However, we do not further
model the household wealthiness to be normal, or any other distribution, because wealthiness
is not observed. This example gives rise to a GLLVM without normal assumption on the latent
variable distribution.

A GLLVM contains a p-dimensional latent variable Z̃ and a .p + q/-dimensional manifest
variable X , where p, q � 0. In one of its most general forms, the model can be summarized
as follows. We observe independent identically distributed data Xi, i = 1, . . . , n, where Xi =
.X

.1/
i , . . . , X

.p+q/
i /T such that the probability density function of X , omitting the subindex i, is

fX.x/=
∫

fX|Z̃.x|z̃/fZ̃.z̃/dμ.z̃/=
∫ p+q∏

j=1
fX.j/|Z̃.x.j/|z̃/fZ̃.z̃/dμ.z̃/

=
∫ p+q∏

j=1
exp

{
x.j/ηj −bj.ηj/

φj
+ cj.x.j/, φj/

}
fZ̃.z̃/dμ.z̃/, .1/

where ηj = α̃con,j + α̃T
j z̃ and α̃j = .α̃1j, . . . , α̃pj/T, and the subindex ‘con’ indicates the constant

terms. Here fX|Z̃ denotes the conditional probability density function of X on Z̃. The random
vector Z̃ = .Z̃.1/, . . . , Z̃.p//T is unobservable and hence represents latent random variables. Its
marginal probability density function is denoted fZ̃. We use μ to denote the σ-finite measure
with respect to which Z̃ has probability density fZ̃.·/. Typically μ is the Lebesgue measure for
continuous variables and the counting measure for discrete variables. The primary interest is
usually in estimating α̃con,j and α̃j, which form the main part of the parameter of interest. The
scale parameter φj is of interest in the case of continuous observed components; hence we treat
it as a part of the parameter of interest as well. The relationship between the manifest variable
and the latent variables is completely captured by these parameters. The functions bj and cj have
known forms. For example in the Swiss consumption data, for continuous X.j/, bj.ηj/= η2

j =2
and

cj.x.j/, φj/=−1
2

{
x.j/2

φj
+ log.2πφj/

}
,

with φj being the conditional variance of X.j/, whereas, for binary X.j/, b.ηj/= log{1+exp.ηj/}
and c.x.j/, φj/=0 with φj =1. Since the latent variable Z̃ is never observed, the density fZ̃.·/ is
unknown and is considered as a nuisance parameter.

GLLVMs are designed as a flexible modelling approach; consequently they are rather com-
plex models. This has led to a perfunctory use of the standard likelihood approach for inference
in GLLVMs. In fact, it is customary to assume that fZ̃.·/ is multivariate normal, and to proceed
with maximum likelihood to estimate α̃con,js, α̃js and φjs via various numerical treatments in
approximating the integrals in the log-likelihood. Those treatments include adaptive quadrature
approaches (Skrondal and Rabe-Hesketh (2004), page 165), Laplace approximations (Huber
et al., 2004) and Monte Carlo methods (Yau and McGilchrist, 1996). Concerns regarding out-
liers or model deviations from the exponential family in the manifest variable distributions
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have given rise to robust estimation procedures via indirect inference methods (Moustaki and
Victoria-Feser, 2006).

In our view, a vulnerable assumption in the standard likelihood approach is the normal dis-
tributional assumption on the latent variable Z̃. Being latent, Z̃ is certainly unobservable; hence
any model assumption on fZ̃.·/ is rather subjective and prone to errors. In fact, we believe
that the normality assumption is taken only to facilitate the computation. Usually, the most
straightforward approach to handle an unknown distribution is to estimate it, and this leads
to the standard non-parametric maximum likelihood estimators; see for example, Skrondal
and Rabe-Hesketh (2004), page 182, for its use in GLLVMs. Nevertheless, non-parametric es-
timation itself has difficulty both in terms of statistical property analysis and computational
efficiency. It is even less attractive here since the target is a distribution of unavailable variables;
hence it essentially solves a deconvolution-type problem. Consequently, the rate of the estima-
tion is very slow and, to the best of our knowledge, no asymptotic theory for non-parametric
maximum likelihood estimators is available for GLLVMs. Since fZ̃.·/ itself does not contain
information on the relationship between the two sets of random variables and hence is not of
main interest, our goal in this paper is to bypass estimating the distribution fZ̃.·/, and to estimate
the parameters of interest and to make inference directly. For this, we treat the model as a semi-
parametric problem and approach the inference issue via constructing influence functions that
do not rely on the correct specification of fZ̃.·/. The existence of such influence functions is
rooted in the structure of the GLLVM, which is convex in terms of its nuisance parameter
(Bickel et al. (1998), section 7.2). We obtain such influence functions through projecting a score
function to a subspace which contains all influence functions. This projection will result in
an estimator that is consistent even if the nuisance parameter fZ̃.·/ is misspecified or badly
estimated. Moreover, taking advantage of an additional property of the GLLVM similar to
that of a sufficient and complete statistic (Lindsay, 1982, 1983), we can obtain significant sim-
plifications in constructing the estimators, deriving the theoretical aspects of the asymptotic
properties, and carrying out the computation procedure. Furthermore, the class of estima-
tors that we propose includes the optimal class which achieves the semiparametric efficiency
bound.

The rest of the paper is organized as follows. We first address the identifiability issue in
GLLVMs in Section 2. The identifiability issue is somewhat recognized in the application com-
munity, e.g. in psychology, but we have not been able to find a thorough and clear analysis of
this important matter. In this section, we also lay out the unique parameter space that we shall
work in. We then derive the class of semiparametric estimators in Section 3. The asymptotic
properties are established in Section 4 and computational issues are addressed in Section 5. We
implement the proposed estimator on the Swiss consumption data in Section 6. The satisfactory
real data analysis results are followed by simulation studies in Section 7, where we demonstrate
the finite sample properties of the estimators proposed, and their advantage over the classical
likelihood approach. We conclude with a discussion in Section 8. Technical details are collected
in Appendix A.

The program that was used to analyse the data can be obtained from

http://www.blackwellpublishing.com/rss

2. Identifiability of the model

A rather prominent identifiability issue calls for attention in GLLVMs. For convenience, we
rewrite the model in matrix form as
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fX.x/=
∫

fX|Z̃.x|z̃/fZ̃.z̃/dμ.z̃/

=
∫

exp
[
.θ̃

T
con + z̃TÃ1/Φ−1x−

p+q∑
j=1

φ−1
j bj{.θ̃

T
con + z̃TÃ1/ej}+

p+q∑
j=1

cj.x.j/, φj/

]
fZ̃.z̃/dμ.z̃/,

where ej .j = 1, . . . , p + q/ is the jth unit .p + q/-vector, θ̃con = .α̃con,1, . . . , α̃con,p+q/T, Ã1 =
.α̃1, . . . , α̃p+q/ and Φ = diag.φ1, . . . , φp+q/. Note that Ã1 is a p × .p + q/ matrix. For mod-
els that are parsimonious, the matrix Ã1 is also of full rank (with rank p); see Appendix
A.1.

For any p × p non-singular matrix G and any p-vector b, {θ̃con, Ã1, Φ, fZ̃.z̃/} and {θ̃con −
.G−1Ã1/Tb, G−1Ã1, Φ, fZ.z/} yield the same fX.x/ for Z = GZ̃ + b. This indicates that the
GLLVM does not uniquely decide the parameters and does not distinguish Z̃ from its linear
transformation, even if we have an explicit meaning for the latent variable Z̃. This unidenti-
fiability cannot be eased by simply imposing distributional assumptions on Z̃. For example,
the classical normality assumption on fZ̃.·/ has exactly the same unidentifiability. The iden-
tifiability issue is inherent in the structure of GLLVMs and is not merely a side effect from
relaxing the distributional assumption on the latent variables. Considering that distributional
assumptions on Z̃ are generally without foundation and prone to error, we propose to solve for
a representative solution .θcon, A1, Φ/ in the solution family and to provide the whole family
{.θcon +AT

1 b, GA1, Φ/, ∀G invertible, ∀b} as the solution set.
To select a simple representative solution, we require A1 =.U0 e1 U1 e2 U2. . . ep Up/=.IpAÅ/P .

Here ek .k =1, . . . , p/ is the kth unit p-vector, Uk .k =0, . . . , p/ are p× rk .rk �0/ matrices with
each column being the linear combination of et , t � k (hence U0 is a zero matrix; if rk =0, then
Uk does not appear), AÅ = .U0 U1. . . Up/ and P is the corresponding permutation matrix. In
Appendix A.2, we show the existence and uniqueness of A1. We further require θT

con = .0T
p θT

r /P ,
where P is the same matrix as in the expression for A1, 0p is the zero p-vector and θr is a q-vector.
It is easy to see that setting b=−.Ip 0/Pθcon will satisfy this requirement, and this is the only
choice of b. Because of the structure that we impose on A1, we can augment A1 with A2 so that
A= .AT

1 AT
2 /T is invertible. Specifically, we set A2 = .0 Iq/P .

To identify A1 is to identify AÅ and P. Under our requirement for A1 and θcon, writing
PΦ−1 = PΦ−1P−1P = Φ̃

−1
P , the conditional probability density function fX|Z can thus be

alternatively written as

fX|Z.x|z/= exp.{.0T
p θT

r /+ zT.Ip AÅ/}Φ̃
−1

Px−
p+q∑
j=1

φ−1
j bj[{.0T

p θT
r /+ zT.Ip AÅ/}Pej]

+
p+q∑
j=1

cj.x.j/, φj//,

where Z is the linear transformation of Z̃ that yields the current form of .θcon, A1, Φ/. Note that
Px is only a permutation of x; it does not change the relationship between X and Z, so we can
always order X to have P = Ip+q. Thus, in what follows, we assume that P = Ip+q and hence
Φ̃=Φ, A1 = .Ip AÅ/ and θT

con = .0T
p θT

r /.
Within the solution set {.θcon + AT

1 b, GA1, Φ/, ∀G invertible, ∀b}, one is the true solution
.θ̃con, Ã1, Φ/ that has the untransformed Z̃ as the latent variable. Assume that θ̃con =θcon +AT

1 b0,
Ã1 =G0A1 and correspondingly Z =GT

0 Z̃ +b0. Here and throughout the text, we use the sub-
index ‘0’ to indicate the truth. The form of θcon and A1 allows us to write a simpler version of
model (1) as
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fX.x/=
∫ p∏

j=1
exp

{
x.j/zj −bj.zj/

φj
+ cj.x.j/, φj/

}

×
p+q∏

j=p+1
exp

{
x.j/ηj−p −bj.ηj−p/

φj
+ cj.x.j/, φj/

}
fZ.z/dμ.z/, .2/

where ηj = θrj + .AÅ
j /Tz and AÅ

j is the jth column of AÅ, j = 1, . . . , q. This model is identical
to the GLLVM (1), and it has the benefit of being identifiable. Once we estimate .θcon, A1, Φ/,
then we can obtain the solution set {.θcon + AT

1 b, GA1, Φ/}. It is worth emphasizing that the
reason we obtain a solution set instead of a single solution is the underlying unidentifiability. It
is a consequence of the structure of the GLLVM, not a consequence of relaxing the normality
assumption on the latent variables. If additional information allows us to determine G0 and b0,
then we can recover θ̃con and Ã1.

In GLLVMs, the major interest is in understanding the dependence of the manifest variable
on the latent variables, which is captured in GA1. Even without fixing a unique G, we can inter-
pret the solution set as a relative description of such dependence. For example, assume that X1
and X2 are respectively expenditure on food and clothing, Z is household wealthiness and the
estimated Â1 = .1, 2/. It can then be interpreted as the clothing expenditure being related to
household wealthiness twice as heavily as the food expenditure, regardless of which G we pick
in forming a specific solution in the solution set. For a multivariate latent variable (p > 1), the
relative dependence is with respect to the whole latent variable set. For example, if Z contains
an additional component ‘material desire’, and we have Â1 = ..1, 2/T.2, 2/T/, then obviously
A1e2 =DA1e1, where D is a diagonal matrix with 2 and 1 on the diagonal. This does not mean
that expenditure on clothing is twice as heavily related to wealthiness as expenditure on food,
and their dependence on material desire is the same. Considering an arbitrary invertible G, we
obtain

GA1e2 =GDG−1.GA1e1/:

We can see that GDG−1 has the same eigenvalues as D, and the eigenvectors are orthogonal
to each other. This means that we can always find two linear combinations of wealthiness and
material desire that are orthogonal to each other and conclude that expenditure on clothing is
twice as heavily dependent as expenditure on food on one component, and the dependence is the
same on the other component. Thus, the relative dependence on the latent variable set, instead
of on each latent variable, is what can be learned from GLLVMs. This is precisely caused by
the fact that a GLLVM does not define a unique separation between the latent variables in its
model structure.

We now briefly mention the possibilities in deciding G0 and b0; hence the identifiability and
the recovery of θ̃con and Ã1. As we have pointed out, assumptions other than the distribution
family of the latent variables must be made to do so. A common assumption is about the mean
and variance–covariance of the latent variable, E.Z̃/=0 and var.Z̃/= Ṽ . Using the generalized
linear structure in model (2), we immediately know

E.X.j//=E{b′.Z.j//},

var.X.j//=E{b′′.Z.j//}φj +var{b′.Z.j//},

cov.X.j/, X.k//= cov{b′.Z.j//, b′.Z.k//},

for all 1 � j, k �p. Since the quantities on the left-hand side can be estimated from the obser-
vations, we can obtain E.Z/ and var.Z/ from the above relationships by using a delta method.
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Because Z = G0Z̃ + b0, we obtain b0 = E.Z/ and var.Z/ = G0ṼGT
0 . This, however, does not

uniquely decide G0. A whole family of G0, caused by an arbitrary orthogonal matrix choice
in solving G0 from var.Z/ = G0ṼGT

0 , will qualify. To obtain a unique G0, we must impose
structures on G0, e.g. that G0 is upper triangular.

Although the mean 0 assumption on Z̃ is reasonable, a variance–covariance matrix on the
unobservable Z̃ is not very convincing. Assuming a matrix structure on G0 is even less appealing.
These are truly awkward constraints just to hand-pick one solution from the solution family.
It does not add to the understanding of the dependence between manifest and latent variables.
Since .θcon, A1 .or AÅ/, Φ/ uniquely decides the whole solution set, and a solution set is what a
GLLVM allows us to identify, we shall in what follows focus on .θcon, A1 .or AÅ/, Φ/ and the
corresponding Z.

3. A class of semiparametric estimators

3.1. Semiparametric results
We use β to denote the collection of all the parameters of interest, i.e. β= .αcon,p+1, . . . , αcon,p+q,
αT

p+1, . . . , αT
p+q, φ1, . . . , φp+q/T: The vector β has length m=pq +p+ 2q. Treating the density

fZ.·/ as an unknown nuisance parameter, thus using a semiparametric approach, we derive the
nuisance tangent space Λ and the nuisance tangent space orthogonal complement Λ⊥ to be

Λ= [E{h.Z/|X} : E{h.Z/}=0, E{hT.Z/h.Z/}<∞],

Λ⊥ = [g.X/ : E{g.X/|Z}=0, E{gT.X/g.X/}<∞],

where both h and g are dimension m vector functions. The semiparametric approach is explained
nicely in Tsiatis (2006). We describe the concepts of Λ and Λ⊥ and the details of the derivation
in Appendix A.3. The score vector, which is defined as @log{fX.x/}=@β, can be easily verified
to be Sβ.X/=E{Sβ.X|Z/|X}, where

Sβ.X|Z/= @log{fX|Z.X|Z;β/}
@β

:

Projecting the score vector Sβ.x/ onto the space Λ⊥, which is denoted Π.Sβ |Λ⊥/, we obtain the
efficient score vector function

Seff .X/≡Π.Sβ |Λ⊥/=Sβ.X/−E{a.Z/|X},

where E{a.Z/}=0 and

E[Sβ.X/−E{a.Z/|X}|Z]=0:

The validity of the expression for Seff can be easily verified by noting that Seff ∈Λ⊥ and Sβ −Seff =
E{a.Z/|X}∈Λ. The estimator could be obtained through first solving for a.Z/ from the above
equality, and then calculating Seff to form an estimating equation Σ

n

i=1Seff .Xi;β/=0. However,
to perform this calculation, we need to have the distribution fZ.·/, which is unknown. Here, we
propose to conjecture a possibly misspecified fZ.·/ and go through all the above calculations.
We claim that the construction under a misspecified fZ.·/, which is denoted fÅ

Z .·/, will still
yield a consistent estimator. To make the construction of the estimation procedure under fÅ

Z .·/
explicit, we use an asterisk to denote all the calculations affected. Specifically, we calculate SÅ

eff
through SÅ

eff .X/=SÅ
β .X/−EÅ{a.Z/|X}, where SÅ

β .X/=EÅ{Sβ.X|Z/|X} and

E{SÅ
β .X/|Z}=E[EÅ{a.Z/|X}|Z], .3/

and obtain the estimating equation
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n∑

i=1
SÅ

eff .Xi;β/=0:

Because SÅ
eff still has mean 0 owing to

E{SÅ
eff .Xi;β0/|Z}=E{SÅ

β .X/|Z}−E[EÅ{a.Z/|X}|Z]=0,

hence the estimator is indeed consistent even if the model fÅ
Z .·/ is incorrect. An intuitive under-

standing of the consistency under fÅ
Z .·/ is that, when solving for a.Z/ in equation (3), we ensured

that E.SÅ
eff |Z/ = 0, where the conditional expectation itself does not rely on fZ, and it subse-

quently guarantees that E.SÅ
eff /=0; hence the consistency of the estimator.

Solving for a.Z/ from equation (3) is certainly not an easy task. A similar equation has
been employed in Tsiatis and Ma (2004) and has been noted to be an ill-posed problem and
to be numerically unstable sometimes. Fortunately, the form of GLLVM facilitates a further
simplification that avoids solving for equation (3), which we shall explore next.

3.2. Explicit form estimators
Denoting W =A1Φ−1X and Y =A2Φ−1X, where A1 and A2 are defined in Section 2, we have

fW ,Y |Z.w, y|z/=fX|Z
{

ΦA−1
(

w
y

)∣∣∣∣z
}

J−1

= exp
[
θT

conA−1
(

w
y

)
+ zTw −

p+q∑
j=1

φ−1
j bj.αcon,j +αT

j z/

+
p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}]
J−1,

where J = |det.AΦ−1/|. We show next that the random variable W has a similar property to
that of a sufficient and complete statistic.

Theorem 1. In GLLVMs, the random variables W , Y and Z satisfy the relationships

fY |W ,Z.y|w, z/=fY |W .y|w/,

fZ|W ,Y .z|w, y/=fZ|W .z|w/:
.4/

In addition, for any function h.·/, we have

E{h.W/|z}=0⇒h.W/=0: .5/

Proof. We first establish the sufficiency property of W in expression (4). Direct calculation
shows that

fY |W ,Z.y|w, z/= fW ,Y |Z.w, y|z/∫
fW ,Y |Z.w, y|z/dμ.y/

=
exp

[
θT

conA−1
(

w
y

)
+

p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}]
∫

exp
[
θT

conA−1
(

w
y

)
+

p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}]
dμ.y/

:
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The last term does not involve Z; hence fY |W ,Z.y|w, z/=fY |W .y|w/. This means that Y is inde-
pendent of Z conditional on W ; hence we also have fZ|W ,Y .z|w, y/=fZ|W .z|w/:

We now show the completeness property of W in result (5). Assume that a certain h.w/

satisfies E{h.W/|z}=0. This expands to

0=
∫

h.w/fW ,Y |Z.w, y|z/dμ.y/dμ.w/

=J−1
∫ ∫

exp
[
θT

conA−1
(

w
y

)
+

p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}]
dμ.y/

×h.w/ exp.zTw/dμ.w/ exp
{

−
p+q∑
j=1

φ−1
j bj.αjc +αT

j z/

}
:

Denote

g.w/=
∫

exp
[
θT

conA−1
(

w
y

)
+

p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}]
dμ.y/,

a positive function of w; then we have

0=
∫

h.w/g.w/ exp.zTw/dμ.w/:

Hence, h.w/g.w/=0. Because g.w/> 0 for any w, we obtain h.w/=0. �
The relationships in theorem 1 turn out to be of vital importance for computational simpli-

fication. Because

E{SÅ
β .X/|Z}=E[E{SÅ

β .X/|W , Z}|Z]

and

E[EÅ{a.Z/|X}|Z]=E[EÅ{a.Z/|W , Y}|Z],

we obtain

E[E{SÅ
β .X/|W , Z}|Z]=E[EÅ{a.Z/|W , Y}|Z]:

Using expression (4), we have

E{SÅ
β .X/|W , Z}=E

[
SÅ

β

{
ΦA−1

(
W

Y

)}∣∣∣W , Z

]
=E{SÅ

β .X/|W},

EÅ{a.Z/|W , Y}=EÅ{a.Z/|W}:

Thus, we have

E[E{SÅ
β .X/|W}|Z]=E[EÅ{a.Z/|W}|Z],

or equivalently

E[E{SÅ
β .X/|W}−EÅ{a.Z/|W}|Z]=0:

From result (5), we have

E{SÅ
β .X/|W}−EÅ{a.Z/|W}=0;

hence, EÅ{a.Z/|X} = EÅ{a.Z/|W , Y} = EÅ{a.Z/|W} = E{SÅ
β .X/|W}. Recalling the form of

Seff , we have in fact obtained



Semiparametric Generalized Linear Latent Variable Models 483

SÅ
eff .X/=SÅ

β .X/−EÅ{a.Z/|X}
=SÅ

β .X/−E{SÅ
β .X/|W},

which is an explicit form of SÅ
eff . Thus, the procedure of solving for a is bypassed. We proceed

to form the estimating equation by using the expression for SÅ
eff that is given above.

Specific calculation of the partial derivatives of log{fX|Z.x|z;β/} with respect to αcon,k, αk

and φk yields
Sαcon,k .X|Z/=φ−1

k eT
k X−φ−1

k b′
k.αcon,k +αT

k Z/,

Sαlk
.X|Z/=φ−1

k ZTOlkX−φ−1
k b′

k.αcon,k +αT
k Z/Zl,

Sφk
.X|Z/=−φ−2

k αcon,keT
k X−φ−2

k ZT.0 αk 0/X+φ−2
k bk.αcon,k +αT

k Z/+ c′
k2.X.k/, φk/,

where l = 1, . . . , p, k = p + 1, . . . , p + q for the first two equations and k = 1, . . . , p + q for the
last equation. Here Olk denotes a p× .p+q/ matrix where only the lkth element is 1; all others
are 0. Making use of the relationship SÅ

eff .X/=SÅ
β .X/−EÅ{Sβ.X/|W}=EÅ{Sβ.X|Z/|W , Y}−

EÅ{Sβ.X|Z/|W}, we further obtain

SÅ
eff |αcon,k =φ−1

k eT
k ΦA−1

(
0

y −E.Y |w/

)
,

SÅ
eff |αlk

=φ−1
k EÅ.Z|w/TOlkΦA−1

(
0

y −E.Y |w/

)
,

SÅ
eff |φk

=−φ−2
k αcon,keT

k ΦA−1
(

0
y −E.Y |w/

)
−φ−2

k EÅ.Z|w/T.0αk 0/ΦA−1
(

0
y −E.Y |w/

)

+ c′
k2

(
eT

k ΦA−1
(

w
y

)
, φk

)
−E

{
c′

k2

(
eT

k ΦA−1
(

w
y

)
, φk

)∣∣∣w}
:

Here, the only component involving an asterisk, and hence depending on the unknown dis-
tribution fZ.·/, is EÅ.Z|w/. The detail of the derivation of these projected score functions is
in Appendix A.4. A further observation is that, to obtain a consistent estimator, we do not
really need to posit a model for fZ.·/ and then to calculate EÅ.Z|w/. Instead, we can use an
arbitrary p-dimension function h.w/ to replace EÅ.Z|w/. As long as the system of equations
does not degenerate, we are still guaranteed to obtain a consistent estimator. This is because the
underlying mechanism that drives the consistency is E.SÅ

eff |w/ = 0 when calculated at the true
parameter values. This property continues to hold when we replace EÅ.Z|w/ by an arbitrary
function of w.

Taking into account the special form of

A=
(

Ip AÅ

0 Iq

)
,

A−1 =
(

Ip −AÅ

0 Iq

)
,

we obtain the system of estimating equations that is equivalent to the system that is formed by
SÅ

eff while replacing EÅ.Z|w/ by h.w/:

n∑
i=1

{yi −E.Y |wi/}=0, .6/

n∑
i=1

[h.wi/⊗{yi −E.Y |wi/}]=0, .7/
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n∑
i=1

[
c′

k2

(
eT

k ΦA−1
(

wi

yi

)
, φk

)
−E

{
c′

k2

(
eT

k ΦA−1
(

wi

Y

)
, φk

)∣∣∣wi

}]
=0, .8/

where ‘⊗’ is the Kronecker product, and k = 1, . . . , p + q for the last equation. The set of
estimating equations (6)–(8) forms a class of root n consistent estimators that are indexed by
the function h.w/, and this is the class of estimators that we propose for the GLLVM. When we
use a specific h.w/=E.Z|w/, the corresponding estimator is efficient, in that it has the smallest
possible estimation variance, i.e. it reaches the semiparametric efficiency bound. This is because,
when h.w/ = E.Z|w/, the estimating equation is equivalent to the equation that is formed by
the true efficient score functions; hence it inherits the properties of the efficient score estimator.
In particular, it automatically achieves the optimal efficiency. In the literature, similar proper-
ties have been observed. For example, in generalized estimating equations, the true variance–
covariance structure will yield efficiency, whereas a misspecification still warranties consistency.
The simplification and the resulting class of explicit estimators for the GLLVM in Section 3.2
also have a similar flavour to those in mixture models (Lindsay, 1982, 1983), measurement error
models (Stefanski and Carroll, 1987) and generalized linear mixed models (Sartori and Severini,
2004), although the derivation is completely different.

4. Asymptotic properties

Because the construction of the estimator is through projection of the score vector onto the
nuisance tangent space orthogonal complement Λ⊥, the resulting estimator is guaranteed to be
efficient if we had used a correct fZ.·/. In addition, as a function of the nuisance parameter
fZ.·/, the likelihood of a single observation given in model (1) satisfies the convexity property
(Bickel et al., 1998; Newey, 1990)

fX{x;λfZ1 + .1−λ/fZ2}=λfX.x; fZ1/+ .1−λ/fX.x; fZ2/;

hence the resulting estimator remains consistent if the projection is performed under a postulated
fÅ

Z .·/ as well. We summarize these observations in a somewhat stronger sense in theorems 2 and 3.

Theorem 2. Denote equations (6)–(8) as Σ
n

i=1Ψ.Xi, β/=0. Assume that β̂ solves the equations.
Then n1=2.β̂ −β0/→N.0, B−1VB−T/ in distribution when n→∞. Here, V =var{Ψ.Xi;β0/}
and B=E{@Ψ.Xi;β0/=@βT}.

Proof. Obviously, the explicit form of equations (6)–(8) ensures that E{Ψ.Xi;β0/}=0. Ex-
panding around β0, we obtain

0=
n∑

i=1
Ψ.Xi; β̂/

=
n∑

i=1
Ψ.Xi;β0/+

n∑
i=1

@Ψ.Xi;βÅ/

@βT .β̂ −β0/,

where βÅ lies on the line that connects β0 and β̂. Therefore we have

n1=2.β̂ −β0/=−
{

n−1
n∑

i=1

@Ψ.Xi;βÅ/

@βT

}−1

n−1=2
n∑

i=1
Ψ.Xi;β0/

=−E

{
@Ψ.Xi;β0/

@βT

}−1

n−1=2
n∑

i=1
Ψ.Xi;β0/+op.1/;

hence the result follows. �
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Theorem 3. If the function h.w/ in the estimating equation satisfies h.w/=EÅ.Z|w; γ̂/, where
γ̂ is a root n consistent estimator of γ0 and fÅ

Z .·;γ0/=fZ.·/, then β̂ is semiparametric efficient
and var.β̂/=var.Seff /

−1.

Proof. The proof is similar to the proof of theorem 2; noting that Ψ.Xi;β0, γ0/=Seff .Xi/, we
have

0=
n∑

i=1
Ψ.Xi; β̂, γ̂/

=
n∑

i=1
Seff .Xi/+

n∑
i=1

@Ψ.Xi;βÅ, γÅ/

@βT .β̂ −β0/+
n∑

i=1

@Ψ.Xi;βÅ, γÅ/

@γT .γ̂ −γ0/

where .βÅ, γÅ/ lies on the line that connects .β0, γ0/ and .β̂, γ̂/. Note that

n−1
n∑

i=1

@Ψ.Xi;βÅ, γÅ/

@γT =E

{
@Ψ.Xi;β0, γ0/

@γT

}
+op.1/

and

E

{
@Ψ.Xi;β0, γ0/

@γT

}
=−E

[
Seff .Xi/

@log{fX.Xi;β0, γ0/}
@γT

]
=0

because of the orthogonality between the projected score vector Seff and any element in the
nuisance tangent space Λ. In addition, we also have n1=2.γ̂ −γ0/=Op.1/; therefore we have

n1=2.β̂ −β0/=−
{

n−1
n∑

i=1

@Ψ.Xi;βÅ, γÅ/

@βT

}−1

n−1=2
n∑

i=1
Seff .Xi/+op.1/

=−
{

E
@Seff .Xi/

@βT

}−1

n−1=2
n∑

i=1
Seff .Xi/+op.1/:

The result follows by noting that

−E

(
@Seff

@βT

)
=E

{
Seff

@fX.X/

@βT

}
=E.Seff S

T
β /=var.Seff /: �

Although theorem 3 lays out a theoretical condition for the efficiency, it is obviously not easy
to achieve in practice because we usually do not have good knowledge of fZ.·/ to postulate a
reasonable model for it and to carry out the parameter estimation that is involved in such a
model. For this reason, in practice, we recommend the use of simple functions h.w/ to facilitate
an easy computation and to be content with the root n consistency as guaranteed by theorem 2.

It is worth pointing out an implication of theorem 2. As long as a correct model is chosen
for fZ.·/, the estimation of any parameters that are involved in such a model does not cause
any loss of efficiency, provided that they are estimated at root n rate. In fact, much more is
true. In the case when a model is chosen for fZ.·/, regardless of whether the model is correct or
misspecified, the estimation of the parameters that are involved in the chosen model does not
have any effect on the first-order property of the estimation of β. Thus, in theory, we could opt
for a rather complicated model for fZ.·/ to minimize the effect of model misspecification at no
asymptotic cost.

5. Computational treatment

The estimating equations (6)–(8) can be solved by using a standard Newton–Raphson algorithm.
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The only computational issue worth pointing out is the calculation of E.Y |w/ and E.c′
k2|w/.

The computation of E.Y |w/ is relatively straightforward. For the models where Y is discrete,
we typically can use a sum or a truncated sum to obtain an approximation. When Y is continu-
ous, E.Y |w/ can be calculated with one’s favourite numerical integration method, e.g. quadrature
methods, Laplace approximations or Monte Carlo methods. Because Laplace approximations
have recently been advocated by Huber et al. (2004), we provide a detailed description of the
method in this context.

If we denote

t =θT
conA−1

(
w
y

)
+

p+q∑
j=1

cj

{
eT

j ΦA−1
(

w
y

)
, φj

}
,

then fY |W .y|w/ = exp.t/=
∫

exp.t/dμ.y/. Suppose that the maximum of t.y/ is obtained at y0;
then

E.Y |w/=

∫
exp{t.y/}y dμ.y/∫
exp{t.y/}dμ.y/

≈

∫
exp{t.y0/} exp{−.y −y0/Tt′′.y0/.y −y0/=2}.y0 +y −y0/ dμ.y/∫

exp{t.y0/} exp{−.y −y0/Tt′′.y0/.y −y0/=2}dμ.y/

=y0:

We thus obtain yi0 for i= 1, . . . , n from maximizing t.y/ with respect to y at each observation.
In Appendix A.5, we establish that one can typically solve the maximization problem through
solving

.−AÅTIq/

{
θcon +

p+q∑
j=1

c′
j1

(
eT

j ΦA−1
(

wi

yi0

)
, φj

)
Φej

}
=0, i=1, . . . , n:

The calculation of E.c′
k2|w/ mostly follows the same pattern as for E.Y |w/ and depends

strongly on the function c′
k2. For some model settings, e.g. Poisson or binomial models, no

unknown φ is involved, so equation (8) does not appear at all. For the normal model, it is a matter
of calculating E.Y2|w/, which can be handled similarly to E.Y |w/. For gamma models with
unknown shape parameter or for inverse Gaussian models, it involves calculating E{log.Y/|w}
or E.1=Y |w/. These are not suitable with Laplace approximations, so we propose to use other
numerical methods, e.g. Monte Carlo methods or quadrature methods. Various other models
generate different forms for the function c′

k2 and one will need to analyse them case by case and
subsequently to approximate the integration by using an appropriate numerical approach.

6. Swiss consumption data

We return to the Swiss consumption data that were mentioned in Section 1. This quite familiar
data set in the GLLVM literature (Moustaki and Victoria-Feser, 2006) contains 1963 observa-
tions. In traditional GLLVM modelling of these data, the distribution of wealthiness is assumed
to be standard normal. However, similarly to the distribution of salary, the normal distribution
assumption on wealthiness is rather questionable, especially for Switzerland, where there is a
visible proportion of extremely wealthy individuals. On the basis of such concerns, we leave the
wealthiness distribution unspecified and implement the semiparametric method proposed. For
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Table 1. GLLVM analysis on the Swiss consumption data

Results from semiparametric Results from MLE
method method

Estimate Standard Estimate Standard
error error

αcon,food 0 — 0 —
αcon,clothing 1.322 0.039 1.322 0.068
αcon,leisure 1.443 0.039 1.443 0.061
αcon,dishwasher −0.143 0.106 −0.287 0.080
αc,car 2.589 0.274 1.826 0.129
αfood 1 — 1 —
αclothing 1.597 0.593 3.055 0.690
αleisure 1.400 0.509 2.505 0.463
αdishwasher 4.448 0.597 3.326 0.434
αcar 6.983 1.438 3.845 0.640
φfood 0.853 0.064 0.938 0.042
φclothing 0.625 0.132 0.423 0.086
φleisure 0.712 0.140 0.612 0.070

comparison, we also implemented the classical normal-based maximum likelihood estimator
(MLE) on this data set. The resulting estimates and standard errors are summarized in Table 1,
with coefficients in bold for significant differences between the two estimation methods at the
5% level. (We calculate the 95% confidence intervals for both estimators by using theorem 2 and
standard results of the MLE. If neither of the two intervals covers the other estimator, then we
call the two estimators significantly different at the 5% level.) As we can see, compared with the
MLE method, the semiparametric estimation of the baseline αcon is quite similar to that of the
MLE for the normal variables, whereas it is different for the binomial variables. This is an indi-
cation that the normal distribution assumption on the distribution of wealthiness in this sample
is likely to be false. We further performed a goodness-of-fit test on the normality of the latent
variable by inspecting the continuous manifest variable components. If the normality holds, then
the food, clothing and leisure expenditures will have a trivariate normal distribution; hence the
squared norm of their Mahalanobis transform would have a χ2

3-distribution. The Kolmogorov–
Smirnov test rejects the χ2

3-distribution at the 0.01 level; hence the normality assumption is
highly unlikely to hold. The semiparametric method also estimates a relatively larger influ-
ence of wealthiness on the expenditure on dishwashers and cars (especially cars), whereas the
influence on more frequent routine expenses such as clothing and leisure is estimated to be
relatively smaller. This agrees better with our general observation that, in the modern era for
developed countries, food and clothing are no longer a major indicator of wealthiness. The
effect of household wealthiness is mainly reflected in the more expensive expenditures.

In this example, we have opted for a simple form h.w/= w to facilitate the implementation.
The validity of this choice will be demonstrated through a satisfactory result from the first set
of simulations, which is designed to mimic this data example. The guideline in selecting h that
we would like to recommend, in the absence of knowledge of fZ.·/, is to choose a simple h
(such as linear), and gradually to increase its complexity (such as higher order polynomials),
until the estimation variance is sufficiently small. If for various reasons a feasible conjecture
or rough estimation of fZ.·/ is available, then we should use EÅ.Z|w/, calculated under the
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corresponding approximated fZ.·/, as h. More involved approaches are possible at the cost of
more computation; see Lindsay (1985). The generalized method of moments can also be imple-
mented in the case of an excessive number of candidates for h, but these are certainly out of the
scope of the current paper.

We would like to point out that, in the example that we present here, we have modelled the
effect of the latent variable to be linear, which is naturally the first and simplest modelling
approach. The nature of GLLVMs is that the latent variable is unobservable and often even
only exists in concept. Hence, such linearity is very difficult to verify. Extending the linearity
to non-linear or even non-parametric relationships is interesting and is a topic of on-going
research. A statistically sound procedure to test and validate the GLLVM is important and can
be very challenging.

7. Simulation study

The difference in the parameter estimates in the example in Section 6 indicates that the normal
distribution assumption on the latent variable might be false. It also reflects that a misspecifi-
cation of the latent variable distribution could have an effect on the parameter estimation. To
verify that the difference is caused by the normality assumption of the MLE, we compare the
results of the estimator proposed and the MLE on simulated data sets when the latent variable
distribution is truly normal. To investigate the effect of the misspecification of the latent var-
iable distribution further, we also design the simulation study with different departures from
normality to reveal its consequence for both the estimator proposed and the MLE. The simula-
tion will also study the finite sample properties of the estimators proposed. We use sample size
n=500 and 1000 simulation replicates throughout the simulations. We consider univariate and
bivariate latent variables.

7.1. Univariate latent variables
We generate the latent variable Z from four different distributions. They are

(a) a normal distribution with mean −1 and variance 1.5,
(b) a gamma distribution with shape parameter 1.4 and scale parameter 1,
(c) a mixture of normal distributions with mean 3 and variance 1 for 90% of the data and

mean −3 and variance 0.25 for 10% of the data, and
(d) a Student t-distribution with mean −1 and 3 degrees of freedom.

The first case is provided as a benchmark, whereas the remaining three distributions provide
different scenarios where the latent variable distribution is skewed, bimodal and heavy tailed.
The manifest variable X consists of three normal components and two binomial components,
given the latent variable Z.

We carry out the proposed semiparametric estimation in all the four situations, choosing
h.w/= w. For comparison, we also compute the MLE under the normality assumption of the
latent variable. As far as the semiparametric model is concerned, where the latent variable
distribution is left unspecified, a more suitable name for such an estimator is pseudo-MLE.
However, here we follow the GLLVM literature and term it the MLE throughout the paper. In
implementing the classical normal-based MLE, we decide a priori the mean and variance of the
latent variable. In our experiment, we simply use the true underlying mean and variance, which
represent the optimal condition for the classical MLE and should consequently perform better
than in reality, when these quantities are approximated or estimated from external knowledge
or extra data. To compare the simulation results from the two estimators, we align the MLE
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results into the same format as the proposed estimator result, i.e. we obtain G and b from the
first p constraints of

θ̂T
con −bG−1Â1 = .0T

p θT
r /,

G−1Â1 = .Ip AÅ/,

and then calculate .θr, AÅ/ by using the corresponding b and G−1.
The results of the simulations are given in Tables 2 and 3. As we expected, both estima-

tors are consistent when the true distribution of the latent variable is indeed normal. We had
expected the MLE to be more efficient than the estimator proposed, which makes much weaker
assumptions. But the difference is nearly negligible, even under this favourable condition for the
MLE where the mean and variance of the latent variable are assumed to be known. When the
underlying distribution deviates from normality, the MLE is biased. This bias exhibits mainly
in the parameters corresponding to the binomial manifest variable components. The insensi-
tivity of the normal manifest random variable parameters to the latent variable distribution

Table 2. Simulation study†

β β0 Results from semiparametric method Results from MLE method

β̂ var(β̂) v̂ar(β̂) 95%cov β̂ var(β̂) v̂ar(β̂) 95%cov
(%) (%)

Normal distribution
θr1 −0.3 −0.314 0.063 0.071 96.5 −0.314 0.063 0.071 96.5
θr2 −0.2 −0.218 0.082 0.091 94.6 −0.218 0.082 0.091 94.6
θr3 −1.8 −1.857 0.179 0.181 95.0 −1.855 0.177 0.179 95.3
θr4 −3.2 −3.281 0.312 0.340 96.1 −3.276 0.299 0.325 95.9
AÅ

11 1.4 1.409 0.026 0.029 96.0 1.409 0.026 0.029 95.9
AÅ

12 1.6 1.610 0.033 0.037 95.3 1.610 0.033 0.037 95.3
AÅ

13 1.4 1.440 0.078 0.078 95.3 1.439 0.077 0.077 95.8
AÅ

14 2 2.047 0.130 0.137 95.9 2.044 0.123 0.131 96.6
φ1 1 0.993 0.005 0.006 94.8 0.993 0.005 0.006 95.3
φ2 1 0.997 0.008 0.009 95.4 0.998 0.008 0.009 95.3
φ3 1 0.996 0.011 0.012 96.5 0.996 0.011 0.012 96.4

Gamma distribution
θr1 −0.3 −0.349 0.275 0.312 96.9 −0.347 0.244 0.2816 96.1
θr2 −0.2 −0.254 0.377 0.432 96.0 −0.255 0.328 0.3833 96.0
θr3 −1.8 −1.985 2.092 2.634 94.9 −1.061 0.692 0.7692 81.5
θr4 −3.2 −3.524 5.886 5.684 93.9 −1.772 0.831 0.9543 59.8
AÅ

11 1.4 1.418 0.037 0.042 96.5 1.418 0.032 0.038 96.7
AÅ

12 1.6 1.621 0.051 0.058 96.2 1.621 0.044 0.052 96.2
AÅ

13 1.4 1.480 0.340 0.433 95.1 1.109 0.106 0.119 80.9
AÅ

14 2 2.143 0.988 0.971 94.1 1.428 0.135 0.152 61.1
φ1 1 0.994 0.007 0.006 93.7 0.995 0.006 0.006 93.6
φ2 1 0.990 0.013 0.013 94.9 0.990 0.012 0.011 93.7
φ3 1 0.996 0.018 0.019 95.9 0.994 0.015 0.016 95.5

†The true latent variable distribution is a normal distribution (upper part of the table) and gamma distribution
(lower part of the table). Parameter β consists of four components of θr , four components of AÅ and three com-
ponents of φ (corresponding to three normal manifest variables), in that order. In θr and AÅ, the parameters of
the normal manifest variables precede those of the binomial variables. The true value β0, the average estimates β̂,
the sample variance var.β̂/, the average estimated variance v̂ar.β̂/ and the 95% confidence interval coverage
95%cov are presented. Results are based on 1000 simulations and sample size 500.
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Table 3. Simulation study†

β β0 Results from semiparametric method Results from MLE method

β̂ var(β̂) v̂ar(β̂) 95%cov β̂ var(β̂) v̂ar(β̂) 95%cov
(%) (%)

Mixture distribution
θr1 −0.3 −0.310 0.077 0.080 95.1 −0.314 0.081 0.085 95.3
θr2 −0.2 −0.212 0.097 0.100 94.8 −0.217 0.106 0.109 94.9
θr3 −1.8 −1.845 0.219 0.223 95.5 −2.426 0.334 0.335 86.7
θr4 −3.2 −3.345 0.501 0.537 96.8 −4.479 0.798 0.840 80.5
AÅ

11 1.4 1.405 0.007 0.007 95.4 1.406 0.007 0.008 95.6
AÅ

12 1.6 1.605 0.009 0.009 95.3 1.607 0.010 0.010 95.5
AÅ

13 1.4 1.419 0.028 0.028 95.5 1.655 0.050 0.049 85.7
AÅ

14 2 2.062 0.065 0.068 96.5 2.570 0.140 0.144 75.8
φ1 1 0.992 0.005 0.006 95.1 0.993 0.006 0.006 95.1
φ2 1 0.997 0.008 0.008 95.0 0.995 0.010 0.010 94.9
φ3 1 1.003 0.011 0.011 95.9 0.100 0.015 0.015 95.8

Student t-distribution
θr1 −0.3 −0.316 0.034 0.037 95.7 −0.316 0.033 0.036 95.6
θr2 −0.2 −0.215 0.044 0.047 95.9 −0.213 0.042 0.045 96.4
θr3 −1.8 −1.855 0.166 0.159 94.8 −1.603 0.110 0.105 86.0
θr4 −3.2 −3.276 0.324 0.333 96.2 −2.801 0.189 0.188 78.1
AÅ

11 1.4 1.411 0.013 0.014 95.9 1.411 0.012 0.013 95.8
AÅ

12 1.6 1.609 0.017 0.018 95.4 1.607 0.016 0.017 95.3
AÅ

13 1.4 1.438 0.071 0.068 94.8 1.269 0.046 0.044 84.3
AÅ

14 2 2.052 0.133 0.134 95.9 1.737 0.075 0.072 74.9
φ1 1 0.998 0.006 0.006 95.4 0.997 0.006 0.006 94.8
φ2 1 0.995 0.011 0.010 94.6 0.995 0.010 0.009 94.1
φ3 1 0.999 0.014 0.015 94.8 1.001 0.012 0.013 95.5

†The true latent variable distribution is a mixture of normal distributions (upper part of the table) and a Student
t-distribution (lower part of the table). Parameter β consists of four components of θr , four components of AÅ

and three components of φ (corresponding to three normal manifest variables), in that order. In θr and AÅ, the
parameters of the normal manifest variables precede those of the binomial variables. The true value β0, the average
estimates β̂, the sample variance var.β̂/, the average estimated variance v̂ar.β̂/ and the 95% confidence interval
coverage 95%cov are presented. Results are based on 1000 simulations and sample size 500.

has been noted in the literature on mixed effects models (Butler and Louis, 1992; Verbeke and
Lesaffre, 1997). There, the correct specification of the latent variable distribution contributes
to the gain in efficiency of the final estimator. However, our estimator is semiparametric in
nature and does not require a correct specification of such a distribution. As a result, such a
gain should not be expected here. In contrast, the special flexibility of GLLVMs comes mainly
through allowing both continuous and discrete manifest variable components; hence, even with
the apparent robustness of the MLE for the continuous manifest variable components, the bias
on the discrete manifest variable components cannot be dismissed.

7.2. Bivariate latent variables
To explore extreme outliers and the multivariate situation in the latent variable, we also con-
ducted a simulation where the latent variable is of dimension 2. In the first experiment, the
true latent variable follows a bivariate normal distribution with mean .−0:5, 0:5/T and var-
iance–covariance matrix .1, 0; 0, 1:5/. Because the normality of the latent variable holds, we
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Table 4. Simulation study†

β β0 Results from semiparametric method Results from MLE method

β̂ var(β̂) v̂ar(β̂) 95%cov β̂ var(β̂) v̂ar(β̂) 95%cov
(%) (%)

Bivariate normal distribution
θr1 −0.5 −0.526 0.273 0.286 90.8 −0.501 0.199 0.355 94.4
θr2 −1.5 −1.578 0.294 0.284 92.1 −1.555 0.237 0.311 94.7
θr3 −1 −1.055 0.394 0.367 91.8 −1.048 0.315 0.396 93.9
AÅ

11 2.5 2.488 0.323 0.375 91.5 2.515 0.257 0.480 94.1
AÅ

12 2 2.035 0.238 0.242 92.8 2.066 0.223 0.257 94.9
AÅ

13 1.5 1.517 0.217 0.218 90.3 1.537 0.175 0.253 93.0
AÅ

21 1.8 1.823 0.187 0.191 89.8 1.802 0.131 0.242 94.1
AÅ

22 1.6 1.682 0.253 0.251 91.5 1.665 0.212 0.282 95.0
AÅ

23 2.1 2.171 0.476 0.492 94.5 2.175 0.457 0.494 94.9
φ1 1 0.927 0.086 0.104 93.0 0.955 0.058 0.089 95.3
φ2 1 0.940 0.145 0.246 90.9 0.947 0.100 0.240 94.4
φ3 1 0.998 0.206 0.285 96.5 0.997 0.204 0.313 95.4

Mixture distribution with extreme outliers
θr1 −0.5 −0.500 0.025 0.023 95.8 −0.558 2:075×103 4:397×107 55.9
θr2 −1.5 −1.534 0.055 0.060 96.5 −14.163 1:854×104 1:019×108 62.6
θr3 −1 −1.125 0.401 0.256 96.0 −21.776 4:305×104 1:399×108 64.8
AÅ

11 2.5 2.512 0.016 0.016 96.0 1.7296 3:678×102 6:433×107 58.8
AÅ

12 2 2.062 0.065 0.074 96.1 10.5 9:621×103 8:438×107 65.3
AÅ

13 1.5 1.609 0.531 0.172 95.9 18.449 7:402×104 2:987×108 63.6
AÅ

21 1.8 1.815 0.020 0.019 94.9 0.2577 6:09×102 1:789×108 49.4
AÅ

22 1.6 1.652 0.063 0.070 96.3 −4.3972 6:343×103 2:083×108 59.7
AÅ

23 2.1 2.362 1.464 0.438 95.5 1.7987 7:889×103 4:534×107 60.6
φ1 1 0.990 0.092 0.079 94.7 46.532 9:550×103 6:833×104 21.2
φ2 1 1.028 0.450 0.174 95.6 58.758 9:278×103 2:062×104 18.0
φ3 1 1.024 0.204 0.225 96.2 34.135 8:542×103 6:009×103 43.5

†The true latent variable is a bivariate normal distribution (upper part of the table) and a mixture of bivariate
normal distribution with extreme outliers (lower part of the table). Parameter β consists of θr , AÅ and φ (corres-
ponding to the normal manifest variables). In θr and AÅ, the parameters of the normal manifest variables precede
those of the binomial variables. The true value β0, the average estimates β̂, the sample variance var.β̂/, the average
estimated variance v̂ar.β̂/ and the 95% confidence interval coverage 95%cov are presented. Results are based on
1000 simulations and sample size 500.

expect consistent estimation from both the semiparametric estimator and the MLE, and it is
indeed so in the upper half of Table 4. In the second experiment, 90% of the latent variables
follow the bivariate normal distribution that was described above, whereas the other 10% of
them are generated from a bivariate normal distribution with mean .10, −10/T and variance–
covariance matrix .0:25, 0; 0, 1:125/. The centre of the two distributions is 14.8 away; hence this
setting represents a case of extreme outliers in the latent variable distribution, and inference in
such situations poses a severe challenge. The result that is associated with the semiparametric
estimator is presented in the lower part of Table 4. As we can see, the consistency of the estimator
holds even under such an extreme outlier situation. On the contrary, when we computed the
MLE in the same simulation setting, the result is not satisfying at all, with huge biases. In
general, the variance estimation and 95% coverage are less precise in the bivariate latent variable
cases than in the univariate case. It is intuitively clear that, since we have more parameters and
more complex models, larger sample sizes are needed to obtain more precise results. Indeed,
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in a simulation that is not reported here, when we increased the sample size to n= 1000, both
the variance estimation and the coverage results improved. In contrast, the variance and 95%
coverage are totally off for the MLE when the normal assumption is violated. In fact, it is very
difficult to obtain numerical convergence for the MLE, and the computation is much more time
consuming as well.

8. Discussion

In this paper, we have relaxed the usual normality assumption on the latent variable distri-
bution of the GLLVMs. Such relaxation induces a much more flexible semiparametric model.
In this semiparametric context, we have provided a class of root n consistent estimators which
includes the optimal estimator in terms of efficiency of estimation. The estimator is robust in the
sense that its consistency holds regardless of the distributional assumption on the latent vari-
ables, although the operation does require us to conjecture such a distribution. We developed
the estimator in the context of GLLVMs because of the widely spread usage of such models.
However, the implicit estimator that was proposed in Section 3.1 is certainly not restricted to a
GLLVM. Specifically, if the distribution of the manifest variable deviates from the generalized
linear structure, the computational simplification in Section 3.2 will no longer be applicable,
but the estimator that was proposed in Section 3.1 is still valid. We believe that the methodology
that is proposed here will be of interest to the GLLVM community.

As a special and simpler subclass of GLLVMs, the random-effect model has received much
attention. It has been observed (Ma et al., 2004) that, for random-effect models, using a normal
distribution assumption on the random effect, the MLE often, but not always, produces nearly
consistent estimators for the parameters. The consequence of the possible misspecification of
the random-effect distribution mainly exhibits in the loss of efficiency. Although GLLVMs
bear much similarity to random-effect models, our simulation results have shown that the often
empirically observed resistance of the MLE method to the distributional assumption on the
random effect does not generalize to the more complex and more general GLLVM situations.
In contrast, since random-effect models are a special case of GLLVMs, the method that is
proposed here is also suitable for random-effect models.

We would like to mention that, in the generalized linear mixed effect model framework, a more
flexible model for the random effect, such as the t-distribution (Lee and Nelder, 2006), has been
used to increase robustness against the misspecification of the distribution (Noh et al., 2005).
Conceptually, the same could be implemented in GLLVMs. However, owing to the complex
structure of GLLVMs, the computation is extremely difficult. In addition, the above robust-
ness is only reflected in limited empirical studies; the scope of the robustness and its theoretical
justification are still lacking even in the mixed effect model framework. On the contrary, the
method that is proposed here is robust (consistent) against any latent variable distribution, and
the robustness property is established both theoretically and numerically. When the latent vari-
able model is indeed t, our method provides less efficient estimation than if we assume a t-model
(Kang et al., 2005). However, such a loss of efficiency is mandatory whenever we adopt a more
flexible model. The results in the upper part of Table 2 also indicate that the loss of efficiency in
practice could be negligible.

A different, possibly more classical aspect of robustness concerns the departure of a small
proportion of the observed data from the proposed conditional distribution assumption (Huber,
1981; Hampel et al., 1986). There, a bounded influence robust estimator made consistent through
an indirect inference procedure has been proposed by Moustaki and Victoria-Feser (2006). This
concerns the manifest variable distribution and the robustness is achieved through controlling
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the influence of the ‘outlying observations’. In contrast, our concern is focused on the distri-
bution of the latent variables and the semiparametric approach yields robustness through ‘not
modelling’ the distribution of the latent variables. It would be of great interest to develop meth-
odologies that are robust in both respects. One possibility is to establish the indirect inference
method in a semiparametric framework, which will be challenging and fundamental from both
the semiparametric and the robustness inferential point of view.
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Appendix A

A.1. Proof that QA1 has full rank
If Ã1 is not full rank, then Ã1 = G.BT0/T, where G is a p × p invertible matrix, and B is a p1 × .p + q/
matrix with p1 < p. Treat GTZ̃ as the new set of latent variables; then the last component of GTZ̃ never
appears in the model and hence can be suppressed. This is contradictory to the parsimony of the model.

A.2. Existence and uniqueness of A1
The parsimony of the model ensures that A1 has full rank. Let G be the matrix that is formed by the first
p linearly independent columns of A1. Then G−1A1 automatically has the required form.

To see the uniqueness, we consider the opposite. If A1 and A2 both satisfy the requirement and A1 �=A2,
then we have A1 = GA2, or .U0 e1 U1 e2. . . ep Up/ = G.Ũ0 e1 Ũ1 e2. . . ep Ũp/. Consider the first block cor-
responding to Ũ0. We have 0 = GŨ0; hence we obtain that U0 has the same size as Ũ0. Consequently,
we have e1 = Ge1; hence the first column of G1 is e1. Now consider the block corresponding to Ũ1. It is
easy to see that GŨ1 = Ũ1; hence U1 = Ũ1 and the second column of G is e2. Similar arguments can be
repeatedly used to establish that Ui = Ũi for all i=0, . . . , p and that G is the identity. Hence the uniqueness
is shown.

A.3. Description and derivation of Λ and Λ?
Consider the Hilbert space H consisting of all the mean 0, finite variances, length m vector functions of
X , where the inner product between two functions h and g is defined as E.hTg/. Here and in the following
definitions, all the expectations are calculated under the true distribution. The nuisance tangent space
Λ is a subspace of H defined as the mean-squared closure of all the elements of the form BS, where S
is an arbitrary nuisance score vector function, and B is any conformable matrix with m rows. Here the
nuisance score vector functions are calculated conventionally in every possible valid parameterization
of the infinite dimensional nuisance parameter, where a ‘valid parameterization’ means that there is one
parameter value which yields the truth. Furthermore, Λ⊥ is defined to be the orthogonal complement of
Λ in H.

A semiparametric approach mainly consists of several steps. The first step is to identify the two sub-
spaces Λ and Λ⊥. The second step is to calculate the usual score function with respect to the parameter
of interest. The third step is to project this score function onto Λ⊥. The projection is computed using the
operation in H, and the result is used to build estimating equations for the parameter of interest.

Following the above description, we now derive Λ and Λ⊥ in our model. In the expression of fX.·/ in
model (1), the only nuisance parameter is fZ.·/, which is not subject to any constraints except that it is
a valid density function. Thus any mean 0 function h.·/ could be the result of @ log{fZ.·;γ/}=@γ|γ=γ0 .
Specifically, we could have
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fZ.z;γ/= fZ0.z/[1+ exp{−2γ h.z/}]−1∫
fZ0.z/[1+ exp{−2γ h.z/}]−1 dμ.z/

with γ0 =0, and it is straightforward to verify that h.·/= @ log{fZ.·;γ/}=@γ|γ=γ0 . Thus the nuisance score
vector of fX.x;β, γ/ can be calculated as

@log
{∫

fX|Z.x|z/fZ.z;γ/ dμ.z/

}

@γ
=

∫
fX|Z.x|z/@ log{fZ.z;γ/}=@γfZ.z/ dμ.z/∫

fX|Z.x|z/fZ.z;γ/ dμ.z/

=E{h.Z/|x}:

We therefore obtain the expression for Λ. It is easily verified that, for any g.x/ that satisfies E{g.X/|z}=0,
we have E[g.X/T E{h.Z/|X}]=E[E{g.X/T|Z}h.Z/]=0; hence g ⊥Λ, or g ∈Λ⊥. However, if g ∈Λ⊥, then
g.·/ is such that E[gT.X/{h.Z/|X}]=0 holds for any mean 0 function h.Z/, i.e. 0=E[gT.X/E{h.Z/|X}]=
E[E{gT.X/|Z}h.Z/] for any mean 0 h.Z/. Thus E{g.X/|Z} itself must be 0. Therefore we have shown the
validity of the form of Λ⊥ that is given in the main text.

A.4. Derivation of the projected score functions
Straightforward calculation shows that

SÅ
eff |αcon, k

=EÅ{φ−1
k eT

k X−φ−1
k b′

k.αcon,k +αT
k Z/|w, y}−EÅ{φ−1

k eT
k X−φ−1

k b′
k.αcon,k +αT

k Z/|w}

=φ−1
k eT

k ΦA−1

(
w
y

)
−EÅ.φ−1

k eT
k X|w/=φ−1

k eT
k ΦA−1

(
w
y

)
−φ−1

k eT
k ΦA−1

(
w

EÅ.Y |w/

)

=φ−1
k eT

k ΦA−1

(
0

y −EÅ.Y |w/

)
,

SÅ
eff |αlk

=φ−1
k [EÅ{ZTOlkX−b′

k.αcon,k +αT
k Z/Zl|w, y}−EÅ{ZTOlkX−b′

k.αcon,k +αT
k Z/Zl|w}]

=φ−1
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:

A.5. Calculation of maximizing t(y)
We have the equivalence
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max
y

{t.y/}⇔max
y

{
θT

conA−1

(
w
y
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+
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cj
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⇔ .0 Iq/A
−Tθcon +

p+q∑
j=1

c′
j1

(
eT

j ΦA−1

(
w
y0

)
, φj

)
.0 Iq/A

−TΦej =0

⇔ .−AÅTIq/

{
θcon +

p+q∑
j=1

c′
j1

(
eT

j ΦA−1

(
w
y0

)
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where c′
j1 is the derivative of cj with respect to the first argument. Thus the result follows.
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