
Locally Efficient Semiparametric Estimators for
Generalized Skew-Elliptical Distributions

Yanyuan MA, Marc G. GENTON, and Anastasios A. TSIATIS

We consider a class of generalized skew-normal distributions that is useful for selection modeling and robustness analysis and derive a
class of semiparametric estimators for the location and scale parameters of the central part of the model. We show that these estimators are
consistent and asymptotically normal. We present the semiparametric efficiency bound and derive the locally efficient estimator that achieves
this bound if the model for the skewing function is correctly specified. The estimators that we propose are consistent and asymptotically
normal even if the model for the skewing function is misspecified, and we compute the loss of efficiency in such cases. We conduct a
simulation study and provide an illustrative example. Our method is applicable to generalized skew-elliptical distributions.
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1. INTRODUCTION

Consider the model where a p-dimensional random vector X
is distributed with density g(x;β), where β is a q-dimensional
vector of unknown parameters. To make inference about β ,
the usual statistical analysis assumes that a random sample
X1, . . . ,Xn from g(x;β) can be observed. However, there are
many situations where such a random sample might not be
available, for instance, if it is too difficult or too costly to ob-
tain. If the probability density function is distorted by some
multiplicative nonnegative weight function w(x;β,α), where
α denotes some r-dimensional vector of additional unknown
parameters, then the observed data is a random sample from a
distribution with density

f (x;β,α) = g(x;β)
w(x;β,α)

E{w(X;β,α)} , (1)

where f is said to be the probability density function of a
weighted distribution (see Rao 1985 and references therein). In
particular, if the observed data are obtained only from a selected
portion of the population of interest, then (1) is called a “selec-
tion model.” This can happen if, for example, the observation
vector X of characteristics of a certain population is measured
only for individuals who manifest a certain disease due to cost
or ethical reasons (see Bayarri and DeGroot 1992 and refer-
ences therein). For such problems, the goal is to find consistent
and asymptotically normal estimators of β in the presence of
the nuisance weight function w.

A slightly different point of view is given by a robustness
argument. Effectively, if g(x;β) is the central model of interest,
then the weight function w in (1) can be seen as a contaminating
function. For instance, if g is an elliptical probability density
function, then w generates asymmetric outliers in the observed
sample from f . The goal is then to derive robust estimators of β ,
that is, again to provide consistent and asymptotically normal
estimators of β in the presence of a certain class of the nuisance
weight function w.
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The article is organized as follows. In Section 2 we describe a
class of generalized skew-elliptical distributions which is useful
for selection modeling and robustness analysis. We present our
main results in Section 3 for a univariate location-scale normal
central model. In particular, we derive semiparametric location
and scale estimators that are consistent and asymptotically nor-
mal regardless of the possible misspecification of the weight
function. In addition, we will show that estimators within this
class achieve the semiparametric efficiency bound. We present
a simulation study in Section 4 and an illustrative example of
Australian athletes’ body mass index (BMI) data in Section 5.
We discuss the extension of the procedure to generalized skew-
elliptical/skew-symmetric distributions in Section 6.

2. GENERALIZED SKEW–ELLIPTICAL
DISTRIBUTIONS

Generalized skew-elliptical (GSE) distributions have been
introduced by Genton and Loperfido (2005). The density of a
random vector with a GSE distribution is defined through an
elliptical density and a skewing function as follows.

Definition 1. A p-dimensional generalized skew-elliptical
(GSE) distribution is a distribution whose probability density
function is of the form

f (x) = 2|�|−1/2g{�−1/2(x − ξ)}
× π{�−1/2(x − ξ)}, x ∈ R

p, (2)

where g is the probability density function of a spherical dis-
tribution, ξ is the location parameter, �−1/2 is the Cholesky
decomposition of the inverse of the positive definite scale ma-
trix �, that is, (�−1/2)T�−1/2 = �−1, and the function π :
R

p → [0 1] satisfies π(x) + π(−x) = 1 and π is continuous.
We refer to π as the skewing function.

In this paper, we restrict our attention to the situation where
the skewing function is differentiable, in order to accommo-
date the application of semiparametric theories. Note that the
location vector ξ and the scale matrix � are not in general the
expected value and the covariance matrix for f , because GSE
distributions may not be symmetric with respect to ξ , but they
are for g. In particular, if g = φp, the probability density func-
tion (pdf ) of the standard p-dimensional multivariate normal
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distribution, and we choose a parametric model π(x) = �(αTx)

for the skewing function, where � is the univariate standard
normal cumulative distribution function (cdf ), then (2) is the
probability density function of the multivariate skew-normal
distribution (Azzalini and Dalla Valle 1996).

From Definition 1, it is clear that the GSE distributions arise
in inference from nonrandom (biased) samples (Copas and Li
1997) and thus are selection models of the form in (1). Repre-
sentation of a GSE distribution as a selection model is straight-
forward with g(x;β) = |�|−1/2g{�−1/2(x − ξ)}, w(x;β,α) =
π{�−1/2(x − ξ)}, E{w(X;β,α)} = 1/2, β = {ξT ,vec(�)T}T ,
and α embedded in the skewing function π . A weight func-
tion w with such property can naturally occur when the selec-
tion criterion is that a certain component of the measurement
is larger than its expected value given the other measurement
components (see Arnold and Beaver 2002). Assume that there
are two random variables X and Y , where X follows a sym-
metric distribution with pdf g(x) and the pdf of the conditional
distribution of X given Y , p(x|y), is a function of x − cy, de-
noted by u(x − cy), where u is a symmetric function and c is
a constant. We can verify that the expectation of X condi-
tional on Y is cY and that the selection criterion x > E(X|y)
yields a weight function w(x) = H(x/c), where H is the cor-
responding cdf of the marginal density of Y , say h; that is,
h satisfies

∫
u(x − cy)h( y)dy = g(x). For a variety of func-

tions u, a unique solution h can be obtained through deconvo-
lution. In addition, such h is guaranteed to be symmetric, and
hence the resulting weight function satisfies the requirement
H(x/c) + H(−x/c) = 1. A special case is when u and g are
both normal. The resulting pdf of the selected samples is then
the aforementioned skew-normal distribution. One example of
this specific setting is the distribution of height and weight.
Assume that the weight (X) and height (Y) follow a bivari-
ate normal distribution in a general population. After centering
and normalizing, we obtain two standard normal distributions
for X̃ and Ỹ with correlation c. Yet in a clinic treating obe-
sity, one would expect that all of the samples obtained would
be the ones whose weight is larger than the expected weight
given their height. This corresponds to a selection criterion x̃ >

E(X̃|ỹ), with g(x̃) = φ1(x̃), and p(x̃|ỹ) = φ1(x̃; cỹ,
√

1 − c2 ).
Here we use the notation φ1(x; ξ, σ ) to denote the normal pdf
with mean ξ and standard deviation σ . It can be verified that
h( ỹ) = φ1( ỹ) and the pdf of the distribution of the patients’
weight is given by 2φ1(x̃)�{x̃/c}, which translates to the pdf of
the observed weight X with the form 2φ1(x; ξ, σ )�{α(x − ξ)}.
Similarly, in the example presented in this article, we analyze
a dataset of BMI in a group of athletes, which is assumed to
be larger than its expected value conditional on an individual’s
other body characteristics, including height, weight, and body
fat percentage in a general population, for males and for fe-
males. If we assume that the BMI in a general population of
the same gender follows a normal distribution without specify-
ing a precise selection method, then the observed data follow
a generalized skew-normal (GSN) distribution with unspecified
skewing function.

Another way to view such data is through a hidden trunca-
tion model (Arnold and Beaver 2002). Assume that we have
two random variables X and Y , with the symmetric pdf’s
g(x) and h( y). If we select the sample of X based on the cri-
terion x/y > c, then the selected samples X follow the distri-

bution with pdf 2g(x)H(x/c), which is of the form of a GSE
distribution. Although compared with a general selection model
of the form in (1) the GSE models are restricted by the con-
straint π(x) + π(−x) = 1, the foregoing scenario shows that it
is of practical use for a number of situations.

3. MAIN RESULTS

As described in the previous section, we are interested in
inference on the parameters ξ and � in (2), which represent
the mean and the covariance matrix of the population of which
only samples from a particular subpopulation are available. We
make no additional assumptions regarding the skewing function
other than that π is a nonnegative differentiable function and
π(x) + π(−x) = 1. Consequently, we are considering a semi-
parametric model where the parameters of interest are ξ and �,
which we summarize as β , and the nuisance parameter is π .
In such a setting, regular asymptotically linear (RAL) estima-
tors have been studied by Newey (1990). An RAL estimator β̂

satisfies

√
n(β̂ − β0) = 1√

n

n∑

i=1

ψ(Xi,β0) + op(1),

where β represents the finite-dimensional parameter of interest,
with its true value β0, ψ(Xi,β0) is the ith influence function of
the estimator, which satisfies E(ψ) = 0, and E(ψψT) is finite
and nonsingular. In addition, an RAL estimator also satisfies
regularity conditions, which would exclude estimators that are
“superefficient” for some true parameter β0 (see Newey 1990
for details). Because of the link between an RAL estimator and
its influence function, an RAL estimator can be constructed
through finding its influence function, namely β̂ is given as a
solution that solves

∑n
i=1 ψ(Xi,β) = 0. Due to such a link, it

is also clear that the variance of the estimator β̂ is given by
the variance E(ψψT). A geometrical point of view was taken
by Bickel, Klaassen, Ritov, and Wellner (1993), who character-
ized the set of all influence functions. Consider a Hilbert space
H consisting of all the q-dimensional mean-0 random func-
tions, with the inner product defined as the covariance between
two functions, where q is the dimension of β . Subsequently,
the norm of a function is defined as the variance of the func-
tion, and functions in H must have finite norm. Note that all
of the expectations are taken with respect to the true density
p(X;β0,π0). In H, a nuisance tangent space with respect to the
semiparametric model is defined as the mean square closure of
the nuisance tangent spaces with respect to all of the parametric
submodels. Here a parametric submodel is a parametric model
that is included in the original semiparametric model and con-
tains the truth. A nuisance tangent space with respect to a para-
metric model p(X;β,α) is defined as a linear space spanned
by the nuisance score vector, that is, all of the functions of the
form BSα , where B is a q × r matrix, with r being the dimen-
sion of α, and Sα = ∂ log p(X;β0,α)

∂α |α0 is the nuisance score vec-
tor, where p(X;β0,α0) gives the true density. The orthogonal
complement of the nuisance tangent space in H is referred to
as the nuisance tangent space orthogonal complement. Proper
normalization of any function in the nuisance tangent space or-
thogonal complement yields an influence function; in contrast,
any influence function can be obtained through properly nor-
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malizing a function in the nuisance tangent space orthogonal
complement. The normalization is such that the inner product
between an influence function and the score vector Sβ must be

equal to the identity, where Sβ = ∂ log p(X;β,π0)
∂β |β0

.
We use the aforementioned tools to derive RAL estimators

and the efficient RAL estimator for the GSE distributions. To
remain specific and focused, in this section all of our results
are developed in the special case where g = φ, the univariate
standard normal probability density function, in which case we
use the GSN distributions

f (x) = 2

σ
φ

(
x − ξ

σ

)

π

(
x − ξ

σ

)

. (3)

The methods that we use can be extended in a straightfor-
ward manner to more general cases; see the discussion in Sec-
tion 6. In the sequel, β represents the vector (ξ, σ )T . Notice
that an arbitrary skewing function π(x) can always be written
as H{m(x)}, where H is an arbitrarily chosen symmetric cdf
and m is an odd function. In particular, an arbitrary π(x) can
be written as �{m(x)}, where � is the univariate normal cdf.
Throughout the article, parameters or functions with index 0
refer to the true values of the parameters or the true functions.
Because we are considering a two-dimensional parameter of in-
terest, the Hilbert space H that we work in consists of the two-
dimensional mean-0 functions with finite variance. We begin by
deriving the nuisance tangent space and its orthogonal comple-
ment.

Proposition 1. The nuisance tangent space is �π = {u{(x −
ξ0)/σ0} : R → R

2 : each component of π0(x)u(x) is an odd
function}.

Proof. Suppose that f (x;β,α) = 2
σ
φ{(x − ξ)/σ }π{(x −

ξ)/σ,α)} is a parametric submodel of the GSN model (3); then

∂ log f (x;β,α)

∂α

∣
∣
∣
∣
(β0,α0)

= ∂π{(x − ξ0)/σ0,α}
∂α

∣
∣
∣
∣
α0

/
π0

(
x − ξ0

σ0

)

.

Because π{(x − ξ0)/σ0,α} + π{(x + ξ0)/σ0,α} = 1, ∂π{(x −
ξ0)/σ0,α}/∂α + ∂π{(−x + ξ0)/σ0,α}/∂α = 0; that is,

π0

(
x − ξ0

σ0

)
∂ log f (x;β,α)

∂α

∣
∣
∣
∣
(β0,α0)

is an odd function of (x−ξ0)/σ0. For any 2×r matrix B, writing

B
∂ log f (x;β,α)

∂α

∣
∣
∣
∣
(β0,α0)

as u{(x − ξ0)/σ0}, we obtain that π0(x)u(x) is an odd function.
In fact, for any linear combination of such ∂ log f (x;β,α)/∂α

resulting from different parametric submodels, for example, for

u(x) = B1
∂f1(x;β,α1)

∂α1
+ B2

∂f2(x;β,α2)

∂α2
,

π0(x)u(x) is still an odd function. In contrast, for any u(x) :
R → R

2, such that each component of π0(x)u(x) is odd, let
h(x) = π0(x)u(x)/[m0(x)φ{m0(x)}], where π0(x) = �{m0(x)}.

Then h(x) : R → R
2 is an even function and for α ∈ R

2,

f (x;β,α) = 2

σ
φ

(
x − ξ

σ

)

�

{

m0

(
x − ξ

σ

)

eαT h((x−ξ)/σ )

}

is a parametric submodel, where α = 0 yields the true model.
Notice that

∂ log f (x;β,α)

∂α

∣
∣
∣
∣
(β0,α0)

= m0

(
x − ξ0

σ0

)

eαT h((x−ξ0)/σ0)h
(

x − ξ0

σ0

)

× φ

{

m0

(
x − ξ0

σ0

)

eαT h((x−ξ0)/σ0)

}/
π0

(
x − ξ0

σ0

)∣
∣
∣
∣
α=0

= u
(

x − ξ0

σ0

)

.

In the special case when π0(x) ≡ 1/2, and thus m0(x) ≡ 0, we
can set the parametric submodel to be

f (x;β,α) = 2

σ
φ

(
x − ξ

σ

)

�

{
αT

2
u
(

x − ξ

σ

)/
φ(0)

}

.

It can be easily verified that

∂ log f (x;β,α)

∂α

∣
∣
∣
∣
(β0,α0)

= u
(

x − ξ0

σ0

)

,

and hence u{(x − ξ0)/σ0} ∈ �π ; that is, u{(x − ξ0)/σ0} is really
an element in the nuisance tangent space.

In the proof of Proposition 1, to show that π0(x)u(x) being
odd is a sufficient condition for u(x) to be in �π , we demon-
strate that there exists a parametric submodel with nuisance
score vector u(x). The existence of such a parametric submodel
was proved by constructing one specific example. This does
not mean that the constructed example is the only parametric
submodel that will have u(x) as its nuisance score vector. In
fact, many different parametric submodels could have the same
nuisance score vector u(x). As long as the proposition is con-
cerned, finding one such parametric submodel is sufficient.

Proposition 2. The orthogonal complement of the nui-
sance tangent space is �⊥

π = {v{(x − ξ0)/σ0} : R → R
2 is

an even function (each component is even) that satisfies∫
v(x)φ(x)dµ(x) = 0}, where µ(x) is the Lebesgue measure

for which densities are defined.

Proof. Elements in �⊥
π satisfy

∫
v
(

x − ξ0

σ0

)

uT
(

x − ξ0

σ0

)

× 2

σ0
φ

(
x − ξ0

σ0

)

π0

(
x − ξ0

σ0

)

dµ(x) = 0 (4)

for any u{(x − ξ0)/σ0} ∈ �π and
∫

v
(

x − ξ0

σ0

)
2

σ0
φ

(
x − ξ0

σ0

)

π0

(
x − ξ0

σ0

)

dµ(x) = 0. (5)

Because 2u(x)φ(x)π0(x)/σ0 is an arbitrary odd function, v{(x−
ξ0)/σ0} has to be an even function of (x − ξ0)/σ0 to en-
sure (4). Notice that π0(x) − 1/2 is in fact an odd function, so
we get

∫
v(x)φ(x)dµ(x) = 0 from (5). Likewise, for any even
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function v(x), where
∫

v(x)φ(x)dµ(x) = 0, we can verify that
(4) and (5) are satisfied, and hence v{(x − ξ0)/σ0} ∈ �⊥

π .

Because influence functions for RAL estimators belong to
the nuisance tangent space orthogonal complement derived in
Proposition 2, this motivates estimators obtained by solving the
following estimating equations.

Proposition 3. For any even function v(x) : R → R
2 s.t.∫

v(x)φ(x)dµ(x) = 0,
∑n

i=1 v{(Xi − ξ)/σ } = 0 defines an RAL
estimator for β = (ξ, σ )T .

Proposition 3 provides us a way of constructing RAL esti-
mators as long as we can find a suitable function v = (v1, v2)

T .
For example, we can take any even function h(x) and con-
struct v1 or v2 to be h(x) − ∫

h(x)φ(x)dµ(x). If we take h to
be x2k, then the corresponding components of the v functions
are vi(x) = x2 − 1, vi(x) = x4 − 3, vi(x) = x6 − 15, and so on,
for i = 1,2.

Because the functions vi are unbiased, regularity conditions
will ensure the existence and uniqueness of a consistent se-
quence of estimators for ξ and σ (see Foutz 1977 for the regu-
larity conditions in detail). However, in practice when we solve
the estimating equation for a single dataset, the solution is not
necessarily unique. Care must be taken in selecting a suitable
estimate. Although there is no definite solution to this prob-
lem, we recommend the following action when multiple roots
occur. If only one solution ξ̂ is within the range of all of the
observed Xi’s, i = 1, . . . ,n, then pick this one as ξ̂ and its
accompanying σ̂ . If one has certain understanding of the se-
lection criterion (say, the population mean would tend to be
smaller than the sample mean as in the example of the clinic),
then pick the solution that makes practical sense (ξ̂ < X̄). In
general, the sensible choice needs to be determined on a case-
by-case basis, and no universal rule is available.

As mentioned earlier, the variance of an RAL estimator is
the variance of its influence function. The RAL estimator with
the smallest variance is referred to as the semiparametric effi-
cient estimator. It is known (Bickel et al. 1993) that the semi-
parametric efficient estimator is the RAL estimator that has an
influence function proportional to the efficient score. The effi-
cient score Seff is the residual after projecting the score vec-
tor with respect to β onto the nuisance tangent space, that
is, Seff = Sβ − 
(Sβ |�π). The corresponding influence func-
tion is given by ψeff = cov(Sβ ,Seff)

−1Seff = var(Seff)
−1Seff,

whose variance var(Seff)
−1 is smallest among all of the influ-

ence functions. Here by smallest, we mean that the difference
var(ψ) − var(ψeff) is nonnegative definite for any influence
function ψ . We derive Seff and calculate the optimal variance
in the following propositions.

Proposition 4. The efficient score function is

Seff =
[

x − ξ0

σ 2
0

{

2π0

(
x − ξ0

σ0

)

− 1

}

− 2

σ0
π01

(
x − ξ0

σ0

)

,

(x − ξ0)
2

σ 3
0

− 1

σ0

]T

,

where π01(x) = dπ0(x)/dx.

Proof. Calculating ∂ log f (x;β,α)/∂ξ and ∂ log f (x;β,

α)/∂σ , evaluating at ξ0 and σ0 yields the score vector

Sβ =
{

x − ξ0

σ 2
0

− π01{(x − ξ0)/σ0}
σ0π0{(x − ξ0)/σ0} ,

− 1

σ0
+ (x − ξ0)

2

σ 3
0

− (x − ξ0)π01{(x − ξ0)/σ0}
σ 2

0 π0{(x − ξ0)/σ0}
}T

.

We calculate the projection of Sβ onto �⊥
π through using the

fact that the difference between Sβ and its projection onto �⊥
π

is an element in �π . Assume that the projection is [v1{(x −
ξ0)/σ0}, v2{(x − ξ0)/σ0}], where both v1 and v2 are even func-
tions; then

{
x − ξ0

σ 2
0

− 1

σ0
π01

(
x − ξ0

σ0

)/
π0

(
x − ξ0

σ0

)

− v1

(
x − ξ0

σ0

)}

× π0

(
x − ξ0

σ0

)

+
[−x + ξ0

σ 2
0

− 1

σ0
π01

(
x − ξ0

σ0

)/{

1 − π0

(
x − ξ0

σ0

)}

− v1

(
x − ξ0

σ0

)]

×
{

1 − π0

(
x − ξ0

σ0

)}

= 0

and
{

− 1

σ0
+ (x − ξ0)

2

σ 3
0

− (x − ξ0)

σ 2
0

π01

(
x − ξ0

σ0

)/
π0

(
x − ξ0

σ0

)

− v2

(
x − ξ0

σ0

)}

π0

(
x − ξ0

σ0

)

+
[

− 1

σ0
+ (x − ξ0)

2

σ 3
0

+ (x − ξ0)

σ 2
0

π01

(
x − ξ0

σ0

)/{

1 − π0

(
x − ξ0

σ0

)}

− v2

(
x − ξ0

σ0

)]

×
{

1 − π0

(
x − ξ0

σ0

)}

= 0.

Notice that we used the fact that π01(x) is an even function of x.
Solving the two equations yields the result.

Proposition 5. A semiparametric efficient estimator of β =
(ξ, σ )T is given by

n∑

i=1

F0(Xi; ξ, σ ) = 0, (6)

where

F0(Xi; ξ, σ )

=
([

Xi − ξ

σ

{

2π0

(
Xi − ξ

σ

)

− 1

}

− 2π01

(
Xi − ξ

σ

)]

,

{(Xi − ξ)2 − σ 2}
)T

.
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Assume that the estimator obtained through solving (6)
is β̂; then n1/2(β̂ − β0) → N2(0, {E(SeffST

eff)}−1) in distri-
bution. Here the smallest variance of the estimate given by
{E(SeffST

eff)}−1 has the form

A = σ 2
0

(∫ [{2π0(x) − 1}2 + 4π01(x)2]φ(x)dµ(x)

4
∫

π01(x)φ(x)dµ(x)

4
∫

π01(x)φ(x)dµ(x)

2

)−1

. (7)

Remark 1. Notice that when π0(x) ≡ 1/2, the first com-
ponent of the efficient score vector is 0, in which case an
efficient semiparametric estimator does not exist. Similar
phenomena have been observed in Bayesian analysis of selec-
tion models, where a constant weight function [corresponding
to π0(x) ≡ 1/2 in our case] has to be ruled out a priori to any
analysis (see Lee and Berger 2001).

Remark 2. The only situation for the semiparametric effi-
cient estimator to degenerate is when π0(x) ≡ 1/2. This can
be verified by inspecting the differential equation x{2π0(x) −
1} − 2π01(x) = c(x2 − 1), for an arbitrary constant c. The so-
lution to this equation is of the form π0(x) = (cx + 1)/2 +
dex2/2, where d is a constant. Subject to the constraint that
π0(x) + π0(−x) = 1 and π0(x) is nonnegative, both c and d
are 0 and π0(x) ≡ 1/2 is the only legitimate solution. Thus,
as long as the true model has a nontrivial skewing function,
a semiparametric efficient estimator always exists.

Remark 3. As long as π0 is differentiable, regardless of
whether or not it is a constant, a consistent estimator always
exists, and hence the problem is always identifiable. For ex-
ample, one consistent estimator is given by adopting v(x) =
(x4 − 3, x2 − 1)T .

We omit the proof of Proposition 5, which involves only
straightforward algebra. The efficient estimator defined by (6)
depends on using the true skewing function π0, which is un-
known to us. However, any choice of a differentiable skewing
function in (6) will lead to a consistent asymptotically nor-
mal estimator for β , as long as we are not using π(x) ≡ 1/2.
This can be shown by noticing that v(x) = [x{2π(x) − 1} −
2π1(x), x2 − 1]T satisfies the requirement in Proposition 3,
where π1(x) = dπ(x)/dx. In fact, such an estimator is guar-
anteed to be nondegenerate, that is, x{2π(x) − 1} − 2π1(x) �∝
x2 − 1. This is because had π(x) been the correct skewing func-
tion, then v(x) would have been the efficient estimator, and
hence it is at least nondegenerate. In practice, we generally posit
a model for π(·) in terms of a finite set of parameters α, say,
π(x/σ − ξ/σ,α), and then estimate α using an estimator α̂. We
use

n∑

i=1

F(Xi; ξ, σ, α̂) = 0 (8)

to denote estimators of the form in (6) with π0{(x − ξ)/σ } re-
placed by π{(x−ξ)/σ, α̂}. Notice that E{F(Xi; ξ, σ,α)} = 0 for
all values of α, and hence E{∂F(Xi; ξ, σ,α)/∂α} = 0 assuming
sufficiently smooth conditions on F to interchange the expec-
tation and the partial derivative. If the true skewing function
belongs to this parametric model, then π(·, α̂) will converge

to π0(·). But even if the parametric model does not contain
the true π0(·), the estimate α̂ will generally converge to a con-
stant α∗ and π(·, α̂) will converge to some skewing function
π(·,α∗). As long as n1/2(α̂ − α∗) is bounded in probability, as
we show in the next proposition, the asymptotic distribution of
β̂ obtained by using π(·, α̂) is asymptotically the same as that
which uses π(·,α∗), which we have argued is consistent and
asymptotically normal. However, if the parametric model does
contain the truth, then the estimator for β in (8) is semiparamet-
ric efficient. Such estimators are referred to as locally efficient.

Similar to the discussion after Proposition 3, (6) and (8)
could have multiple solutions. We use the same rule as men-
tioned after Proposition 3 to decide which solution to choose in
practice.

Proposition 6. Assume that 2
σ
φ{(x − ξ)/σ }π{(x − ξ)/σ,α}

is a parametric model and that n1/2(α̂ − α∗) is bounded in
probability. Then the two RAL estimators resulting from solv-
ing the two estimating equations

∑n
i=1 F(Xi; ξ, σ,α∗) = 0 and∑n

i=1 F(Xi; ξ, σ, α̂) = 0 are asymptotically equivalent; that is, if
(ξ̂1, σ̂1) is the estimator obtained through solving the first equa-
tion and (ξ̂2, σ̂2) is the estimator obtained through solving the
second equation, then n1/2(ξ̂1 − ξ̂2) → 0 and n1/2(σ̂1 − σ̂2) → 0
in probability.

Proof. Write (ξ, σ )T as β and F(Xi; ξ, σ,α) as F(Xi;β,

α). A Taylor expansion of
∑n

i=1 F(Xi; β̂2,α
∗) at α̂ yields

∑n
i=1 F(Xi; β̂2,α

∗) = ∑n
i=1 F(Xi; β̂2, α̂) + {∑n

i=1 ∂F(Xi; β̂2,

α̃)/∂αT}(α∗ − α̂), where α̃ is between α∗ and α̂. Denot-
ing {∑n

i=1 ∂F(Xi; β̂2, α̃)/∂αT}/n by �n, we obtain
∑n

i=1 F(Xi;
β̂2,α

∗) = n�n(α
∗ − α̂). Notice that when n → ∞, because of

the convergence of α̂ to α∗ and the consistency property of
ξ2 and σ2, �n → E{∂F(Xi;β0,α

∗)/∂αT} = 0 in probability.
A Taylor expansion of

∑n
i=1 F(Xi; β̂2,α

∗) at β̂1 yields

β̂2 − β̂1 =
{

n∑

i=1

∂F(Xi; β̃,α∗)
∂βT

}−1{ n∑

i=1

F(Xi; β̂2,α
∗) − 0

}

=
{

1

n

n∑

i=1

∂F(Xi; β̃,α∗)
∂βT

}−1

�n(α
∗ − α̂),

where β̃ is a quantity between β̂1 and β̂2.
When n → ∞,

Jn = 1

n

n∑

i=1

∂F(Xi; β̃,α∗)
∂βT → E

{
∂F(Xi;β0,α

∗)
∂βT

}

in probability. For parametric models, E{∂F(Xi;β0,α
∗)/∂βT}

is the matrix related to the Fisher information matrix, which is
generally nonsingular, and we denote it by J. Combining the
results, we have n1/2(β̂1 − β̂2) = n1/2J−1

n �n(α̂ −α∗). Because
n1/2(α̂ −α∗) is bounded in probability, J−1

n → J−1 in probabil-
ity and �n → 0 in probability, which implies that β̂1 − β̂2 → 0
in probability.

In practice, α is estimated using a specific estimator, and
its convergence rate is determined by the corresponding esti-
mator implemented. For example, if the maximum likelihood
estimator (MLE) is used to estimate α, then we would know
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that the boundedness condition of Proposition 6 is automati-
cally satisfied. More important, Proposition 6 indicates that how
efficiently we estimate the nuisance parameter α does not influ-
ence how efficiently we can estimate ξ and σ . In fact, as long
as we can estimate α consistently, using the estimated value of
α, α̂, or the true value of α, α0, will yield the same efficiency
for ξ and σ .

The efficiency of an estimator depends on how close the true
π0 is to the parametric family {π(x,α)}. One way to construct
the parametric model proposed by Ma and Genton (2004) is
to use �{PK(x)} to approximate π0(x), where PK(x) is an odd
polynomial of order K. Because an odd polynomial can ap-
proximate a continuous odd function arbitrarily well, �{PK(x)}
will approximate π0(x) = �{m0(x)} well, and hence will make
the “distance” between �{PK(x)} and π0 arbitrarily small. In
general, the relationship between the efficiency loss and the
“distance” between π0 and the parametric family {π(x,α)} that
approximates π0 is given in the following proposition.

Proposition 7. Let ν(x) = π(x,α)−π0(x), θ = ∫
4[∂{ν(x)×

φ(x)}/∂x]2/φ(x)dµ(x). The most efficient semiparametric es-
timator of the form in (8) has efficiency A + minα(θ)B, where
A is given by (7), and

B = σ 2
0

[E{2π0(X) − 1 + 2Xπ01(X) − 2π02(X)} − 2E(X)2]2

×
{

1 −E(X)

−E(X) E(X)2

}

,

which does not depend on the estimator in (8). Here π02 de-
notes d2π0(x)/dx2, and the expectations are taken with respect
to 2φ(x)π0(x).

Proof. Assume that the estimating equation
∑n

i=1 F(Xi;β,

α̂) = 0 yields the estimate β̂1 = (ξ̂1, σ̂1)
T , the estimating equa-

tion
∑n

i=1 F0(Xi;β) = 0 yields the estimate β̂ = (ξ̂ , σ̂ )T . Then

0 =
n∑

i=1

F(Xi; β̂1, α̂)

=
n∑

i=1

F0(Xi; β̂) +
n∑

i=1

{F0(Xi; β̂1) − F0(Xi; β̂)}

+
n∑

i=1

{F(Xi; β̂1, α̂) − F0(Xi; β̂1)}

=
n∑

i=1

∂F0(Xi; β̃)

∂βT (β̂1 − β̂)

+
n∑

i=1

{
Xi − ξ̂1

σ̂1
2ν

(
Xi − ξ̂1

σ̂1

)

− 2ν1

(
Xi − ξ̂1

σ̂1

)

,0

}T

,

where β̃ is a quantity between β̂ and β̂1, ν1(x) = dν(x)/dx.
Notice that when n → ∞,

1

n

n∑

i=1

∂F0(Xi; β̃)

∂βT → E

{
∂F0(Xi;β0)

∂βT

}

in probability,

1

n

n∑

i=1

{
Xi − ξ̂1

σ̂1
2ν

(
Xi − ξ̂1

σ̂1

)

− 2ν1

(
Xi − ξ̂1

σ̂1

)}

→ E

{

2
Xi − ξ̂1

σ̂1
ν

(
Xi − ξ̂1

σ̂1

)

− 2ν1

(
Xi − ξ̂1

σ̂1

)}

→ E

{

2
Xi − ξ0

σ0
ν

(
Xi − ξ0

σ0

)

− 2ν1

(
Xi − ξ0

σ0

)}

= 0

in probability due to the consistency of ξ̂1 and σ̂1. We calcu-
late the variance of 2{(Xi − ξ0)/σ0}ν{(Xi − ξ0)/σ0}−2ν1{(Xi −
ξ0)/σ0}, which is an even function of (Xi − ξ0)/σ0,

E

[{

2
Xi − ξ0

σ0
ν

(
Xi − ξ0

σ

)

− 2ν1

(
Xi − ξ0

σ0

)}2]

= 4
∫

{xν(x) − ν1(x)}22φ(x)π0(x)dµ(x)

= 4
∫

{xν(x) − ν1(x)}2φ(x)dµ(x)

=
∫

4

φ(x)

[
∂

∂x
{ν(x)φ(x)}

]2

dµ(x)

= θ.

Thus

n1/2(β̂1 − β̂) → N2

(

0,

[

E

{
∂F0(Xi;β0)

∂βT

}]−1 (
θ 0
0 0

)

×
[

E

{
∂F0(Xi;β0)

∂βT

}]−T)

in distribution. It can be verified that

E

{
∂F0(Xi;β0)

∂βT

}

= −
[E{2π0(X)−1+2Xπ01(X)−2π02(X)}

σ0

2E(X)
σ0

2σ0E(X) 2σ0

]

,

where expectation E on the right side is taken with respect to
2φ(x)π0(x). Putting these together, we get n1/2(β̂1 − β̂) →
N2(0, θB) in distribution, and thus n1/2(β̂1 −β0) → N2(0,A+
θB) in distribution. With an α that minimizes θ , we will get
the most efficient estimator given the parametric model π(x,α).
The variance of n1/2(β̂1 − β0) is A + minα(θ)B.

In Proposition 7 we deliberately avoided specifying how to
find the α that minimizes θ , because this depends on the true π0
that is unknown to us. In practice, we can always estimate β and
calculate its variance for any fixed α and select the α that yields
the smallest estimation variance. Thus the α that minimizes θ

can be found numerically. Often, a parametric model is assumed
in terms of both β and α, and the MLE is used to estimate both
sets of parameters. But if the model for the skewing function
is not correct, then the MLE for β will be biased. A correction
procedure should follow, where after obtaining the MLE α̂ in
the π function, we need to proceed to estimate ξ and σ using
the semiparametric estimating equation in (6) with π0 replaced
by π . Notice that the α̂ obtained through the MLE need not be
the α that minimizes θ . However, the resulting estimator will
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be consistent and asymptotically normal even if the model for
π0 is incorrectly specified and will be semiparametric efficient
if it is correctly specified.

4. SIMULATION RESULTS

We carried out a simulation study with a sample size of 500.
We generated the datasets from the distribution 2

σ
φ{(x −

ξ)/σ }�[(sin{c(x − ξ)/σ }] with σ = 1, ξ = 3, and c = −2.
We approximated the true π0(x) = �[(sin{c(x − ξ)/σ }] with
πK(x) = H[PK{(x − ξ)/σ }], where H is the logit link function
[i.e., H(x) = 1/{1 + exp(−x)}] and PK is an odd polynomial of
order K. We generated 1,000 datasets and calculated the em-
pirical variances of the estimates and also the average of the
estimated variances. We calculated the estimated variance via
the standard sandwich matrix of M-estimators; that is, we cal-
culated

{
n∑

i=1

DF(Xi; ξ, σ, α̂)

}−1

×
{

n∑

i=1

F(Xi; ξ, σ, α̂)F(Xi; ξ, σ, α̂)T

}

×
{

n∑

i=1

DF(Xi; ξ, σ, α̂)

}−T

(9)

as the estimated variance matrix, where F(Xi; ξ, σ, α̂) is the
same as in (8), DF(Xi; ξ, σ, α̂) is the Jacobian of F(Xi; ξ, σ, α̂)

with respect to ξ and σ , and α̂ is the MLE of the polynomial co-
efficients α when fitting the data with 2

σ
φ{(x−ξ)/σ }H[PK{(x−

ξ)/σ }]. Notice that the variance resulting from estimating the
parameters in the skewing function is not taken into account;
however, the final average estimated variance still agrees with
the empirical variance, which is exactly what we expected due
to the result in Proposition 6. The simulation results are given
in the upper half of Table 1.

For comparison, we also adopted the correct model for π0(x);
that is, we set πt(x) = �[(sin{α(x − ξ)/σ }], with α being the
nuisance parameter. We can verify that all three estimators are
unbiased, whereas the estimator with the true posited model
for π0(x) has the smallest variance. The variance for π3(x) is
smaller than that for π1(x), because π3(x) approximates π0(x)

better. In fact, as shown by Ma and Genton (2004), π0(x) can be
approximated arbitrarily well if we allow the order of the odd
polynomial to increase sufficiently, and hence the estimator will
approach the most efficient one.

We also estimated ξ and σ using the α̂ that minimizes the
“distance” θ between π0(x) and πK(x), that is, minimizes the
variance in (9). The results are tabulated in the lower half of
Table 1. It is clear that the variance of the estimators in the
lower part of the table is improved compared with the cor-
responding estimators in the upper part of the table, where
α̂ is simply obtained through MLE. In fact, the estimation
variance when using π3(x) is so close to that when using the
correct model πt(x) that as far as estimation of ξ and σ is
concerned, there is hardly any need to go for an approximation
of a higher order polynomial. We plotted the resulting average
estimated pdf’s 2

σ
φ{(x − ξ)/σ }π1(x), 2

σ
φ{(x − ξ)/σ }π3(x), and

2
σ
φ{(x − ξ)/σ }πt(x) in Figure 1. The difference between these

curves and the true pdf indicates that the consistency property
is not a result of the similarity between these pdf’s. It also in-
dicates that being able to estimate the population parameters
ξ and σ does not necessarily mean being able to estimate the
skewed distribution of a biased subsample.

To support the result in the example in Section 5, we per-
formed a simulation study with the data generated in a “simi-
lar” way to the example. Specifically, we generated the datasets
from a distribution 2

σ
φ{(x − ξ)/σ }�{c(x − ξ)/σ } with σ = 4,

ξ = 20, and c = 5. The same estimators as in the previous sim-
ulation were implemented here. The sample size was 100 and
1,000 datasets were generated and analyzed. The simulation re-
sults are tabulated in Table 2, and the average of estimated pdf’s
are plotted in Figure 2. As one would expect, the asymptotic
properties do not exhibit as clearly as in the previous simu-
lation, due to the relatively small sample size. In this specific
simulation, we find that the estimations of ξ and σ are still un-
biased and that most of the estimation variances for ξ and σ

match with the sample variances reasonably well. However, for
the estimation of ξ , when we use a third-order polynomial and
derive the results through minimizing the resulting estimated
variance, the estimated variance tends to be smaller than the
sample variance. Thus when we are dealing with smaller sam-
ple sizes, it is helpful to implement and refer to different esti-
mators to reach more sensible conclusions.

5. AN EXAMPLE

We applied the estimator in (8) to a dataset of Australian ath-
letes’ BMI data. This dataset comprises the BMIs of 202 ath-

Table 1. Simulation Results on ξ and σ With Different Posited Skewing Functions π1(x), π3 (x), and πt (x)

ξ̂ (3) σ̂ (1)

Mean Estimated var. Empirical var. Mean Estimated var. Empirical var.

α̂ estimated through MLE
π1(x) 2.9899 .0041 .0040 1.0007 .0012 .0011
π3(x) 3.0006 .0027 .0027 1.0018 .0012 .0011
πt (x) 2.9977 .0017 .0017 1.0005 .0011 .0011

α̂ minimizes the resulting variance
π1(x) 2.9895 .0035 .0036 1.0004 .0012 .0011
π3(x) 2.9988 .0018 .0020 1.0009 .0010 .0011
πt (x) 2.9976 .0017 .0018 1.0005 .0011 .0011

NOTE: The true values of ξ and σ are 3 and 1. The true skewing function is π0(x) = �{sin ( −2x)}. The sample size is 500, and 1,000 datasets are
simulated.
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(a) (b)

Figure 1. The Average Estimated pdf’s Using the Posited Models π1, π3 , and πt [ π0(x); π1(x); π3(x); πt (x)]. The true pdf
using π0 and the average estimated pdf using πt overlay each other and are indistinguishable in these plots. The nuisance parameters in the
posited models are selected to minimize the resulting variance (a), and are estimated using MLE (b). The sample size is 500, and 1,000 simulations
were done.

letes, including 102 male and 100 female athletes. Histograms
of these data are shown in Figure 3.

Assume that we try to infer the mean and variance of the
BMI in general Australian male and female adults. Certainly,
a simple sample average and variance will give a biased esti-
mate, because athletes would certainly have higher BMIs than
the general population. We used a GSN distribution with skew-
ing function πK(x) = H[PK{(x − ξ)/σ }] to estimate ξ and σ .
Here H is the logit link function and PK is an odd polynomial
of order K. We applied K = 1 and K = 3. For the nuisance para-
meters (the coefficients in the polynomial), we estimated them
via MLE as well as via minimizing the final total variance of

ξ and σ . The results are presented in Table 3. It can be noted
that although the estimated variance of ξ using π3(x) appears to
be much smaller than the estimated variances for the other three
estimators, the simulation study in Section 4 indicates that the
estimated variance may be overly optimistic due to the small
sample size.

As we expected, the average BMI is lower in the general pop-
ulation than in athletes, and the variance σ 2 is larger in general
population than in athletes. The pdf’s corresponding to different
skewing function πK ’s are plotted in Figure 3. Because our esti-
mators are semiparametric, we do not necessarily need to have
a good estimate of the skewing function to have a consistent

Table 2. Simulation Results on ξ and σ With Different Posited Skewing Functions π1(x), π3 (x), and πt (x)

ξ̂ (20) σ̂ (4)

Mean Estimated var. Empirical var. Mean Estimated var. Empirical var.

α̂ estimated through MLE
π1(x) 19.9981 .0958 .0881 3.9954 .1373 .1301
π3(x) 19.9946 .0874 .0957 3.9986 .1331 .1333
πt (x) 19.9973 .0950 .0890 3.9960 .1360 .1313

α̂ minimizes the resulting variance
π1(x) 20.0129 .0856 .0845 3.9839 .1315 .1240
π3(x) 20.0239 .0648 .1060 3.9772 .1109 .1372
πt (x) 20.0144 .0817 .0844 3.9828 .1294 .1283

NOTE: The true values of ξ and σ are 20 and 4. The true skewing function is π0(x) = �(5x). The sample size is 100, and 1,000 datasets are simulated.
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(a) (b)

Figure 2. The Average Estimated pdf’s Using the Posited Models π1, π3 , and πt [ π0(x); π1(x); π3(x); πt (x)]. The curves
are very close to each other and are indistinguishable. The nuisance parameters in the posited models are selected to minimize the resulting
variance (a), and are estimated using MLE (b). The sample size is 100, and 1,000 simulations were done.

estimator for ξ and σ . Hence the corresponding estimated pdf
does not have to fit the observed data. However, as we showed
in Proposition 4, the most efficient estimator uses the true skew-
ing function. Consequently, we might expect a good fit of the
resulting pdf to the data to be indicative of a more efficient es-

timator. In our example, we stopped with K = 3 because the fit
was good, and the dramatic decrease in the estimated standard
error from using π3m(x) to π3(x), in combination with the simu-
lation result from Section 4, suggests that numerical errors will
dominate the resulting estimated standard errors beyond that.

(a) (b)

Figure 3. Histograms of 102 Male (a) and 100 Female (b) Australian Athletes’ BMIs and pdf’s Using Different Posited Skewing Functions. The
skewing functions are π1 and π3 (whose nuisance parameters are estimated through minimizing estimation variance) and π1m and π3m (whose
nuisance parameters are estimated through MLE) [ π1(x); π3(x); π1m(x); π3m(x)]. In (a), the two pdf’s using π1m and π3m overlay
each other and are indistinguishable.
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Table 3. Estimated Values of ξ and σ and Their Standard Deviations via Different Estimators

Male Female

Skew function ξ̂ Estimated SD σ̂ Estimated SD ξ̂ Estimated SD σ̂ Estimated SD

π1m(x) 20.8542 .4997 4.1089 .6017 19.2911 .5191 3.7656 .5219
π3m(x) 20.8542 .4997 4.1089 .6017 19.2225 .5690 3.8151 .5576
π1(x) 20.6958 .4276 4.2277 .5801 19.3483 .5036 3.7249 .5061
π3(x) 20.6791 .3174 4.2405 .3219 19.1734 .4507 3.8508 .4110

23.9036 .2727 2.7539 .3044 21.9892 .2627 2.6268 .2341

NOTE: The last estimator is obtained by taking the sample mean and sample standard deviation of the data.

6. DISCUSSION

The derivation of the results in Section 3 also applies to a
more general setting of univariate GSE distributions. In fact,
the nuisance tangent space �π in that setting remains ex-
actly the same, whereas its orthogonal complement becomes
�⊥

π = {v{(x − ξ0)/σ0} : v(x) is an even function that satisfies∫
v(x)g(x)dµ(x) = 0}, where g is the elliptical part of the GSE

distribution. As a result, for such v(x),
∑n

i=1 v{(Xi − ξ)/σ } = 0
forms an RAL estimator. Similarly, the efficient score function
in general is

Seff =
[

− g1( y)

σ0g( y)
{2π0( y)− 1}− 2

σ0
π01( y),− yg1( y)

σ0g( y)
− 1

σ0

]T

,

where y = (x − ξ0)/σ0 and g1( y) is the first derivative of g( y)
with respect to y.

In the multivariate setting, the nuisance tangent space �π still
remains exactly the same, whereas its orthogonal complement
becomes �⊥

π = {v{�−1/2
0 (x − ξ0)} : v(x) is an even function

that satisfies
∫

v(x)g(x)dµ(x) = 0}. The efficient score func-
tion can be calculated in the same fashion, that is, through pro-
jecting the score vector with respect to the parameters in ξ and
�−1/2 onto �⊥

π , although the computation becomes much more
tedious due to the quick increase of the number of parameters
in �−1/2 as the dimension increases.

For certain elliptical distributions, the pdf g may also involve
a degree of freedom ν, which is a parameter of interest to us
when, for example, g is the pdf of a t-distribution with ν degrees
of freedom. In such a case we calculate the score vector with
respect to ν and project it onto �⊥

π to derive the locally efficient
estimator.

Finally, it is worth noting that the only property of the cen-
tral part of the model g that is essential to the procedure is its
symmetry, that is, g(−x) = g(x). Hence the procedure can be
applied to the more general skew-symmetric distributions de-
fined by Wang, Boyer, and Genton (2004).

[Received November 2003. Revised December 2004.]
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