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SUMMARY

A local likelihood estimator for a nonparametric nuisance function is proposed
in the context of semiparametric skew-normal distributions. Constraints imposed on
such functions result in a nonparametric estimator with a different target function
for maximization from classical local likelihood estimators. The optimal asymptotic
semiparametric efficiency bound on parameters of interest is achieved by using this
estimator in conjunction with an estimating equation formed by summing efficient scores.
A generalized profile likelihood approach is also proposed. This method has the advantage
of providing a unique estimate in cases where an estimating equation has multiple
solutions. Our nonparametric estimator of the nuisance function leads to an estimator
of the semiparametric skew-normal density. Both the estimating equation and profile
likelihood approaches are applicable to more general skew-symmetric distributions.

Some key words: Efficient score; Local estimator; Profile likelihood; Semiparametric model.

1. INTRODUCTION

Since the classical skew-normal distribution was formally introduced by Azzalini (1985),
it has been generalized extensively to accommodate different data patterns. Among this
broad class of distributions, the semiparametric skew-symmetric distributions (Wang et
al., 2004) allow maximum flexibility of the data distribution and maximum uncertainty in
the data-generation scheme.

The probability density function of the semiparametric skew-symmetric distribution has
the form

f (x) = 2|�|−1/2g{�−1/2(x − ξ)}π{�−1/2(x − ξ)}, x ∈ R
d, (1)

where g is a standardized symmetric probability density function, and π is a nonnegative
function satisfying π(y) + π(−y) = 1 for all y ∈ R

d . This article concentrates on the case
where d = 1, g = φ, the standard normal density, and the skewing function π is twice
differentiable. When d = 1, we use the notation � = σ 2.

One motivation for semiparametric skew-symmetric distributions involves selection
models. Suppose that a random sample from a population of interest is not available, but
instead a ‘selected’ biased sample is available. The probability density function of each
observation has the form

f (x;β, α) = g(x, β)
w(x, β, α)

E{w(X, β, α)} ,
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where g is the probability density function of the population of interest, and the weight
function w reflects the selection mechanism; see Rao (1985) and references therein.

A certain class of selection mechanisms leads to the skew-symmetric model. Let X∗ and
Y be independent random variables, each of which is symmetrically distributed about 0,
with X∗ having density g and Y having cumulative distribution function H . One observes
X if and only if Y < p(X∗), in which case X = X∗. The function p is odd, often equal
to cx for some constant c. Then pr(X � x) = pr{X∗ � x|Y < p(X∗)}, implying that X

has density 2g(x)H {p(x)} (Arnold & Beaver, 2002). This selection criterion thus leads to
w(x) = H {p(x)}, the same type of function as π in (1). Varying H and/or p generates
different distributions, some of which are considered in Azzalini (1985), Genton (2004)
and Genton & Loperfido (2005). If H and p are not modelled separately, then H {p(·)}
is precisely π in our model. In the absence of an explicit selection mechanism, a skew-
symmetric model may capture the effect of a latent selection mechanism that causes a
variable’s distribution in a subpopulation to differ from the distribution in the parent
population. A more thorough model motivation is given in Ma et al. (2005) and references
therein.

In the remainder of the article, we use ξ 0, σ 0 and π0 to denote the true values of ξ , σ and
π . Inference for semiparametric skew-symmetric distributions has concentrated on ξ and
σ 2, which represent the mean and variance of a general population; the skewing function
π is usually considered a nuisance. When d = 1, a locally efficient estimating equation for
β = (ξ , σ )T is known (Ma et al., 2005) to be

n∑
i=1

[Xi − ξ

σ
{2π (Xi − ξ

σ
) − 1} − 2π ′ (Xi − ξ

σ
)] = 0 (2)

n∑
i=1

{(Xi − ξ)2

σ 2
− 1} = 0,

where π ′(y) = dπ(y)/dy. Note that

Seff(Xi, β, π) = σ−1 [Xi − ξ

σ
{2π (Xi − ξ

σ
) − 1} − 2π ′ (Xi − ξ

σ
) ,

(Xi − ξ)2

σ 2
− 1]T

is in fact a locally efficient score function; that is, if we plug the true skewing function π0
into (2), the estimator achieves the optimal efficiency. If a skewing function other than π0 is
plugged into (2), then the resulting estimator is still consistent for β, though not necessarily
efficient. This consistency property is studied in Ma et al. (2005), wherein Remarks 1–3 are
of particular interest.

As a result of the presence of a skewing function π in the estimator, it has been proposed
that one take π to be either a parametric model or a cumulative distribution function of a
symmetric distribution evaluated at an odd polynomial (Ma & Genton, 2004). In the first
approach, if the parametric model is misspecified, the optimal semiparametric efficiency
bound is not achieved. In the second approach, a polynomial of fairly high degree might
be needed to approximate π0 sufficiently well. This could cause computational problems
that might entail less than optimal semiparametric efficiency in practice.

Fully nonparametric estimation of π is necessary to guarantee optimal semiparametric
efficiency and consistent estimation of f . The task is complicated by the constraints
0 � π(y) � 1 and π(y) + π(−y) = 1 for all y ∈ R. We take advantage of an equivalent
representation of π(y), H {p(y)}, and estimate p nonparametrically. Here H is an arbitrary
fixed function that satisfies the same constraints as π , and p is an odd function. In
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the literature, H has been required to be the cumulative distribution function of a
symmetric distribution, but it can be more general. For example, H(y) = sin(y)/2 + 1/2
also suffices. Note that the range of p need not be restricted. Taking into consideration
the different nature of oddness, a remote property, and kernel-type nonparametric
estimation, a local procedure, our nonparametric method uses data local to y and
other data local to −y to obtain estimates of π in the neighbourhood of y, and hence
−y as well. The implementation modifies locally parametric nonparametric estimation
studied in Hjort & Jones (1996), Loader (1996) and Eguchi & Copas (1998), among
others. Such nonparametric estimation of the nuisance π is shown to provide an
asymptotically efficient estimator for β when used in (2). We could also insert the
nonparametric estimator of π in the likelihood and maximize the likelihood with
respect to β, hence obtaining a generalized profile likelihood estimator (Severini &
Wong, 1992). We argue rigorously that our nonparametric estimator of π is within
op(n−1/4) of π0. This suggests, but does not prove, that the generalized profile likelihood
estimator of β is asymptotically optimal. In addition, the estimators of β and π lead
to a nonparametric estimator of the density itself that has typical bias and variance
properties.

2. CONSTRAINED LOCAL LIKELIHOOD ESTIMATOR

The univariate semiparametric skew-normal distribution has the probability density
function

f (x) = 2
σ

φ (x − ξ

σ
)π (x − ξ

σ
) , (3)

where ξ and σ are the mean and standard deviation of the population, which is
assumed to be normally distributed, and the skewing function π is determined by a
selection criterion unknown to the data analyst. Assume that we observe independent and
identically distributed observations X1, . . . , Xn from f . Our main interest is in estimating
the population parameters β = (ξ , σ )T. A previous study in Ma et al. (2005) has shown that
the efficiency of the estimator of β depends on the estimation of π , an infinite-dimensional
nuisance parameter subject to the two previously mentioned constraints.

We first focus on the estimation of π , using the representation π(y) = H {p(y)} to enforce
the constraints. For convenience, we require H to be monotone, so that H−1 is well defined,
and estimate the odd function p(y) = H−1{π(y)}. Note that the monotonic constraint on
H is not essential because it suffices to estimate any p(y) that satisfies π(y) = H {p(y)}.

A convenient tool for estimating p is the local polynomial estimator. In a neighbourhood
of y0, we approximate p(y) with a kth-degree polynomial pk(y), and estimate the coefficients
of pk using the observations close to y0. To ensure that the resulting function is odd, we
estimate p(y0) for y0 > 0 by p̂(y0) and then simply define p̂(−y0) = −p̂(y0). Note that
observations near −y0 contain information about p(y0), since p(−y0) = −p(y0). Thus, a
natural way to construct the estimator of p(y0) is to use data near either y0 or −y0.

Let Yi = (Xi − ξ)/σ for i = 1, . . . , n. If we assume that (ξ , σ ) is the truth, Y1, . . . , Yn have
the semiparametric skew-normal density f (y) = 2φ(y)π(y). Along the lines of Hjort &
Jones (1996), local likelihood estimators of π(y0) and π(−y0) are obtained by maximizing

1
n

n∑
i=1

Kh(Yi − y0) log[2φ(Yi)H {pk(Yi)}] −
∫

Kh(t − y0)2φ(t)H {pk(t)}dt
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and
1
n

n∑
i=1

Kh(Yi + y0) log[2φ(Yi)H {pk(Yi)}] −
∫

Kh(t + y0)2φ(t)H {pk(t)}dt

respectively, where K is a kernel function and Kh(·) stands for h−1K(·/h). If K is symmetric
about 0, then summing the last two expressions yields

1
n

n∑
i=1

{Kh(Yi − y0) + Kh(Yi + y0)} log H {pk(Yi)} + C. (4)

Here C is a term free of the polynomial pk. Our estimator of π(y0) is obtained by maximizing
(4) with respect to the parameters in pk. To ensure that p̂(y) = −p̂(−y), the coefficients
of the even-order terms in pk(y) will have opposite signs at y0 and −y0. A typical pk(y)

has the form pk(y) = α0sign(y) + α1y + α2sign(y)y2 + α3y
3 + . . . , where sign(y) = 1,−1

or 0 when y > 0, y < 0 or y = 0, respectively. Note that one is not obliged to include all
the terms in the local polynomial model pk. For example, p0(y) = α0sign(y), p1(y) = α1y

or p1(y) = α0sign(y) + α1y are all applicable. The sign change of the even-order terms in
pk(y) does cause a discontinuity of the estimator at y = 0; however, when n is large, the
discontinuity tends to diminish. To see why, consider p0(y) = α0sign(y) = α0 at y > 0.
The resulting estimator π̂(y) is given in (8) and satisfies

lim
y→0

π̂(y) = n−1 ∑n
i=1 Kh(Yi)I[0,∞)(Yi)

n−1 ∑n
i=1 Kh(Yi)

� E{Kh(Yi)I[0,∞)(Yi)}
E{Kh(Yi)} � φ(0)π0(0)

2φ(0)π0(0)
= π0(0).

The order of the polynomial only plays a role in the bias of the nonparametric estimator;
using a constant or linear polynomial yields a bias of O(h2). Since this is sufficient for
the purpose of semiparametric estimation, these low-order polynomials are the ones most
often used in practice.

Two possible approaches exist for incorporating estimation of π into the semiparametric
estimation of β. One is to plug the estimated nuisance function into (2), and the other is to
use generalized profile likelihood estimators. In principle, the first approach is robust, in
that β is consistently estimated even when π is misspecified, while the second one is not.
However, when local polynomials are used, the ‘correctness’ of π is guaranteed, and hence
robustness is not an issue. Compared with generalized profile likelihood, the estimating
equation approach has two drawbacks: it requires estimation of π ′, and treatment of
multiple solutions in some cases. The latter drawback often causes some ad hoc techniques
to be used in selecting an estimate, whereas in general profile likelihood the global maximizer
is an unequivocal estimate. An advantage of the efficient estimating equation approach is
that derivation of its asymptotic properties is not too difficult. Implementation of either of
the two approaches is straightforward.

Step 1. Choose an appropriate H , a polynomial form pk and starting values ξ̃ and σ̃ .

Step 2. Form Yi = (Xi − ξ̃ )/σ̃ , where ξ̃ and σ̃ are the current estimates of ξ and σ . For
each i = 1, . . . , n, obtain the polynomial coefficients α̂i0, . . . , α̂ik by maximizing

n∑
j=1

{Kh(Yj − Yi) + Kh(Yj + Yi)} log H {pik(Yj )}

with respect to αi0, . . . , αik. Here we use pik to emphasize that the polynomials are local to
each Xi .
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Step 3. In the efficient estimating equation approach, approximate π̂
′ using numerical

differences, plug the resulting π̂ and π̂
′ into (2) and solve the estimating equations to

obtain β̂. In the generalized profile likelihood approach, update ξ̂ and σ̂ by maximizing
n∑

i=1
log [ 2

σ
φ (Xi − ξ

σ
)H{p̂ik (Xi − ξ

σ
)}]

with respect to ξ and σ .

Step 4. Repeat Steps 2 and 3 until the estimates converge.

Convenient starting values for ξ and σ can be obtained using (2), with π(y) = H(y).
Note that this guarantees a starting value with root-n consistency. From the propositions
in §3, Step 4 in the above algorithm is not really needed; the estimates of ξ and σ after
one iteration should already have the desired first-order asymptotic properties. However,
in practice with small or moderate sample sizes, one almost always needs several iterations
to obtain results agreeing with the theory. The variance of the resulting estimator can be
estimated from the inverse of the empirical Fisher information matrix, using either

ˆvar(β̂)−1 =
n∑

i=1
Seff(Xi, β̂, π̂ )⊗2, (5)

when the efficient estimating equation approach is taken, or

ˆvar(β̂)−1 =
n∑

i=1
( ∂

∂β
log [ 2

σ
φ (Xi − ξ

σ
)H{p̂ik (Xi − ξ

σ
, β)}])⊗2 ∣∣∣∣

ξ=ξ̂ ,σ=σ̂

, (6)

when the likelihood approach is taken. Here A⊗2 represents the operation AAT. Note that
in addition to the fact that we evaluate p̂ik at (Xi − ξ)/σ , which involves β, the form of
the function p̂ik itself also depends on β. To emphasize this dependence on β and to avoid
confusion, we use the notation p̂(·, β) in (6). Consequently, the partial derivative in (6) is not
simply with respect to the β appearing in (Xi − ξ)/σ . We therefore propose to approximate
the partial derivative in (6) using numerical differences of the two different π̂ functions,
π̂{(Xi − ξ)/σ , β}, estimated using different β’s. If the profile likelihood approach achieves
the optimal semiparametric efficiency, then the partial derivative in (6) estimates Seff .

Since we actually estimate the nuisance function π(y), we have a density estimator. It is
not difficult to see that this estimator has asymptotic properties typical of a nonparametric
density estimator; that is, it has bias of order h2 and variance of order (nh)−1.

As pointed out by a referee, a much simpler estimator for π exists. Suppose
we ignore the constraints on f and compute a consistent nonparametric estimator
f̂ (x). Treating (ξ , σ ) as the truth, we have f̂ (x) � 2σ−1φ{(x − ξ)/σ }π{(x − ξ)/σ },
or equivalently f̂ (ξ + σy) � 2σ−1φ(y)π(y). Since this relationship holds for any y,
f̂ (ξ − σy) � 2σ−1φ(y)π(−y), and thus

π̂(y; ξ , σ ) = f̂ (ξ + σy)

f̂ (ξ + σy) + f̂ (ξ − σy)
� π(y). (7)

So long as f̂ is nonnegative, it is easily verified that π̂( · ; ξ , σ ) satisfies the requisite
constraints for each (ξ , σ ). One may now maximize, with respect to (ξ , σ ), a likelihood
obtained by substituting π̂( · ; ξ , σ ) for π . Note that here the functional form of the
likelihood requires no initial estimates of ξ 0 and σ 0. The existence of such a functional form
is a blessing of the skew-symmetric model. In most semiparametric models, it is not possible
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to obtain an explicit nuisance functional form that is free of the parameters of interest.
Hence, while (7) has the virtue of simplicity, it does not necessarily generalize to more
complicated settings as does the local likelihood approach. Even in our skew-symmetric
setting, local likelihood has an advantage over (7), as will be seen in §5.

3. ASYMPTOTIC PROPERTIES

In this section, we prove the semiparametric efficiency property of the estimating equation
approach and ostensibly take a step towards proving the same property for the generalized
profile likelihood approach. Proposition 1 below states that a generally desirable op(n−1/4)

rate of the nuisance parameter holds for an estimator of π that differs only slightly from
the local likelihood estimator with polynomial pk equal to a constant. The results stated in
this section are specific to this particular estimator, but similar results can be established for
higher-order local polynomial models, albeit at the expense of more complicated proofs.

Our local likelihood estimator of π(y) for pk identical to a constant α is a solution of the
equation

n∑
i=1

{Kh(Yi − y) + Kh(Yi + y)}H1{αsign(Yi)}sign(Yi) = 0,

where H1(·) is the derivative of log H(·). It is easily verified that, for y > 0, the unique
solution to this equation is

π̂(y) = H(α̂) = n−1 ∑n
i=1{Kh(Yi − y) + Kh(Yi + y)}I[0,∞)(Yi)

n−1 ∑n
i=1{Kh(Yi − y) + Kh(Yi + y)} . (8)

The denominator of this estimator is the sum of two density estimators, and estimates
2φ(y)π0(y) + 2φ(−y)π0(−y) = 2φ(y). This suggests another estimator,

π̃(y) = 1
2φ(y)nh

n∑
i=1

{K(Yi − y

h
) + K(Yi + y

h
)} I[0,∞)(Yi).

The estimator π̃ is the subject of Proposition 1, in which we show that the norm

||π̃ − π0|| = [∫∞

0
{π̃(y) − π0(y)}2φ(y) dy]1/2

is op(n−1/4). This result and the subsequent Corollary 1 allow us to prove efficiency of the
estimating equations approach.

PROPOSITION 1. Let X1,. . . , Xn be independent and identically distributed with common
density 2φ{(x − ξ 0)/σ 0}π0{(x − ξ 0)/σ 0}/σ 0. Let b ∈ (0, 1) be a constant, let m = [nb], the
integer part of nb, and suppose that ξ̃ and σ̃ are estimators constructed from the observations
Xm+1,. . . , Xn and satisfying ξ̃ − ξ 0 = Op(n−1/2) and σ̃ − σ 0 = Op(n−1/2). Define π̃(y) to
be the estimator

π̃(y) = 1
2φ(y)mh

m∑
i=1

{K(Yi − y

h
) + K(Yi + y

h
)} I[0,∞)(Yi), (9)

where Yi = (Xi − ξ̃ )/σ̃ , i = 1,. . . ,m. Assume also that the following conditions hold:

(i) the kernel K integrates to 1, is symmetric about 0, has support (−1, 1) and is
continuous on [−1, 1];
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(ii) the bandwidth h is such that C−1n−1/5 < h < Cn−1/5 for all n, where C > 1 is a
constant and can be arbitrarily large;

(iii) the skewing function π0 is twice differentiable and has bounded first and second
derivatives.

It then follows that ||π̃ − π0|| = op(n−1/4).

All proofs are given in the Appendix. Note that the proposition assumes that the initial
estimates ξ̃ and σ̃ are computed from a subset of the data, and π̃ is computed from the
complementary observations. This is done only to make the proof simpler. Clearly, if both
(ξ̃ , σ̃ ) and π̃ are computed from all the observations, then the estimator π̃ will be even
more efficient.

It is also important to note that the result holds for bandwidths of the order n−1/5.
In practice, methods such as crossvalidation are often used to choose h, and most such
methods will yield a bandwidth of the asymptotically optimal order, i.e. n−1/5.

The following corollary is a direct application of Proposition 1.

COROLLARY 1. Under the same conditions as in Proposition 1, if we approximate π ′
0

using π̃ ′(y) ≡ {π̃(y + n−1/4) − π̃(y − n−1/4)}/(2n−1/4), then ||π̃ ′ − π ′
0|| = op(1).

Proposition 1 is in fact much stronger than what we need for our proof of semiparametric
efficiency of the estimating equation approach. We only need ||π̂ − π0|| = op(1) and
||π̂ ′ − π ′

0|| = op(1). However, the op(n−1/4) rate is often desirable in semiparametric
methods, and so we hope that in future work it will facilitate a proof of efficiency of the
generalized profile likelihood approach.

Under regularity conditions, Proposition 1 leads to the efficiency of the semiparametric
estimator of β, as given in Proposition 2.

PROPOSITION 2. Let β̂ be the estimator obtained from (2) using observations X1, . . . , Xm,

where π is replaced by the estimator (9) computed from Xm+1, . . . , Xn. If m = n − nε for
some 0 < ε < 1, and appropriate regularity conditions hold, then β̂ is semiparametric efficient
and

√
n(β̂ − β0) → N{0, σ 2

0E([Xi − ξ 0

σ 0
{2π0 (Xi − ξ 0

σ 0
) − 1}

−2π ′
0 (Xi − ξ 0

σ 0
) ,

(Xi − ξ0)
2

σ 2
0

− 1]⊗2)−1}
in distribution as n → ∞.

Note that the variance matrix in Proposition 2 is the inverse of the efficient
Fisher information matrix, which is estimated in (5). The regularity conditions mainly
ensure the nonsingularity of the information matrix and its inverse, and sufficient
smoothness of the functions involved in the asymptotic expansion. We omit these
technicalities and instead refer the reader to Newey (1990) for details. Note that,
again, the separation of the observations into two groups, one for estimating π and
the other for estimating β, is to avoid technical complexity in the proof. In practice,
it is certainly not necessary to use only part of the data to compute either of the
estimates.

We find a similar semiparametric efficiency result for the generalized profile likelihood
approach harder to derive. If a strict profile likelihood method is used, then an op(n−1/4)
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rate for the estimated nuisance function generally suffices for efficiency of the parameter
of interest (Murphy & van der Vaart, 2000). However, most nonparametric estimators
are not, strictly speaking, maximum likelihood estimators, and so the result cannot
be used directly. There are many possibilities for relaxing the strict maximization
requirement on the nuisance parameter, resulting in different versions of generalized
profile likelihood, such as a sieve maximum likelihood estimator. However, a general
treatment of arbitrary estimators of the nuisance function in profile likelihood seems
unavailable, and hence the efficiency analysis seems to be a case-by-case exercise. In our
problem, the local maximum likelihood estimator converges to a standard maximum
likelihood estimator when n → ∞, and hence h → 0, and so we believe that the
performance of the local maximum likelihood estimator will closely mimic the maximum
likelihood estimator when h is sufficiently small. However, we have not found a rigorous
proof.

In contrast, it is relatively easy to obtain asymptotic properties of the estimator based on
(7). Since the form of π̂ does not depend on the estimates of ξ and σ , the resulting estimator
is a direct maximizer of ∑n

i=1 log[2σ−1φ{(xi − ξ)/σ }π̂{(xi − ξ)/σ }]. Treating π̂ as a known
function that approximates π , we can easily verify that the resulting estimators of ξ and
σ are consistent and have the same asymptotic variance as given in Proposition 2; that is,
they are efficient estimators. The complete proof of the asymptotic efficiency is available at
the webaddress in the Appendix.

In contrast to the usual concern with bandwidth selection in nonparametric estimation,
the bandwidth h is not nearly so important in estimating β. In fact, h does not enter into the
first-order asymptotics of the final estimator for β. Thus, any h that yields a convergence
rate of op(n−1/4) for the nuisance parameter guarantees the asymptotic efficiency of β̂.
However, if one is interested in estimating the density itself, then the bandwidth h is as
important as in ordinary nonparametric density estimation, and the usual bandwidth of
order n−1/5 is needed to minimize the mean squared error. Crossvalidation can be used to
obtain a bandwidth that estimates an optimal h, and we implement such an approach in
our real-data example of §5.

4. SIMULATION STUDIES

We undertook a simulation study to investigate the performance of our estimators of
ξ , σ and π . We generated 500 datasets with sample size n = 100 from a distribution
with density 2φ{(x − ξ)/σ }
[sin{c(x − ξ)/σ }]/σ , where ξ = 3, σ = 1 and c = −3. Eight
different estimators, (a)–(h), were implemented. Estimator (a) uses the estimating
equation (2), with a misspecified skewing function π(x) = H(αx) = 1/{1 + exp(−αx)}.
The parameter α is obtained from an initial estimating step where ξ, σ and α are
estimated jointly through maximum likelihood. Estimator (b) is the local linear estimator
proposed in §2, with pk(x) = αx and the same H as in estimator (a). Step 3 in
(b) is carried out through solving the estimating equation (2). Estimator (c) is very
similar to (b), except that the Step 3 in (c) is carried out using the generalized profile
likelihood approach. Thus, estimators (b) and (c) can be viewed as local versions of
(a). Estimators (d)–(f) are the same as (a)–(c), respectively, except that they use a
different choice of H , namely H(αx) = sin(αx)/2 + 1/2. Estimator (g) is the maximum
likelihood estimator, where π is estimated by (8). Estimator (h) is constructed in the same
way as (a), except that we use the true model for the skewing function, i.e. we adopt
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Table 1. Simulation study. Means, empirical standard errors
(emp. se.), estimated standard errors (est. se.) and empirical coverage
probabilities (cov.) of nominal 95% confidence intervals for each of the
estimators (a)–(h). Five hundred simulations were performed for each

sample size

ξ̂ (3) σ̂ (1)
mean est. se. emp. se. cov. mean est. se. emp. se. cov.

n = 100
(a) 3·0082 0·3448 0·5897 0·9720 1·0437 0·1107 0·1994 0·9680
(b) 3·0143 0·0967 0·0778 0·9340 0·9918 0·0705 0·0755 0·9560
(c) 2·9920 0·0744 0·0653 0·8920 0·9890 0·0688 0·0720 0·9400
(d) 2·9840 0·2637 0·1922 0·8340 1·0124 0·1463 0·1021 0·9340
(e) 3·0542 0·1186 0·0861 0·8500 0·9968 0·0725 0·0779 0·9600
(f) 2·9849 0·0754 0·0648 0·8880 0·9890 0·0691 0·0674 0·9180
(g) 2·9978 0·0747 0·0705 0·9400 0·9892 0·0687 0·0731 0·9540
(h) 2·9983 0·0665 0·0663 0·9340 0·9888 0·0686 0·0706 0·9400

n = 200
(a) 2·9627 0·2845 0·6112 0·9820 1·0420 0·0693 0·8219 0·9680
(b) 3·0049 0·0489 0·0491 0·9420 1·0029 0·0495 0·0515 0·9520
(c) 2·9980 0·0497 0·0457 0·9160 1·0028 0·0497 0·0513 0·9500
(d) 2·9931 0·2098 0·1689 0·8760 1·0183 0·0936 0·0710 0·9320
(e) 3·0154 0·0578 0·0519 0·9020 1·0040 0·0496 0·0518 0·9580
(f) 2·9923 0·0484 0·0472 0·9300 1·0026 0·0498 0·0497 0·9400
(g) 3·0012 0·0497 0·0476 0·9240 1·0029 0·0496 0·0515 0·9520
(h) 3·0011 0·0449 0·0455 0·9460 1·0027 0·0496 0·0503 0·9440

H(αx) = 
[sin{α(x − ξ)/σ }]. Thus, estimator (h) is the optimal semiparametric estimator
in the sense that it is the most efficient. A bandwidth h = 0·5n−1/5 is used in the local linear
estimators.

The same simulation was repeated with sample size n = 200. We are interested in
comparing the performance of estimators (a)–(g), with estimator (h) as a benchmark.
Based on our asymptotic results, we expect that results for estimators (b), (c), (e), (f) and
(g) will be similar to those for (h). The results of the simulation are given in Table 1.

Several remarks are worth making. First, none of the estimators of ξ or σ exhibited
substantial bias, and, except for scheme (a), the empirical standard errors decreased from
n = 100 to n = 200. Secondly, the estimated variances of the global linear estimators (a) and
(d) do not match the empirical variance well. However, when n = 200, the two variances
match reasonably well for the other estimators where the nuisance function is estimated
nonparametrically. Thirdly, the variances of the local linear estimators (b), (c), (e) and (f)
are rather insensitive to the choice of the function H , whereas the global estimators (a) and
(b) depend heavily on this choice. In reality, it is certainly not trivial to find a ‘good’ H . As
a result, one would have to go to higher-order polynomials, i.e. the flexible skew-normal
distributions proposed in Ma & Genton (2004), to get a better estimator. Fourthly, with
n = 200, the variances of all estimators based on nonparametric estimators of π are fairly
similar to the optimal one. Hence, the asymptotic efficiency of the local linear estimator
apparently does not require a huge sample size to exhibit itself. Finally, estimator (g) has
the best performance among all the estimators, possibly benefiting from its computational
simplicity.
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Fig. 1. Simulation study. The average estimated densities using different estimators (a)–(h), together with
the true density, based on 500 simulations, for (a) n = 100 and (b) n = 200.

Figure 1 displays the averages of the estimated densities from estimators (a)–(h). The
resulting density of the global linear estimators (a) and (d) does not bear much resemblance
to the true density. Of course we do not expect them to; in fact, the result from (d) is
surprisingly close to the true density. The estimated densities for all the other estimators
are reasonably close to the truth, especially when n = 200, with some bias at the peaks and
troughs. When the sample size increases from n = 100 to n = 200, the improved density
estimation is not evident from inspecting the plotted curves, except for a small improvement
around the smaller mode.

The software used in the simulation is available at the webaddress in the Appendix.

5. AN EXAMPLE

Here we apply the local linear estimators proposed in §3 to datasets consisting of white
cell counts of Australian athletes. Histograms of cell counts for 102 male and 100 female
athletes are shown in Fig. 2.

Under the assumption that skew-normal models are appropriate, our goal is to infer
from each of these datasets the parameters ξ and σ and also the underlying densities for the
male and female populations of athletes. Under the further assumption that the samples are
selectively chosen, as discussed in §1, from the populations of all adult males and females in
Australia, the parameters ξ and σ have the interpretation of being the mean and standard
deviation, respectively, of each of the latter populations.

We consider two types of estimator of π in our analysis, namely a local likelihood
estimator obtained by maximizing an expression of the form (4), and an estimator as
in (7) with f̂ equal to a kernel density estimator. A version of L2 crossvalidation was
used to select the bandwidth of our local likelihood estimator. Given a random sample
X1,. . . , Xn of observations from f and an estimator f̂h with smoothing parameter h, an
L2 crossvalidation curve is defined (Bowman, 1984) by

CV(h) =
∫∞

−∞
f̂h(x)2 dx − 2

n

n∑
i=1

f̂ i
h(Xi), h > 0, (10)

where f̂ i
h is an estimator computed from the n − 1 observations that exclude Xi , i = 1,. . . , n.
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Fig. 2. White cell counts data. Histogram and density of white cell counts for (a) 102 male and (b)
100 female Australian athletes. The solid lines are kernel estimates, the dotted lines are skew-normal
estimates that estimate π via (7), and the dashed lines are skew-normal estimates that use local

likelihood to estimate π .

In our setting, for given ξ and bandwidth h, write

f̂h(x; ξ) = 2
σ(ξ)

φ (x − ξ

σ (ξ)
) π̂h(x − ξ), (11)

where π̂h(x − ξ) is a local likelihood estimator of π(x − ξ) and σ 2(ξ) = ∑n
i=1(Xi − ξ)2/n.

Note that the π function here is defined slightly differently in that we absorb the standard
deviation σ into π . Now define

CV(h, ξ) =
n∑

i=1
f̂h(X(i); ξ)2(Si − Si−1) − 2

n

n∑
i=1

f̂ i
h(Xi; ξ), (12)

where X(1) < X(2) < · · · < X(n) are the ordered Xi ’s, Si = (X(i) + X(i+1))/2, i = 0, 1,. . . , n,
with X(0) = 2X(1) − X(2) and X(n+1) = 2X(n) − X(n−1), and f̂ i

h( · ; ξ) is an estimator com-
puted from the n − 1 observations excluding Xi , i = 1,. . . , n. The first sum on the right-hand
side of (12) is an approximation of

∫∞
−∞ f̂h(x; ξ)2 dx. Our choice of bandwidth is ĥ, where

(ĥ, ξ̂ ) minimizes CV(h, ξ) with respect to (h, ξ).
In applying (4), we took K to be a standard normal density, pk(y) ≡ αy, and

H to be a logistic curve, i.e. H(y) ≡ (1 + e−y)−1. The global minimizer of (12) was
(h, ξ) = (1·03, 8·26) for the male athletes and (h, ξ) = (∞, 5·13) for the women. For the
women’s data, the resulting density estimate is essentially a parametric estimate of the form

f̂ (x) = 2
σ̂

φ (x − ξ̂

σ̂
)H {α̂(x − ξ̂ )},

where α̂ is the same for all x.
Profile likelihood curves were computed using estimates of π based on the bandwidths

chosen by our crossvalidation scheme. These curves have the form

L(ξ) =
n∏

i=1
f̂

ĥ
(Xi; ξ),

where f̂h( · ; ξ ) is defined as in (11). The maximizers of L(ξ) were ξ̂M = 8·12 for the men
and ξ̂ F = 5·11 for the women. These agree quite well with the values of ξ that minimized
the crossvalidation curves.
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Fig. 3. White cell count data. Crossvalidation curves for (a) male and (b) female athletes. Each curve is a
function of ξ for a fixed bandwidth h. The bandwidth is fixed at 1·03 for the males, and 1·5 for the females

respectively for the solid curves, and at 100 for the dashed curves.

The sample means for the men and women are 7·22 and 6·99, respectively. The previous
results thus seem to indicate that the two datasets are quite different, in that ξ̂M > 7·22,
whereas ξ̂ F < 6·99. However, a closer inspection of the two crossvalidation surfaces shows
that the results are not as different as they appear to be. Plots of CV(1·03, ξ ) and CV(100, ξ )

for the male athletes are shown in Fig. 3(a). What is interesting here is that the local
minimum at (h, ξ) = (100, 5·4) is only slightly larger than the global minimum. The
difference seems small enough that the two estimates of ξ should be deemed almost equally
credible. Indeed, comparing the two density estimates, (1·03, 8·26) and (100, 5·4), via a
penalized likelihood approach actually favours the estimate with ξ̂ = 5·4. Crossvalidation
curves for the female athletes are shown in Fig. 3(b). Here an estimate of about 5·11 is
unambiguously supported by either curve. Furthermore, the value of ξ that maximizes
L(ξ) at h = 1·5 is also 5·11.

To estimate π as in (7), we took f̂ to be a kernel estimate with a Gaussian kernel and
bandwidth chosen to minimize the crossvalidation function (10). The optimal bandwidths
were 0·71 and 0·76 for the men and women, respectively. The respective maximizers of the
profile likelihood (7) were 8·08 and 7·36. The fact that the latter estimate differs markedly
from the estimate of 5·11 obtained in our previous analysis raises the question as to which
estimate is better supported by the data. A simple likelihood analysis that takes into
account the fact that each density estimate uses a different effective number of parameters
gives stronger support to the estimate of ξ equal to 5·11.

Various estimates of the densities are shown in Fig. 2, and estimates of π are shown in
Fig. 4. Note that the two skew-normal density estimates for the women in Fig. 2(b) are
not remarkably different, and yet the corresponding estimates of π in Fig. 4(b) are quite
different. The difference in the two estimates of π undoubtedly explains the large difference
in the corresponding estimates of ξ .

Our analysis illustrates an advantage of the local likelihood method over the simpler
approach based on estimating π as in (7). The former method collapses to a parametric
version of the skew-normal model when the bandwidth is large. Such a property is also
possessed by the methods of Hjort & Jones (1996) and others. The density estimator based
on (7) collapses to a Gaussian curve for large h, since (7) converges to 1/2 as the bandwidth
of f̂ tends to ∞. This means that an estimate based on (7) can only account for skewness
through a nonparametric estimate of π . When a parametric skew-normal model for the
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Fig. 4. White cell counts data. Estimates of π for the (a) male and (b) female athletes’ data. The solid curves
are local likelihood estimates that optimize the crossvalidation function (12), while the dashed estimates have

the form (7) with f̂ a crossvalidated kernel estimate.

data is warranted, as appears to be the case for the female athletes’ data, the local likelihood
estimate can thus produce a more efficient estimate of the underlying density.
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APPENDIX

Technical proofs

We briefly outline essential parts of the proofs here. Detailed proofs are available at
http://www.stat.tamu.edu/∼ma.

Outline Proof of Proposition 1. Since the kernel K has support (−1, 1), π̂(y) = 0 for all
y � Y(m) + h, where Y(m) is the largest of Y1,. . . , Ym. The square of the norm of interest is thus∫∞

0
{π̂ (y) − π0(y)}2φ(y) dy

=
∫h

0
{π̂ (y) − π0(y)}2φ(y) dy +

∫Y(m)+h

h

{π̂ (y) − π0(y)}2φ(y) dy +
∫∞

Y(m)+h

π2
0(y)φ(y) dy.

We analyze the three terms on the right-hand side of the last equation separately. It can be shown
that the last term is bounded by

∫∞
Y(m)

2π0(y)φ(y) dy/2, and

pr {∫∞

Y(m)

2π0(y)φ(y)dy >
ε√
n
} � pr{Y ∗

(m) < ηF−1 (1 − ε√
n
)}

+pr {ξ 0 − ξ̃

σ 0
< −η − 1

2
F−1 (1 − ε√

n
)} + pr(1 − σ̃

σ 0
< −η − 1

2
) , (A1)

where F is the cumulative distribution function of the density f (y) = 2π0(y)φ(y), ε is an arbitrary
positive constant, Y ∗

(m) is the largest of (Xi − ξ 0)/σ 0, i = 1,. . . , m, and η > 1. Letting η − 1 have the
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form δ/
√

n for some constant δ, we can show that the right-hand side of (A1) can be made smaller
than any positive number for n sufficiently large.

For any sequence of positive constants Cm, we have

pr [∫Y(m)+h

h

{π̂(y) − π0(y)}2φ(y) dy >
ε√
n
]

� pr [∫Cm

h

{π̂ (y) − π0(y)}2φ(y) dy >
ε√
n
] + pr(Y(m) + h � Cm).

Obviously, pr(Y(m) + h � Cm) = o(1) if Cm = (C log n)1/2 for C > 4, a is chosen close enough to 1,
and n → ∞. In the sequel, E0 denotes expectation with respect to the joint distribution of ξ̃ and σ̃ ,
while pr∗ and E∗ denote probability and expectation with respect to the conditional distribution of
X1,. . . , Xn given ξ̃ and σ̃ . Defining

Gn = Gn(ε) = pr∗ [∫Cm

h

{π̂(y) − π0(y)}2φ(y) dy >
ε√
n
] ,

we have

pr [∫Cm

h

{π̂(y) − π0(y)}2φ(y) dy >
ε√
n
] = E0Gn.

By the theorem in Section 1·3·6 of Serfling (1980), it suffices to show that Gn converges in probability
to 0 for each ε > 0. By Markov’s inequality and Fubini’s theorem,

Gn �
√

n

4ε

∫Cm

h

1

φ2(y)
E∗{f̂h(y) − f (y)}2φ(y) dy,

where f̂h(y) = (mh)−1 ∑m
i=1 K{(y − Yi)/h}. Defining

fn(y) = 2( σ̃

σ
)φ ( σ̃ y + ξ̃ − ξ

σ
)π0 ( σ̃ y + ξ̃ − ξ

σ
) ,

we only need to show that

√
n

∫Cm

h

E∗{f̂h(y) − fn(y)}2{φ(y)}−1 dy (A2)

and

√
n

∫Cm

h

{fn(y) − f (y)}2{φ(y)}−1 dy (A3)

converge in probability to 0. It is easily verified that (A3) is Op(n−1/2). Standard results from density
estimation (Silverman, 1986) yield

E∗{f̂h(y) − fn(y)}2 = 1
mh

∫1

−1
K2(z)fn(y − hz) dz − 1

m
{∫1

−1
K(z)fn(y − hz) dz}

2

+h4

4
{∫1

−1
z2K(z)f ′′

n (ŷn) dz}
2

,

where ŷn is between y and y − hz. Each of the three terms on the right-hand side of the last equation
can be shown to be op(1), and hence (A2) holds.

The only remaining part of the proof is to show that
√

n
∫h
0{π̂(y) − π0(y)}2φ(y) dy → 0 in

probability. Since this integral is over an interval of length h, the only potential problem here is that
the bias, conditional on ξ̃ and σ̃ , of the kernel estimator of f (y) on [0, h] is of order h, rather than
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h2 as when y > h. The resulting integral of the squared bias is Op(h3), which is still small enough
since

√
nh3 = O(n−1/10). This completes the proof of Proposition 1. �

Proof of Corollary 1. Approximating the derivative π ′
0 by a difference, we obtain

lim
n→∞ ||π̃ ′

n(y) − π ′
0(y)||

= lim
n→∞ || π̃ n(y + n−1/4) − π̃n(y − n−1/4)

2n−1/4
− lim

n→∞
π0(y + n−1/4) + π0(y − n−1/4)

2n−1/4
||

= lim
n→∞ ||π̃ n(y + n−1/4) − π̃n(y − n−1/4) − π0(y + n−1/4) + π0(y − n−1/4)||/(2n−1/4)

� lim
n→∞ ||π̃ n(y + n−1/4) − π0(y + n−1/4)||/(2n−1/4)

+ lim
n→∞ ||π̃ n(y − n−1/4) − π0(y − n−1/4)||/(2n−1/4) = 0

with probability 1. The last equality is a result of the uniform convergence rate of op(n−1/4) from
Proposition 1. �

Proof of Proposition 2. From Proposition 1, we obtain ||π̃ − π0|| = op(1) and ||π̃ ′ − π ′
0|| =

op(1). In the following, we show that, when the true nuisance function π0 is replaced by its
estimated version π̃ , the resulting estimated efficient score still yields an efficient estimator, given
that the estimation of the nuisance parameter is performed on separate observations. For notational
simplicity, we treat β as if it were a scalar; the general vector case is similar.

Denote the efficient score function by Seff(X, β0, π0) and let ||π̃ − π0|| = op(n−1/4). Assume that
β̂ is a solution of the efficient estimating equation. Then we have

0 = 1
m1/2

m∑
i=1

Seff(Xi, β̂, π̃)

= 1
m1/2

m∑
i=1

Seff(Xi, β0, π0) + 1
m

m∑
i=1

∂Seff

∂β
(Xi, β∗, π̃){m1/2(β̂ − β0)}

+ 1
m1/2

m∑
i=1

{Seff(Xi, β0, π̃) − Seff(Xi, β0, π0)}

= 1
m1/2

m∑
i=1

Seff(Xi, β0, π0) + 1
m

m∑
i=1

{∂Seff

∂β
(Xi, β0, π0) + op(1)} {m1/2(β̂ − β0)}

+ 1
m1/2

m∑
i=1

{Seff(Xi, β0, π̃) − Seff(Xi, β0, π0)},

where β∗ is between β0 and β̂. Since ||π̃ − π0|| = op(1), each term in the last summation is op(1),
and thus

1
m1/2

m∑
i=1

{Seff(Xi, β0, π̃) − Seff(Xi, β0, π0)}

= m1/2E{Seff(Xi, β0, π̃) − Seff(Xi, β0, π0)} + op(1).

If we define η(t) = t π̃ + (1 − t)π0, it is easily checked that, by replacing π0 by η in the density in
(3), we obtain a parametric submodel of the original semiparametric model, with η(0) = π0 and
η(1) = π̃ . Using a Taylor expansion around t = 0, we obtain

m1/2E{Seff(Xi, β0, π̃) − Seff(Xi, β0, π0)}

= m1/2E [∂Seff {Xi, β0, η(t)}
∂t

∣∣∣
t=0

(1 − 0) + 1
2

∂2Seff{Xi, β0, η(t)}
∂t2

∣∣∣
t=t∗

(1 − 0)2] . (A4)
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The first term in the above display is zero because of the orthogonality between Seff and the nuisance
tangent space:

E [∂Seff{Xi, β0, η(t)}
∂t

∣∣
t=0] = E[Seff{Xi, β0, η(t)}St

∣∣
t=0] = 0,

where St represents the partial derivative of the log likelihood with respect to t . Since
dη(t)/dt = π̃ − π0, the second term, ∂2Seff{Xi, β0, η(t)}/∂t2, is generally of the same order as
(π̃ − π0)

2 = op(n−1/2), provided that the form of Seff allows us to calculate ∂Seff(Xi, β0, η)/∂η. This
then leads to the conclusion that (A4) is of order op(1), which is needed for the rest of the proof.

In our special setting, it is not obvious that the operation ∂Seff(Xi, β0, η)/∂η is meaningful, and
hence we investigate ∂2Seff{Xi, β0, η(t)}/∂t2 itself. The form of Seff shows that, as a function of t ,
Seff{Xi, β0, η(t)} is in fact linear; the second component of Seff is even independent of the nuisance
parameter. Hence, ∂2Seff{Xi, β0, η(t)}/∂t2 ≡ 0, and we automatically obtain the desired op(1) rate
of (A4).

What we have so far is that
√

m(β̂ − β0) → N(0, V ), where V is the inverse of the efficient Fisher
information. Since m = n − nε , we have

√
n(β̂ − β0) − √

m(β̂ − β0) = (β̂ − β0)(n − m)/(
√

n + √
m)

= √
m(β̂ − β0)(n − m)/{√(nm) + m},

which converges in distribution to 0, and hence
√

n(β̂ − β0) → N(0, V ) in distribution.
�

REFERENCES

ARNOLD, B. C. & BEAVER, R. J. (2002). Skewed multivariate models related to hidden truncation and/or
selective reporting. Test 11, 7–54.

AZZALINI, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12, 171–8.
BOWMAN, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates.

Biometrika 71, 353–60.
EGUCHI, S. & COPAS, J. (1998). A class of local likelihood methods and near-parametric asymptotics. J. R.

Statist. Soc. B 60, 709–24.
GENTON, M. G. (2004). Skew-Elliptical Distributions and their Applications: A Journey Beyond Normality. Boca

Raton, FL: Chapman and Hall/CRC.
GENTON, M. G. & LOPERFIDO, N. (2005). Generalized skew-elliptical distributions and their quadratic forms.

Ann. Inst. Statist. Math. 57, 389–401.
HJORT, N. L. & JONES, M. C. (1996). Locally parametric nonparametric density estimation. Ann. Statist. 24,

1619–47.
LOADER, C. R. (1996). Local likelihood density estimation. Ann. Statist. 24, 1602–18.
MA, Y. & GENTON, M. G. (2004). A flexible class of skew-symmetric distributions. Scand. J. Statist. 31,

459–68.
MA, Y., GENTON, M. G. & TSIATIS, A. A. (2005). Locally efficient semiparametric estimators for generalized

skew-elliptical distributions. J. Am. Statist. Assoc. 100, 980–89.
MURPHY, S. A. & VAN DER VAART, A. W. (2000). On profile likelihood. J. Am. Statist. Assoc. 95, 449–65.
NEWEY, W. K. (1990). Semiparametric efficiency bounds. J. Appl. Economet. 5, 99–135.
RAO, C. R. (1985). Weighted distributions arising out of methods of ascertainment: what populations does a

sample represent? In A Celebration of Statistics: The ISI Centenary Volume, Ed. A. C. Atkinson & S. E.
Fienberg, pp. 543–69, New York: Springer-Verlag.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.
SEVERINI, T. A. & WONG, W. H. (1992). Profile likelihood and conditionally parametric models. Ann. Statist.

20, 1768–802.
SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
WANG, J., BOYER, J. & GENTON, M. G. (2004). A skew-symmetric representation of multivariate distributions.

Statist. Sinica 14, 1259–70.

[Received June 2005. Revised August 2006]


