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We devise methods to estimate probability density functions of several populations using observations with uncertain population member-
ship, meaning from which population an observation comes is unknown. The probability of an observation being sampled from any given
population can be calculated. We develop general estimation procedures and bandwidth selection methods for our setting. We establish
large-sample properties and study finite-sample performance using simulation studies. We illustrate our methods with data from a nutrition
study.
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1. INTRODUCTION

Suppose that we observe S, which is known to come from
one of P subpopulations with densities f1, . . . , fP. We are in-
terested in the nonparametric estimation of each of these P
densities. Our problem differs from the usual density estima-
tion framework, because each observation on S is made with-
out knowing from which subpopulation it came. Instead, we
observe Q = (q1, . . . ,qP) with

∑P
j=1 qj = 1, where qj is an es-

timate of the probability that S comes from subpopulation j,
j = 1, . . . ,P. Thus subpopulation membership is missing, but
membership probabilities are known or can be estimated.

Simple examples of this problem arise quite naturally in
nutritional epidemiology. For example, suppose that we are
interested in a quantitative trait S, such as body mass in-
dex or triglyceride level, among subpopulations formed by
the P = 3 tertiles of usual dietary behavior, for example,
the tertiles of caloric intake or the levels of the Healthy
Eating Index-2005 (HEI-2005, http://www.cnpp.usda.gov/
HealthyEatingIndex.htm). Unfortunately, usual dietary intake
cannot be measured exactly, because the instruments used ei-
ther focus only on short-term diet, such as 24-hour recalls, or
use a food frequency questionnaire. Generally, in nutritional
epidemiology and surveillance, information about usual intake
is available from repeated administration of the instrument fol-
lowed by a measurement error analysis that estimates the distri-
bution of usual intake, from which the probability of member-
ship in each tertile can be estimated. Some examples of com-
plex measurement error analysis have been given by Nusser,
Fuller, and Guenther (1997), Dodd et al. (2006), Johnson et al.
(2007), and Sinha et al. (2010), among others. Of course, our
problem can arise in many other contexts as well. These general
methods result in n1/2-consistent estimation of the membership
probabilities, which means that a nonparametric density estima-
tor based on estimated probabilities will have the same asymp-
totic distribution as in the case where membership probabilities
are known.
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Let mi denote the unknown subpopulation from which Si
comes, i = 1, . . . ,n. Our data are then (Si,Qi), i = 1, . . . ,n,
where qij = pr(mi = j), j = 1, . . . ,P. At a fixed Qi, the marginal
density function of Si is the mixture fS(s) = ∑p

j=1 qijfj(s). Our

goal is to estimate f(s) = {f1(s), . . . , fP(s)}T. Here, as is moti-
vated in our example, Qi is a multivariate continuous random
variable. This is in contrast to the setting of Ma and Wang
(2010), where Qi is discrete, and thus density estimation be-
comes straightforward. Specifically, in their problem, Qi can
take on only finitely many, say m, vector values u1, . . . ,um.
Thus the n observations can be grouped into m groups accord-
ing to their Qi values. Then a classical nonparametric density
estimation within each group is performed to obtain m density
estimates ĝ1(s) = u1̂f(s), . . . , ĝm(s) = um̂f(s), and f̂(s) is recov-
ered through f̂(s) = (

∑m
i=1 uiuT

i )−1{∑m
i=1 uîgi(s)}. This simple

treatment does not apply when Qi is continuous, because then
we could have m = n, and each group would only have one ob-
servation.

We also point out connections and differences between our
problem and more widely studied clustering problems. In both
cases, each observation is assumed to be drawn randomly from
one of several populations. However, in clustering the proba-
bility density functions of the populations are often clearly dif-
ferentiated (Mallapragada, Jin, and Jain 2010), whereas in our
problem these functions do not even have to be different. In
addition, in clustering, the likelihood that an observation be-
longs to a specific population is unknown, and identifying the
population to which a particular observation belongs is of in-
terest. However, in our problem, the probability that an obser-
vation belongs to a specific population is either known or can
be estimated at a root-n rate. For these reasons, our problem
is substantially different from both the clustering problem and
classical mixture models.

The rest of the article is organized as follows. In Section 2
we derive a general method for constructing a class of nonpara-
metric estimators. We also derive the most efficient estimator
in this class. In Section 3 we establish asymptotic properties of
the estimators. We report simulation experiments in Section 4,
and use the proposed estimators to analyze a real data example
in Section 5. We conclude with a discussion in Section 6, and
provide technical details are provided in the Appendix.
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2. ESTIMATION

2.1 Basic Estimator

We propose a family of kernel-based weighted least squares
estimators,

f̂j(s) = eT
j

(
n−1

n∑
i=1

wiqiqT
i

)−1

n−1
n∑

i=1

wiqiKhj(Si − s) (1)

for j = 1, . . . ,P. Here wi is an arbitrary weight, hj is a band-
width, and ej is a vector of length P with 1 as the jth entry and
0s elsewhere. For any bandwidth h, Kh(s) ≡ K(s/h)/h, where
K is a kernel function. Among different choices of weights, the
optimal ones are wi = {qT

i f(s)}−1, i = 1, . . . ,n.
Estimator (1) is motivated by the following considerations.

Given qi, the probability of Si < s for any fixed s can be
written as E{I(Si < s)|Qi = qi} = qT

i F(s), where F(s)T =
(F1(s), . . . ,FP(s)) and Fj is the cumulative distribution func-
tion (cdf) corresponding to subpopulation j. Viewing this as
a linear regression problem yields I(Si < s) = qT

i F(s) + ei,
where ei satisfies E(ei|qi) = 0 and var(ei|qi) = qT

i F(s){1 −
qT

i F(s)} (Ma and Wang 2010). Thus a weighted least squares
estimator for the vector of cdfs is given by

F̃(s) =
(

n−1
n∑

i=1

wiqiqT
i

)−1

n−1
n∑

i=1

wiqiI(Si < s). (2)

Differentiating these step functions yields

f̂(s) =
(

n−1
n∑

i=1

wiqiqT
i

)−1

n−1
n∑

i=1

wiqiδ(Si − s), (3)

where δ(·) denotes the Dirac delta function. Equation (3) can be
viewed as an empirical density estimator, inasmuch as it places
a point mass at each Si. To obtain a smooth density estimate, we
replace the point mass at Si by a kernel centered at Si. Consider-
ing that different components of f(s) can have different smooth-
ness, we further allow component-specific bandwidths, leading
us to (1).

For readers familiar with the classic technique of linking
a distribution function estimator F̂ and a density estimator f̂
via the convolution f̂ (s) = ∫

Kh(s − t)dF̂(t), the estimator in
(1) also can be obtained as follows:

f̂j(s) =
∫

Khj(s − t)d{eT
j F̃(t)}

=
∫

Khj(s − t)d

{
eT

j

(
n−1

n∑
i=1

wiqiqT
i

)−1

× n−1
n∑

i=1

wiqiI(Si < t)

}

= eT
j

(
n−1

n∑
i=1

wiqiqT
i

)−1

× n−1
n∑

i=1

wiqi

∫
Khj(s − t)d{I(Si < t)}

= eT
j

(
n−1

n∑
i=1

wiqiqT
i

)−1

n−1
n∑

i=1

wiqiKhj(s − Si).

2.2 Bandwidth Estimation

We now study the issue of bandwidth selection for hj. Be-
cause the estimation procedure is a weighted kernel estima-
tor, leave-one-out least squares cross-validation (CV) (Bowman
1984) is a candidate method. Let f̂j(·;h) denote estimator (1)
based on bandwidth h. The integrated squared error (ISE) of
f̂j is ISE(̂fj) = ∫ {̂fj(s;hj) − fj(s)}2 ds. Minimizing ISE(̂fj) with
respect to h is equivalent to minimizing

ISE(̂fj) −
∫

f 2
j (s)ds =

∫
f̂ 2
j (s;hj)ds − 2

∫
f̂j(s;hj)fj(s)ds.

(4)

CV provides an estimator of (4). For i = 1, . . . ,n, let f̂j,−i(·;hj)

be the weighted least squares density estimator using all of the
observations except Si. We define the CV bandwidth to be the
minimizer ĥj of the following criterion:

CVj(h) =
∫

f̂ 2
j (s;h)ds − 2

∫
f̂j,−i(s;h)deT

j F̃(s)

=
∫

f̂ 2
j (s;h)ds

− 2
n∑

i=1

f̂j,−i(Si;h)eT
j

(
n−1

n∑
j=1

wjqjqT
j

)−1

n−1wiqi.

In the usual density estimation context, CV is known to have
relatively large variance. To overcome this problem, we con-
sider the indirect CV (ICV) idea proposed by Savchuk, Hart,
and Sheather (2010). This method uses different kernels for
bandwidth selection and density estimation, which allows the
selection of a kernel that, although perhaps not suitable for den-
sity estimation, is very good for CV.

Specifically, we use the kernel function Kcv(x) = (1 +
α)φ(x) − α/σφ(x/σ) in the foregoing CV procedure, where
α = 2.42, σ = max(5.06,0.149n3/8), and φ is the standard nor-
mal density function. But because Kcv is known to perform
poorly for density estimation, we use a quartic kernel as our
K in the actual estimation of the density function. The final
bandwidth for the quartic kernel density estimate of the jth
subpopulation density is obtained by first calculating the ICV
bandwidth b̂j, and then rescaling it via

h̃j = b̂j

{∫
K2(x)dx{∫ x2Kcv(x)dx}2∫
K2

cv(x)dx{∫ x2K(x)dx}2

}1/5

.

Savchuk, Hart, and Sheather (2010) established that in the stan-
dard density estimation setting, h̃j has relative error converging
to 0 at the rate n−1/4, in contrast to the n−1/10 rate of the clas-
sical CV. They also pointed out that CV is known to work well
in some difficult estimation problems, such as when the den-
sity is not smooth or has multiple sharp peaks. Thus an intuitive
motivation for ICV is that by using a kernel (Kcv) that poorly
estimates the density, the estimation problem becomes difficult
and so CV works better.

Another possibility is to use a plug-in type of bandwidth se-
lector. Toward this end, we use the asymptotic bias and vari-
ance results derived in the next section, and minimize the mean
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ISE (MISE). To simplify notation, we write σ 2
K = ∫

u2K(u)du,
CK = ∫

K2(u)du and

cj = eT
j

(
n−1

n∑
i=1

wiqiqT
i

)−1{
n−1

n∑
i=1

w2
i qiqT

i

}

×
(

n−1
n∑

i=1

wiqiqT
i

)−1

ej, j = 1, . . . ,P.

Thus we minimize
∫ {h2σ 2

Kf ′′
j (s)}2 ds/4 + CKcj/(nh), which

leads to the first-order optimal bandwidth

hj,opt =
(

CKcj

σ 4
Kn

)1/5{ 1∫
f ′′
j (s)2 ds

}1/5

.

The only unknown quantity in the foregoing expression is∫
f ′′
j (s)2 ds, which can be estimated using

f̂ ′′
j (s) = eT

j

(
n−1

n∑
i=1

wiqiqT
i

)−1

× n−1
n∑

i=1

wiqĩh
−3K′′{(Si − s)/̃h}, (5)

where h̃ is a new bandwidth. There is an obvious similarity be-
tween the optimal bandwidth form hj,opt and the usual plug-in
optimal bandwidth. In addition, estimation of the second deriva-
tive f̂ ′′

j (s) in (5) differs from the usual form only by the weight

νji ≡ eT
j (n−1 ∑n

i=1 wiqiqT
i )−1n−1wiqi. This allows us to adapt

the idea of the Sheather–Jones plug-in method (Sheather and
Jones 1991) to devise a suitable subsample plug-in method.
Specifically, the adaptation entails modifying three quantities in
their procedure. The first modification is to replace the sample
size with an approximate subsample size nqj. The second mod-
ification is to define an appropriate estimate of the interquar-
tile range for the jth subsample. Let s(1) < · · · < s(n) be the or-
dered observations, and for i = 1, . . . ,n let ω(i)j, j = 1, . . . ,P,
denote the weights associated with s(i). Our estimate of the
interquartile range for subpopulation j is s(k) − s(�), where
(k, �) satisfies

∑
i≤k ω(i)j ≥ 3/4

∑n
i=1 ω(i)j >

∑
i≤k−1 ω(i)j and∑

i≤� ω(i)j ≤ 1/4
∑n

i=1 ω(i)j <
∑

i≤�+1 ω(i)j. The third modifi-
cation is to replace the double summation in the approximation
of two squared integration terms (Sheather and Jones’ ŜD and
T̂D, respectively) with a weighted version using the νji weights.
These modifications ensure that the equation solved when each
observation belongs to a subpopulation with a given probabil-
ity is asymptotically equivalent to the equation solved in a case
with a known population membership.

2.3 A Locally Efficient Class

Ma and Wang (2010) considered the case where Qi is dis-
crete and derived a class of semiparametric estimators of the
distribution function. In brief, they took a proposed density
f∗(s) for f(s) and derived estimators for F(s) that are efficient if
the proposed model is correct and consistent otherwise.

Define

A∗(s) = n−1
n∑

i=1

{
qiqT

i /(qT
i f∗(s))

}
,

a sample average version of A∗
0(s) ≡ ∫ · · ·∫ {qqTgQ(q)/

(qTf∗(s))}dq, where gQ denotes the multivariate density of the
P-variate random vector Q, and

K∗(s) =
∫

I(t < s)A∗(t)−1 dt

{∫
A∗(t)−1 dt

}−1

.

Then the estimators of Ma and Wang (2010) are of the form

F̂(s) = n−1
n∑

i=1

{I(Si < s) − K∗(s)}A∗(Si)
−1qi

qT
i f∗(Si)

+ K∗(s)1p, (6)

where 1p is a length p vector with each component 1.
As described in Section 2.1, any distribution function estima-

tor can be modified to a corresponding density estimator. Thus,
starting with estimators in the class (6), we can define the class
of density estimators

f̂j(s) = eT
j n−1

n∑
i=1

[
Khj(Si − s) − A∗(s)−1

{∫
A∗(t)−1 dt

}−1]
× A∗(Si)

−1qi
/
(qT

i f∗(Si))

+ eT
j A∗(s)−1

{∫
A∗(t)−1 dt

}−1

1p

= eT
j n−1

n∑
i=1

A∗(Si)
−1qi

qT
i f∗(Si)

Khj(Si − s)

+ eT
j A∗(s)−1

{∫
A∗(t)−1 dt

}−1

× n−1
n∑

i=1

{
1p − A∗

0(Si)
−1qi

qT
i f∗(Si)

}

+ eT
j A∗(s)−1

{∫
A∗(t)−1 dt

}−1

× n−1
n∑

i=1

{
A∗

0(Si)
−1qi

qT
i f∗(Si)

− A∗(Si)
−1qi

qT
i f∗(Si)

}
. (7)

Inspecting the three summands in (7) is of interest. The first
summand is a weighted average of the kernels Khj(Si − s), and
thus is Op(1). Because

E

{
1p − A∗

0(Si)
−1Qi

QT
i f∗(Si)

}
= 1p −

∫
A∗

0(s)
−1q

qTf∗(s)
gQ(q)qTf(s)dq ds

= 1p −
∫

f(s)ds = 0,

the second summand is a term of order Op(n−1/2) under con-
dition C3. The third summand is of the same order as A∗

0(s) −
A∗(s), which is Op(n−1/2) under condition C3. Thus, to first
order, the density estimators derived from the family (6) can be
written as

f̂j(s) = eT
j n−1

n∑
i=1

A∗(Si)
−1qi

qT
i f∗(Si)

Khj(Si − s). (8)

In Section 3 we show that the estimators in (8) are special
cases of the weighted least squares estimators in (1), and thus in



Ma, Hart, and Carroll: Density Estimation With Uncertain Population Membership 1183

applications we need only implement the weighted least squares
estimators. This is very different from the situation when esti-
mating F(t), where the weighted least squares estimators are
not locally semiparametric efficient (Ma and Wang 2010).

3. ASYMPTOTIC PROPERTIES

If we let wi = {qT
i f∗(s)}−1 in (1), then we see that (1) and

(8) are identical except for the arguments inside f∗ and A∗. In
(1), both f∗ and A∗ are evaluated at the point of estimation s,
whereas in (8), they are evaluated at the observations S1, . . . ,Sn.

The nonparametric density estimators given in (1) are based
on kernel estimation, and thus have the usual bias and variance
properties. We express the asymptotic results of the weighted
least squares estimator in Theorem 1 and state the equivalence
relation between the locally efficient estimators and a weighted
least squares in Theorem 2. Here and in the sequel, unless stated
otherwise, all of the bias and variance results are conditional on
q1, . . . ,qn, which is analogous to the familiar practice of con-
ditioning on covariates in regression. The proofs are provided
in the Appendix.

Theorem 1. For any arbitrary nonnegative weights wi, i =
1, . . . ,n, under regularity conditions C1–C3 in the Appendix,
the weighted least squares estimator f̂j(s) in (1) has bias
h2

j f ′′
j (s)σ 2

K/2 + O(h4
j ). Defining Mq = (n−1 ∑n

i=1 wiqiqT
i )−1,

for j = 1, . . . ,P, the variance is

(nhj)
−1eT

j Mq

{
n−1

n∑
i=1

w2
i qiqT

i qT
i f(s)

}
MqejCK + O(n−1).

Remark 1. Using standard matrix manipulation, it is easy to
see that among the different choices of wi’s, the one that yields
the smallest estimation variance conditional on q1, . . . ,qn is
wi = {qT

i f(s)}−1, and the resulting estimation variance is

1

nhj
eT

j

[
n−1

n∑
i=1

{qT
i f(s)}−1qiqT

i

]−1

ejCK + O(1/n).

Remark 2. Using the estimator of the distribution function
F̃(s) in (2), and again defining Mq = (n−1 ∑n

i=1 wiqiqT
i )−1, it

is easy to see that the variance is

var{̃F(s)} = var

{(
n−1

n∑
i=1

wiqiqT
i

)−1

n−1
n∑

i=1

wiqiI(Si < s)

}

= n−1 Mqn−1
n∑

i=1

w2
i qiqT

i qT
i F(s){1 − qT

i F(s)}Mq.

This shows that the variance of f̂(s) is closely linked with that
of F̃(s).

Remark 3. In estimating the distribution function F(s), the
optimal weights are w−1

i = qT
i F(s){1 − qT

i F(s)}, which differ
from the optimal weights in the density estimator f̂(s). Thus,
although the two estimators are closely linked, a more efficient
F̂(s) does not necessarily result in a more efficient f̂(s).

Theorem 2. Under regularity conditions C1–C3, the locally
efficient estimator f̂j(s) in (8) is asymptotically equivalent to the
weighted least squares estimator in (1) when w−1

i = qT
i f∗(s).

Here asymptotic equivalence means that the difference between
the two estimators is of smaller order in mean square than the
MSE of either estimator.

4. SIMULATIONS

We performed extensive simulation studies to investigate the
performance of the proposed procedure. We report here the re-
sults of three studies. The first two are designed to illustrate the
impact of different weights and different bandwidth selection
procedures. The third simulation is designed to mimic the nu-
trition data analyzed in Section 5.

In the first simulation, we generate data from P = 2 popu-
lations. Both populations have a standard normal distribution.
Each dataset contains 400 observations, where for each obser-
vation, the probability that it belongs to the first and second
population, qi = (qi1,qi2)

T, is obtained as qi1 = u1/(u1 + u2),
qi2 = u2/(u1 + u2), where u1,u2 are generated independently
from the uniform [0,1] distribution. Thus, there are approx-
imately 200 observations from each population, and the two
population distributions are identical. We used CV, ICV, and
the adapted plug-in methods described in Section 2.2 to se-
lect bandwidths, and experimented with both constant weights
wi = 1 and the optimal weights w−1

i = qT
i f(Si). We generated

1000 datasets, and report the resulting values of average ISE for
various situations in Table 1. Figure 1 provides plots of point-
wise 5%, median, and 95% quantile curves.

The second simulation differs from the first simulation in that
the two populations have very different distributions. The first
true density is a standard normal distribution with mean 10 and
variance 25, whereas the second true density is a Student t dis-
tribution centered at 20 with scale parameter 10 and 4 degrees
of freedom. We performed the same estimation procedures as in
simulation 1, and summarize the results in Table 1 and Figure 2.

Table 1. Average values of ISE for optimal weighted least squares (OWLS) and its constant weight version
(OLS), in combination with least squares CV, ICV, and the adapted plug-in method. Each value

in the table was computed from 1000 replications and is 100× the actual value

Simulation 1, n = 400 Simulation 2, n = 400 Simulation 3, n = 500

f1 f2 f1 f2 f1 f2 f3

OLS, ICV 0.73 0.73 0.19 0.07 0.77 0.73 0.60
OLS, CV 1.54 1.65 0.33 0.20 1.76 1.59 1.22
OLS, plug-in 0.82 0.83 0.21 0.08 0.86 0.75 0.60

OWLS, ICV 0.73 0.73 0.19 0.07 0.77 0.73 0.60
OWLS, CV 1.54 1.65 0.31 0.18 1.74 1.58 1.20
OWLS, plug-in 0.82 0.83 0.20 0.08 0.85 0.75 0.59
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Figure 1. Pointwise quantile curves from simulation 1. In each plot, the solid line is the true density and the other three curves are the
median (dotted), 5% (dashed), and 95% (dotted–dashed) quantile curves of all 1000 density estimates in simulation 1. The left and right panels
correspond to populations 1 and 2, respectively. From top to bottom, the rows correspond to bandwidth selection by ICV, CV, and the adapted
plug-in. All results are based on the constant weight estimators.
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Figure 2. Pointwise quantile curves from simulation 2. In each plot, the solid line is the true density and the other three curves are the
median (dotted), 5% (dashed), and 95% (dotted–dashed) quantile curves of all 1000 density estimates in simulation 2. The left and right panels
correspond to populations 1 and 2, respectively. The rows, from top to bottom, correspond to bandwidth selection by ICV, CV, and the adapted
plug-in. All results are based on the constant weight estimators.



1186 Journal of the American Statistical Association, September 2011

Our third simulation is generated from a mixture of three
populations. It has sample size n = 500, and each subpopula-
tion is a mixture of two normals, as follows:

f1(x) = (0.98)(1.1)−1φ

(
x

1.1

)
+ (0.02)(0.7)−1φ

(
x − 4.5

0.7

)
,

f2(x) = (0.80)(1.1)−1φ

(
x

1.1

)
+ (0.20)2−1φ

(
x − 3

2

)
,

and

f3(x) = (0.60)(1.1)−1φ

(
x

1.1

)
+ (0.40)2−1φ

(
x − 3

2

)
.

These distributions resemble those in the nutrition example.
The probability vector qi is also generated to reflect a similar
pattern as in the data example, where for each of the three sub-
samples, j = 1,2,3, approximately 30% of the samples have
a qij value > 0.9, 60% have a value < 0.1, and the remaining
10% have values evenly distributed throughout [0,1]. The esti-
mation results are presented in Table 1 and Figure 3.

One common observation regarding the results in all of the
simulations is that the weight choice wi does not seem to have
a large impact. Because of this, in all the figures, we only show
the results of the constant weight estimators. This phenomenon
also was observed in distribution function estimation by Ma
and Wang (2010). This is certainly an encouraging result from
a practical standpoint, in that it justifies using a simple equal
weight method.

Our second observation is that the estimation results are quite
sensitive to the bandwidth selection method. This finding does
not come as a surprise, given that it is usually the case for non-
parametric curve estimation. Here we implemented the three
selection methods described in Section 2.2, namely CV, ICV,
and our adapted version of the Sheather–Jones plug-in method.
Properties of the three methods turned out to be similar to those
in the familiar single population case. To wit, the CV bandwidth
has relatively small bias, but very large variability. The adapted
plug-in method reduces variability but is sometimes biased. The
ICV method also has relatively small variability, but tends to
produce oversmoothed density estimates, as is most evident in
f3 in Figure 3. On the basis of average ISE, however, ICV is the
winner among the three methods. ICV produces smaller aver-
age ISE compared with CV and the adapted plug-in for all seven
densities in the three simulations. Based on these observations,
it seems safe to say that CV is not a viable method compared
with ICV, whereas the adapted plug-in methods is slightly infe-
rior to ICV.

Finally, to investigate the accuracy of the asymptotic results
given in Section 3, we calculated both the sample MISE and the
average first-order asymptotic MISE. In each simulation, we
integrated (with respect to s) the MSE approximation in The-
orem 1 to obtain a first-order approximation of MISE, condi-
tional on q1, . . . ,qn. We then averaged over 1000 simulations
to obtain the average first-order asymptotic MISE. As a func-
tion of bandwidth, this averaged MISE is a reasonably good
approximation to the expected ISE of f̂j. The results from the
three simulations are plotted in Figures 4, 5, and 6. It can be
seen that the sample and asymptotic MISE curves are close to
each other, reflecting the relevancy of the first-order asymptotic
MISE results. In addition, the minimizers of the two curves are
generally close to each other, which bodes well for the adapted
plug-in bandwidth selector described in Section 2.2.

5. DATA EXAMPLES

To illustrate the methodology, we use data from the OPEN
Study (Kipnis et al. 2003), where we examine body mass index
(BMI) distribution in low (<1/3-quantile), moderate (between
1/3-quantile and 2/3-quantile), and high (>2/3-quantile) en-
ergy intake groups. The quantiles are the quantiles of usual in-
take of energy, derived via a measurement error analysis, as de-
scribed later. Long-term intake of energy is impossible to mea-
sure, and so in this case biomarkers with double-labeled water
are measured instead. We used log-transformation to make the
biomarkers more approximately normally distributed, as was
done by Kipnis et al. (2003).

BMI measurements were available for 484 individuals in the
sample. Only 24 of these individuals had no biomarker mea-
surements. Thus, we use qi = (1/3,1/3,1/3)T for these in-
dividuals. The remaining 460 individuals had either one or
two measurements of the transformed biomarker, denoted by
Wij, i = 1, . . . ,460 and 1 ≤ j ≤ ri, where ri is 1 or 2. We as-
sume the standard classical additive error model Wij = Xi +Uij,
where Xi ∼ Normal(μx, σ

2
x ) and Uij ∼ Normal(0, σ 2

u ). Method-
of-moments calculations provide estimates of (μx, σ

2
x , σ 2

u ). The
sample mean of all the Wij estimates μx. To estimate σ 2

u , we
take all individuals with ri = 2 replicates, form the differences
Wi1 − Wi2, and take σ 2

u as 1/2 the sample variance of the dif-
ferences. The sample variance of the first biomarkers Wi1 esti-
mates σ 2

x +σ 2
u , and thus we estimate σ 2

x by subtraction. To fully
use all of the observations, we now form Wi = r−1

i

∑ri
j=1 Wij.

We thus have Wi = Xi + Ui, where Xi ∼ Normal(μx, σ
2
x ),

Ui ∼ Normal(0, σ 2
ui
), and σ 2

ui
= σ 2

u /ri. Correspondingly, we

have σ 2
wi

= σ 2
x + σ 2

ui
. We estimate the probabilities of popula-

tion membership given the observed biomarker data from nor-
mal distribution theory and using the fact that pr(Xi ≤ x|Wi) =
	{(x − μi)/σi}, where λi = σ 2

x /σ 2
wi

, μi = μx(1 − λi) + λiWi,
and σ 2

i = λiσ
2
u .

The estimated probability density functions for the three
groups are plotted in Figure 7, based on the three different
bandwidth selection methods (ICV, CV, and adapted plug-in).
The pointwise 5% and 95% quantile curves are calculated from
1000 bootstrap samples. The two curves in a plot form approxi-
mately valid 90% confidence bands for E{̂fj(x)}. Each bootstrap
sample has the same qi values as the original data, whereas
the Si values are generated from the first, second, or third of
the three estimated probability density functions depending on
whether a variable Ui, randomly generated from uniform [0,1],
is in [0,qi1), [qi1,qi1 +qi2), or [qi1 +qi2,1]. Here, when gener-
ating the bootstrap samples with the ICV method, the estimated
probability density functions are obtained using the bandwidth
chosen via ICV. Similarly, when generating the bootstrap sam-
ples in the CV or the adapted plug-in method, the estimated
probability density functions are obtained using the bandwidth
chosen via CV or adapted plug-in. Thus the different bandwidth
selection methods not only affect estimation of the density func-
tions in analyzing the original and bootstrap samples, but also
cause the bootstrap samples to differ. We can, of course, opt
to generate the bootstrap samples from the common estimated
density functions, but this seems to be a fairer procedure. Given
the similarity between optimal weighted least squares and its
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Figure 3. Pointwise quantile curves from simulation 3. In each plot, the solid line is the true density and the other three curves are the median
(dotted), 5% (dashed), and 95% (dotted–dashed) quantile curves of all 1000 density estimates in simulation 3. From left to right, the panels
correspond to populations 1, 2, and 3, respectively. The rows, from top to bottom, correspond to bandwidth selection by ICV, CV, and the
adapted plug-in. All results are based on the constant weight estimators.
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Figure 4. Average ISE (solid) and average of Theorem 1 conditional MISE approximations (dashed) as a function of bandwidth in simula-
tion 1. Results are based on 1000 simulations. The upper and lower panels present OLS and WLS results, respectively. The columns correspond
to the different populations. The online version of this figure is in color.

Figure 5. Average ISE (solid) and average of Theorem 1 conditional MISE approximations (dashed) as a function of bandwidth in simula-
tion 2. Results are based on 1000 simulations. The upper and lower panels present OLS and WLS results, respectively. The columns correspond
to the different populations. The online version of this figure is in color.
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Figure 6. Average ISE (solid) and average of Theorem 1 conditional MISE approximations (dashed) as a function of bandwidth in simula-
tion 3. Results are based on 1000 simulations. The upper and lower panels present OLS and WLS results, respectively. The columns correspond
to the different populations. The online version of this figure is in color.

constant weight version exhibited in Section 4, we only imple-
mented the latter. Because of the large variability of the least
squares CV, we focus on the results from the ICV and adapted
plug-in methods. Although the estimated density functions are
slightly different among the methods, an obvious conclusion
common to both methods is that there is a continuing shift of
mass from the small BMI region to the large BMI region from
the first population to the third population, verifying intuition
that higher energy intake can lead to increased BMI.

The variability increases from population 1 to population 2 to
population 3, and this is especially evident from population 2 to
population 3. Finally, each intake group seems to have a small
subgroup in which the BMI values form a small mass to the
right of the majority of that group. The size of this subgroup
increases as consumption increases. This indicates that a small
number of individuals tend to have very high BMI (BMI > 35,
classified as class II obese) even if their energy intake is rela-
tively low.

6. DISCUSSION

For simplicity of implementation, here we have provided a
one-step density estimation procedure. The trade-off of doing
so is that the estimated density functions in finite samples are
not guaranteed to be nonnegative and to integrate to 1. To over-

come this, we can of course perform some simple postestima-
tion adjustment, for example, set the negative values to 0 and
scale each density so that it integrates to 1. In practice, as long
as the sample size is not too small, this postestimation proce-
dure causes only a slight change, while improving such features
as MISE.

If nonnegativity and integration to 1 are of essential impor-
tance, then we also can construct more complex estimators. For
example, let f̃(s) be an initial nonnegative estimate of f(s), and
let

aij(u) = f̃j(u)qij

qT
i f̃(u)

.

Then we can update the estimate of fj(s), j = 1, . . . ,P, via

f̃j(s) =
n∑

i=1

aij(Si)∑n
k=1 akj(Sk)

K

(
s − Si

h

)
.

This procedure can be iterated until convergence to obtain f̂(s).
It can be readily seen that f̃j(s) is always nonnegative and inte-
grates to 1. However, because in each update we need to select
a corresponding bandwidth, the required computation is exten-
sive.
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Figure 7. Density estimates and 90% bootstrap confidence bands for the BMI data. The left, middle, and right panels correspond to first,
second, and third tertiles, respectively, of the energy intake population. The rows correspond to bandwidth selection via ICV (top), CV (middle),
and the adapted plug-in method (bottom), all based on the constant weight estimators.
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APPENDIX

A.0 List of Regularity Conditions

C1. K is a symmetric second-order kernel that is bounded in abso-
lute value and has compact support.

C2. For j = 1, . . . ,P, hj → 0 and nh3
j → ∞ as n → ∞.

C3. Each fj and each proposed density function f ∗
j are twice differ-

entiable with bounded second derivative. Each f ∗
j is bounded

and strictly positive throughout a neighborhood of s, and the
variance of estimator (8) exists and is finite for each j =
1, . . . ,P.

A.1 Proof of Theorem 1

The bias of f̂j(s) is

E{̂fj(s)} − fj(s) = eT
j

(
n−1

n∑
i=1

wiqiq
T
i

)−1

× n−1
n∑

i=1

wiqiEKhj (Si − s) − fj(s)

= eT
j

(
n−1

n∑
i=1

wiqiq
T
i

)−1

× n−1
n∑

i=1

wiqi

∫
Khj (t − s)qT

i f(t)dt − fj(s)

= eT
j

(
n−1

n∑
i=1

wiqiq
T
i

)−1

× n−1
n∑

i=1

wiqiq
T
i

∫
Khj(t − s)f(t)dt − fj(s)

=
∫

Khj(t − s)fj(t)dt − fj(s)

= h2f ′′
j (s)σ 2

K/2 + O(h4).

The variance of f̂j(s) is

var{̂fj(s)} =
eT

j

n2
Mq

n∑
i=1

w2
i qiq

T
i

× [
EK2

hj
(Si − s) − {

EKhj (Si − s)
}2]

Mqej

= eT
j Mq

1

n2

n∑
i=1

w2
i qiq

T
i

{
qT

i f(s)

hj
CK + O(1)

}
Mqej

= 1

nhj
eT

j Mq

{
n−1

n∑
i=1

w2
i qiq

T
i qT

i f(s)

}
MqejCK + O(n−1).

A.2 Proof of Theorem 2

Let the estimate from (1) with the weights wi = {qT
i f∗(s)}−1 be f̃j,

and let the estimate from (8) be f̂j. We can write f̃j(s) − f̂j(s) =
n−1 ∑n

i=1 di(s), where for i = 1, . . . ,n,

di(s) = eT
j

(
n−1

n∑
i=1

qiqT
i

qT
i f∗(s)

)−1
qi

qT
i f∗(s)

Khj(Si − s)

− eT
j

A∗(Si)
−1qi

qT
i f∗(Si)

Khj(Si − s)

= eT
j

{
A∗(s)−1qi

qT
i f∗(s)

− A∗(Si)
−1qi

qT
i f∗(Si)

}
Khj(Si − s)

= u(qi,Si, s)Khj(Si − s)

and

u(qi,Si, s) = eT
j

{
A∗(s)−1qi

qT
i f∗(s)

− A∗(Si)
−1qi

qT
i f∗(Si)

}
.

Note that n−1 ∑n
i=1 u(qi, t, s)qT

i = 0 for any s, t and u(qi, s, s) = 0 for
all s. The first of these properties yields

E

{
n−1

n∑
i=1

di(s)

}
= n−1

n∑
i=1

∫
u(qi, t, s)Khj(t − s)qT

i f(t)dt

=
∫

n−1
n∑

i=1

u(qi, t, s)qT
i f(t)Khj(t − s)dt = 0.

Furthermore, we obtain

E

[{
n−1

n∑
i=1

di(s)

}2]

= E

[{
n−1

n∑
i=1

u(qi,Si, s)Khj(Si − s)

}2]

= 1

n2

n∑
i,k=1,i
=k

∫
u(qi, t, s)Khj(t − s)qT

i f(t)dt

×
∫

u(qk, t, s)Khj(t − s)qT
k f(t)dt

+ 1

n2

n∑
i=1

∫
u2(qi, t, s)K2

hj
(t − s)qT

i f(t)dt

= 1

n2

n∑
i=1

∫
u(qi, t, s)Khj(t − s)qT

i f(t)dt

×
n∑

k=1

∫
u(qk, t, s)Khj (t − s)qT

k f(t)dt

+ 1

n2

n∑
i=1

∫
u2(qi, t, s)K2

hj
(t − s)qT

i f(t)dt

− 1

n2

n∑
i=1

{∫
u(qi, t, s)Khj (t − s)qT

i f(t)dt

}2

= 0 + 1

n2hj

n∑
i=1

∫
u2(qi, s + hju, s)K2(u)qT

i f(s + hju)du

− 1

n2

n∑
i=1

{∫
u(qi, s + hju, s)K(u)qT

i f(s + hju)du

}2

= O(n−1hj).

The last result follows from using condition C2 and u(qi, s, s) = 0.

[Received December 2010. Revised April 2011.]
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