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Summary. We consider functional measurement error models, i.e. models where covariates are
measured with error and yet no distributional assumptions are made about the mismeasured
variable.We propose and study a score-type local test and an orthogonal series-based, omnibus
goodness-of-fit test in this context, where no likelihood function is available or calculated—i.e.
all the tests are proposed in the semiparametric model framework. We demonstrate that our
tests have optimality properties and computational advantages that are similar to those of the
classical score tests in the parametric model framework. The test procedures are applicable
to several semiparametric extensions of measurement error models, including when the mea-
surement error distribution is estimated non-parametrically as well as for generalized partially
linear models. The performance of the local score-type and omnibus goodness-of-fit tests is
demonstrated through simulation studies and analysis of a nutrition data set.
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1. Introduction

Measurement error models have received much attention recently, with many new estimation
procedures having been developed in various linear and non-linear models as well as in
non-parametric and semiparametric models (Carroll et al., 2006). It is well known that, in the
measurement error context, parametric models are much more favourable than non-parametric
models in terms of drawing inferences, accuracy, power, etc. Here, by a parametric model,
we mean that the response variable Y depends on the mismeasured covariate X through a
parametric function with some unknown parameters, whereas, by a non-parametric model,
we mean that Y depends on X via an unspecified smooth function. Parameter estimation
and unknown regression function estimation require totally different treatments, and the sub-
sequent asymptotic properties are vastly different. Thus, a reasonable practice is to try to
adopt a parametric model, provided that the model is sufficient to capture the features of the
data.
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This naturally leads to the model testing problem in measurement error models. For example,
we might be interested in testing whether a certain covariate needs to be included in the model,
or we might be interested in testing whether a certain parametric model, say a linear model,
is sufficient to describe the data. Although testing problems in measurement error models are
important and basic, they have surprisingly been untouched except for very special cases such
as polynomial models (Cheng and Kukush, 2004; Hall and Ma, 2007a). The difficulty lies in the
fact that functional measurement error models, which make no assumptions about the distri-
bution of the mismeasured covariates, are semiparametric models, even when the relationship
between the response and mismeasured covariates is completely parametric. Likelihood func-
tions for these functional models are either not available or can only be calculated via complex
deconvolution or minimum distance procedures which have very slow rates of convergence.

The intention of this paper is to fill this gap by proposing both local and omnibus good-
ness-of-fit test procedures. The crucial part of our work is in recognizing that tests which are
similar to that of a score type can be constructed in semiparametric models, even when the
score itself cannot be calculated. Based on this idea, local tests are proposed in measurement
error models, which then serve as a foundation for further development in omnibus tests. The
testing procedures are proposed for a wide range of functional measurement error models.
As such, they are applicable in almost all measurement error models where root n estimation
rates can be obtained. In addition, the testing procedures have the property that, among tests
based on the same estimating equation and under the same type I error, maximum power is
achieved. Finally, our testing procedure is much less computationally burdensome than a full
semiparametric treatment using a Wald-type test based on estimating equations (referred to as
a Wald-type test hereafter); see Tsiatis and Ma (2004) and Ma and Tsiatis (2006) for evidence of
the computational complexity. Only estimation under the null model is required, which makes
this an extremely favourable method computationally since alternative models are usually more
complex, especially when the alternative model is non-parametric and a completely different
approach is required in estimation.

We now describe the testing problem in more detail. Suppose that the main problem of interest
involves a response Y and predictors .X, Z/. For a local test, under the full model, the data gen-
eration procedure for Y given .X, Z/ is governed by a likelihood function pY |X,Z.Y , X, Z, β, γ/.
Interest focuses on testing the null hypothesis γ = 0. For an omnibus test, the null model is
pY |X,Z.Y , X, Z, β/, and interest focuses on testing whether X, or Z or both need to enter the
model as an unspecified smooth function in place of the parametric form that is specified in
the null model. In the measurement error context, X is not observable and instead we observe
a surrogate for it, W.

If we assume that we know the distribution of the measurement error for W given .X, Z/,
pW |X,Z.W, X, Z/, then we have a semiparametric problem where the unknown infinite dimen-
sional nuisance parameter is the distribution of X, Z: pX,Z.X, Z/. Tsiatis and Ma (2004) showed
how to estimate .β, γ/ without having to estimate the infinite dimensional nuisance function
pX,Z.X, Z/ directly. The method involves specifying a distribution for X given Z, which will
enter the estimation procedure, and leaving pZ unspecified. The resulting estimator is efficient if
the latent variable distribution pX|Z is correctly specified, and it is consistent even if the distribu-
tion is incorrectly specified: this is a so-called functional method that does not rely on a correct
specification of the distribution of .X, Z/ and is the estimation method that we use through-
out this paper. The method has also been extended to the case where the likelihood or mean
includes an additional unknown function g.R/ for an exactly observed scalar covariate R (Ma
and Carroll, 2006), and where the measurement error distribution has unknown parameters or,
in some cases, is completely unknown (Hall and Ma, 2007b). These models are not within the
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scope of Tsiatis and Ma (2004) and, in them, the estimation of the non-parametric components
g.R/ and the error distribution must be carried out non-parametrically.

On the basis of the Wald test idea, if γ̂ is the estimate and its root n asymptotic covari-
ance matrix is V with estimate V̂, then the Wald-type test statistic is to reject the hypothesis if
nγ̂TV̂−1γ̂ exceeds a χ2-percentile, where the number of degrees of freedom is the dimension of
γ. Thus, the Wald-type test seems to be a straightforward testing procedure that can be applied
in measurement error models. Despite this, for testing a local hypothesis, there are reasons to
avoid the Wald-type test, and these reasons are primarily computational. Specifically, the meth-
odology that was described above requires solving for the roots of pβ +pγ estimating equations,
where pβ and pγ are the dimensions of β and γ respectively. The difficulty is with the estimating
equations, because to compute them we must solve integral equations of dimension pβ + pγ .
In an iterative procedure to estimate .β, γ/, these integral equations must be solved for each
iteration. Even in the simple case that γ is scalar, the increase in dimensionality can lead to
difficult issues of computational stability. The problem is not merely computational when we
perform omnibus testing. In fact, the alternative model of an omnibus test is non-specific; hence
it can often be expressed as containing some non-parametric components in addition to the null
model. Thus the estimation under the alternative usually only has a log.n/ rate of convergence
and cannot be sufficiently precise to construct an effective Wald-type test.

A good example to illustrate the above points is when Y is binary, X is scalar, Z is a vector that
includes a value of 1.0 for the intercept, logistic regression is used and we want to test whether
the effect of the covariates is linear in .X, Z/. Let H.·/ be the logistic distribution function. Thus,
for example, the null model would be

pr.Y =1|X, Z/=H{.X, ZT/β}, .1/

whereas, for a local test, an alternative model allowing for quadratic departures from linearity
might be

pr.Y =1|X, Z/=H{.X, ZT/β+X2γ}: .2/

For an omnibus test, an alternative allowing non-linear departures of X from linearity might
be

pr.Y =1|X, Z/=H{.X, ZT/β+θ.X/} .3/

for an unspecified function θ.·/ that is orthogonal to X. Assuming the classical measurement
error model W = X + U with U ∼ N.0,σ2

u/, model (1) is easy to fit by the method of sufficient
scores (Stefanski and Carroll, 1987). However, fitting model (2) in a functional manner, i.e.
without correctly specifying the distribution of .X, Z/, is not trivial: it involves repeatedly solv-
ing n integral equations of dimension 1+pβ , where n is the sample size, and attempting to find
the roots of equations of size 1 +pβ , which is a non-trivial task especially if the measurement
error is large. Estimation under model (3) is even more challenging. In fact, we are not aware
of any estimation procedures for model (3) and, even if they can be constructed, the rate of
convergence of θ̂ will not be sufficient for any Wald-type test (Fan and Truong, 1993).

Owing to these considerations, we propose here score-type tests, i.e. fitting the model only
under the null hypothesis to obtain estimates of β, and then constructing a test based on the
estimating functions of Tsiatis and Ma (2004), Ma and Carroll (2006) and Hall and Ma (2007b).
We do not estimate parameters or functions in the full model, only in the reduced model, and
it is in this way that our approach is similar to score tests.

However, there is a crucial difference from the ordinary score test from likelihood theory: the
structure of the general functional semiparametric measurement error model does not involve



84 Y. Ma, J. D. Hart, R. Janicki and R. J. Carroll

estimating the non-parametric components directly; no profile semiparametric likelihood is
available on which to base a score test. It is also more general than the test in Small and Wang
(2003), page 226, proposition 6.7, in that the Godambe efficiency that was required there is not
satisfied in the measurement error context. A similar idea in linear regression appeared in Sen
(1982), and in the general estimating equation setting in Janicki (2009). Our main insight is to
construct a score-type test, with the following properties.

(a) It is much less computationally burdensome than the semiparametric Wald-type test for
measurement error problems and applies to all the problems that were described above,
and more.

(b) It has the same power as the semiparametric Wald test based on the same estimating
equation.

(c) When the semiparametric Wald-type test is efficient against local alternatives, so is our
approach.

(d) Our methodology can be readily adapted to construct an omnibus goodness-of-fit test
when the alternative is non-specific.

The paper is organized as follows. In Section 2, we describe the problem in much more gen-
erality than that given above and we make the first step by considering parametric alternatives
in the case that the distribution of the latent variable X is unknown, whereas the measurement
error distribution is known and there are otherwise no unknown functions. Section 2 serves the
purpose of introducing our novel score-type test in these general semiparametric problems. This
approach can be used in many other contexts besides measurement error problems. In Section
3, we show how to extend the parametric methods to the cases in which either the measure-
ment error distribution is unknown or there is an additional unknown function. In Section 4,
we take up the issue of omnibus goodness-of-fit testing. Section 5 contains empirical examples
and simulations. Concluding remarks are given in Section 6. All technical details are given in
Appendix A.

2. Score-type testing

2.1. General remarks and definitions
In Section 1, we described the data-generating model pY |X,Z.Y |X, Z/, the measurement error
model pW |X,Z.W|X, Z/ and the latent variable model pX|Z.X|Z/ for the error prone covariate.
We assume that W is a surrogate for X, i.e. the distribution of Y is independent of W given
.X, Z/. We shall assume in this section that the measurement error model is known, but we shall
show how to avoid this assumption in Section 3.

We write the data generation process as

pY |X,Z.Y |X, Z/=pY |X,Z{Y , f.X, Z, β/+h.X, Z, γ/}, .4/

where f.·, β/ is known up to the parameter β, and h.·, γ/ is a discrepancy from the simpler model
f.·, β/ with the property that, under the null hypothesis that γ =0, h.X, Z, γ/=h.X, Z, 0/≡0.
We write the discrepancy in the additive form so it is easier to link with model (3) later on.
Non-additive discrepancies can be handled similarly. When it is of interest to test H0 against
a specific parametric alternative, h will have a known form with either known or unknown
parameter γ. When the test is non-parametric, we wish to detect virtually any deviation from
the parametric null hypothesis. In this case h is allowed to be an arbitrary linear combination
of known, orthogonal basis functions. In both cases, to ensure identifiability, we assume that
the space of all f +h is strictly larger than that of all f.
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2.2. Parametric tests: level
As described above, we wish to test the hypothesis that γ =0. In the measurement error problem,
and many other contexts, estimating equations exist (see Tsiatis and Ma (2004)) for .β, γ/ and
can be written as

0=
n∑

i=1
φβ.Wi, Zi, Yi, β, γ/, .5/

0=
n∑

i=1
ψγ.Wi, Zi, Yi, β, γ/, .6/

where φβ and ψγ have the same dimensions as β and γ respectively. We have used different
symbols φ.·/ and ψ.·/, because these estimating functions are not derivatives of some version of
a profile likelihood, since no profile likelihood exists in our semiparametric framework.

Since h.·/ vanishes at γ =0, the estimating equation under the null model is simply
n∑

i=1
φβ.Wi, Zi, Yi, β, 0/=0,

and we call its root β̂. The existence of β̂ is a result of the identifiability of the model under
the null hypothesis, which we assume. For more general discussion on the existence of the roots
of estimating equations, see Heyde (1997). Then, by analogy with the score test, we propose to
base our test on the estimated ‘score’

Û =n−1=2
n∑

i=1
ψγ.Wi, Zi, Yi; β̂, 0/:

The analysis of Û is straightforward. Make the following definitions, with all expectations
done under the null hypothesis:

A1 =E{@φβ.W , Z, Y , β, 0/=@βT};

A2 =E{@ψγ.W , Z, Y , β, 0/=@βT};

A3 =E{@φβ.W , Z, Y , β, γ/=@γT};

A4 =E{@ψγ.W , Z, Y , β, γ/=@γT};

B11 =E{φβ.W , Z, Y , β, 0/ φβ.W , Z, Y , β, 0/T};

B22 = cov{ψγ.W , Z, Y , β0, 0/};

B12 = cov{φβ.W , Z, Y , β0, 0/,ψT
γ .W , Z, Y , β0, 0/};

Vβ =A−1
1 B11.A−1

1 /T;

Σ0 = cov{ψγ.·, β, 0/−A2A−1
1 φβ.·, β, 0/}: .7/

All these quantities can be estimated by replacing expectations and covariance matrices by their
sample versions. We shall denote the resulting estimate of Σ0 by Σ̂0.

The test statistic with nominal levelα that we propose is to reject the hypothesis if T = ÛTΣ̂
−1
0 Û

exceeds the .1 −α/-quantile of the χ2-distribution with pγ degrees of freedom. Of course, T
does not involve estimating γ. That this test has asymptotic levelα follows from standard Taylor
series calculations, yielding the following result.

Theorem 1. Under the null hypothesis, n1=2.β̂ −β/→N.0, + Vβ/ and Û →N.0, Σ0/. Hence
T = Û

TΣ̂
−1
0 Û is asymptotically χ2 with pγ degrees of freedom.
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2.3. Parametric tests: power and the Wald-type test
We now study the power of our score-type test against root n local alternatives and compare its
local power with that of the Wald-type test. Define

A=
(

A1 A3
A2 A4

)
, B =

(
B11 B12
BT

12 B22

)
, V =

(
V11 V12
V T

12 V22

)
,

where V =A−1B.A−1/T. If we were actually to solve both equation (5) and equation (6), then
the resulting estimates .β̂compr, γ̂compr/ satisfy n1=2{.β̂compr −β/T, .γ̂compr −γ/T}T →N.0, V/.
Here and after, the subscript ‘compr’ (short for ‘comprehensive’) indicates a result that is
obtained from solving the full system of estimating equations. The Wald-type test then rejects
the null hypothesis if nγ̂T

comprV̂
−1
22 γ̂compr exceeds the .1−α/-quantile of the χ2-distribution with

pγ degrees of freedom, where V̂ 22 is a consistent estimate of V22.
Suppose that the local alternative is of the form γn = cn−1=2. In Appendix A, we sketch the

following general result.

Theorem 2. Under the alternative hypothesis that γn = cn−1=2, the test statistic T is asymp-
totically non-central χ2 with pγ degrees of freedom and non-centrality parameter

1
2 cT.A4 −A2A−1

1 A3/TΣ−1
0 .A4 −A2A−1

1 A3/c = 1
2 cTV −1

22 c:

In addition, the test which rejects when T exceeds χ2
pβ ,α has the same local power as the

computationally more intensive Wald-type test.

Theorem 2 shows that the Wald-type and score-type tests based on the same estimating equa-
tion have Pitman relative efficiency 1. Thus, when either is fully efficient, so is the other. We know
that, when the estimates .β̂compr, γ̂compr/ that are obtained by solving both equation (5) and
equation (6) are efficient (have the smallest estimation variance), the corresponding Wald-type
test is efficient; therefore our score-type test would also have efficient local power in this case.

2.4. Semiparametric setting and measurement error
Although the equivalence between the score and Wald tests has been established in parametric
models, in the measurement error context there is no profile likelihood and hence there is no
such general result. Instead, as described in Section 1, Tsiatis and Ma (2004) provided estimating
functions φβ.W, Z, Y , β, γ/ and ψγ.W, Z, Y , β, γ/ that have mean 0 when evaluated at the true
parameters.

As a consequence of theorem 2, we have the following result.

Theorem 3. Consider a semiparametric model f.Yi, β, γ, ν/, where Y1, . . . , Yn are indepen-
dent observations, β and γ are finite dimensional parameters and ν represents the infinite
dimensional nuisance parameters. Suppose that there exist equations (5) and (6) that define
root n consistent and asymptotically normally distributed estimators of .β, γ/. Then our
score-type test is asymptotically equivalent to the Wald-type test against alternatives of the
form γ = cn−1=2, in that the asymptotic distributions of the two test statistics are identical.

In theorem 3, although ν appears in the model, it does not appear in the estimating equations
(5) and (6) on which the tests are based. Such estimating equations do not necessarily exist for
an arbitrary semiparametric model. For the measurement error models that we are considering,
these estimating equations do exist.

Estimating equations such as equations (5) and (6) that do not involve a direct estimate of the
infinite dimensional nuisance parameter ν also exist in other problems, such as the restricted
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moment models (Tsiatis (2006), chapter 4), skew elliptical distribution models (Ma et al., 2005)
and generalized linear latent variable models (Ma and Genton, 2010). For these problems
theorem 3 applies.

3. Extensions

3.1. Overview
In Section 2, the non-parametric nuisance parameter ν, which is the distribution of the un-
observable X in measurement error models, is bypassed in the estimation procedure owing to the
structure of these models and is not estimated directly. However, there are important extensions
of measurement error models, where additional infinite dimensional nuisance parameters are
included in the model and in the estimation procedure. In this section, we describe two such
extensions:

(a) to cases in which the measurement error distribution is estimated and
(b) to cases where the underlying regression model has a non-parametric component.

Because the measurement error distribution in extension (a) or the unknown function in
extension (b) needs to be estimated non-parametrically to estimate the main parameter, the
testing procedure in Section 2 cannot be directly applied without adaptation. As preparation
for extension (a), we start with a simpler parametric version.

3.2. Estimated measurement error distributions
3.2.1. Parametric measurement error distributions
In some cases, we may be willing to assume that the measurement error distribution is known
up to a finite dimensional parameter η and is written as pW |X,Z.W|X, Z, η/. In such cases, the
unknown parameter η is typically estimated either from another experiment, or from units in
the study having replicated W-values. In either case, methods that were discussed in Carroll
et al. (2006) show that the net result is to obtain an estimating equation for estimating η, which
is called φη.W, Z, η/, and consistent estimates are formed by solving

0=
n∑

i=1
φη.Wi, Zi, η/: .8/

Testing whether γ = 0 is done by combining the estimating equations (5) and (8). Thus, if
B = .βT, ηT/T, we replace φβ.·/ in equation (5) by

φB.W, Z, Y, B, γ, η/={φT
β .W, Z, Y, β, γ/,φT

η .W, Z, η/}T,

and then all the results of Section 2 go through with this simple change in notation.

3.2.2. Non-parametric measurement error distributions
A second extension is to cases where the measurement error distribution is completely unknown.
Here, for simplicity, we assume that the covariate subject to error is univariate, and we discuss the
case in which multiple measurements Wij, j =1, . . . , mi, are available. It is assumed that, possibly
after transformation, Wij =Xi +Uij; hence pW |X,Z.W |X, Z/=pU.W −X/. Here, Ui1, . . . , Uimi

are independent of .Xi, Zi, Yi/ and have an unknown, symmetric probability density function
pU.·/.

Hall and Ma (2007b) proposed a non-parametric estimate of the unknown measurement error
distribution pU.·/; call it p̂U.·/. They then proposed to modify equations (5) and (6) to
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0=
n∑

i=1
φβ.Wi, Zi, Yi, β, γ, p̂U/; .9/

0=
n∑

i=1
ψγ.Wi, Zi, Yi, β, γ, p̂U/: .10/

The key to the analysis of testing when using equations such as equations (9) and (10) is to
show that they are asymptotically equivalent to equations that have the same form as equations
(5) and (6), but for which estimating the error distribution pU.·/ has no asymptotic effect. Let
‘ede’ stand for ‘error distribution estimated’. Then one needs to construct estimating equations
φβ,ede.·/ and φγ,ede.·/ such that

op.1/=n−1=2
n∑

i=1
{φβ.Wi, Zi, Yi, β, γ, p̂U/−φβ,ede.Wi, Zi, Yi, β, γ, p̂U/},

op.1/=n−1=2
n∑

i=1
{ψγ.Wi, Zi, Yi, β, γ, p̂U/−ψγ,ede.Wi, Zi, Yi, β, γ, p̂U/},

op.1/=n−1=2
n∑

i=1
{φβ,ede.Wi, Zi, Yi, β, γ, p̂U/−φβ,ede.Wi, Zi, Yi, β, γ, pU/},

op.1/=n−1=2
n∑

i=1
{ψγ,ede.Wi, Zi, Yi, β, γ, p̂U/−ψγ,ede.Wi, Zi, Yi, β, γ, pU/}

hold uniformly in a neighbourhood of the true parameter value .β0, γ0/. The first two of these
equations mean thatφβ,ede andψγ,ede are asymptotically equivalent versions ofφβ andψγ to use
in equations (9) and (10), whereas the latter two establish that these asymptotically equivalent
versions are not affected by estimating the error distribution.

Hall and Ma (2007b) derived the computable and asymptotically equivalent estimating
equations φβ,ede.·/ and ψγ,ede.·/, as φβ.·/−Sβ.·/ and ψγ.·/−Sγ.·/ respectively, where .Sβ.·/T,
Sγ.·/T/T is given as SÅ

2 in their appendix A.3. Specifically, they have the form

.ST
β , ST

γ /T =EÅ.af=pU |W , Y , Z/−{EÅ.a|W , Y , Z/+b1}EÅ.f=pU |W , Y , Z/

−EÅ.fSFÅ
β =pU |W , Y , Z/+SÅ

β EÅ.f=pU |W , Y , Z/+b1 +b2,

where an asterisk stands for quantities or operations that are calculated under a specified dis-
tributional model of X given Z, SFÅ

β and SÅ
β are the scores of β in the .X, Y , Z/ and .W , Y , Z/

spaces respectively, pU is the probability density function of U ,

f =h−1K{.V −u/=h}−pU.u/− 1
2 h2p′′

U

∫
t2K.t/dt,

b1 = EÅ.b0|W , Y , Z/, b2 = EÅ.b0r̃=pU |W , Y , Z/, b0 = â − a and r̃.·/ = n−1 Σn
i=1f.Vi, · , h/. The

function a is the solution of

E[EÅ{a.X, Z/|W , Y , Z}|X, Z]=E{SÅ
β .W , Y , Z/|X, Z},

where the calculation is performed by using pU , and â solves the same equation with pU replaced
by .nh/−1 Σn

i=1K{.Vi −u/=h}. When mi =2, Vi = .Wi1 −Wi2/=2, whereas for mi > 2, definitions
of Vi may be found in Hall and Ma (2007b).

Now suppose that

(a) Û =n−1=2 Σn
i=1ψγ.Wi, Zi, Yi, β̂, 0, p̂U/,

(b) the quantities that were defined in Section 2 use φβ,ede.·, pU/ and φγ,ede.·, pU/ in place of
φβ and φγ respectively and
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(c) estimates of φβ,ede.·, pU/ and φγ,ede.·, pU/ are defined by using φβ,ede.·, p̂U/ and
φγ,ede.·, p̂U/.

It then follows that results analogous to all those in Section 2 hold; for example Û
TΣ̂

−1
0 Û is

non-central χ2 and the Wald-type and our score-type tests are asymptotically equivalent.

3.3. A non-parametric component in the regression model
Similar derivations can be carried out for the models containing an unspecified function of a
scalar covariate R, say g.R/, in the regression model itself. For any given .β, γ/, let ĝ.R, β, γ/

be an estimate of g.R/. In this case, the estimating equations (5)–(6) are modified to

0=n−1=2
n∑

i=1
φβ{Wi, Zi, Yi, β, γ, ĝ.R, β, γ/}, .11/

0=n−1=2
n∑

i=1
ψγ{Wi, Zi, Yi, β, γ, ĝ.R, β, γ/}: .12/

With ‘ufe’ meaning ‘unknown function estimated’, the key again is to show that, for suitable esti-
mators of ĝ.R, β, γ/, there are computable, asymptotically equivalent versions of equations (11)
and (12), say φβ,ufe{·, g.R/} and ψγ,ufe{·, g.R/}, whose asymptotic distributions are unaffected
by estimating g.R/.

Ma and Carroll (2006) derived these asymptotically equivalent versions when ĝ is a local con-
stant estimator, the simplest of the local polynomial estimators. The following results assume
that this local constant estimator is used. Denote B= .βT, γT/T and LB = .φT

β ,ψT
γ /T. Replacing

the function g.R/ by an unknown constant a, we would be able to obtain a set of estimating
equations for .B, a/. Let Σn

i=1Ψg be the component of the estimating equation corresponding
to a. Hall and Ma (2007b) showed that(

φβ,ufe

ψγ,ufe

)
=LB.Yi, β0, γ0, g0/−Ψg.Yi, β0, γ0, g0/ U.Ri/,

where U.R/=E{LBg.·/|R}=Ω.R/, gB.R/=−E{ΨgB.·/|R}=Ω.R/, LBB is the partial derivative
of LB with respect to B, LBg is the partial derivative of LB with respect to g, Ψgg is the partial
derivative of Ψg with respect to g, ΨgB is the partial derivative of Ψg with respect to B and the
argument ‘.·/’ here stands for {Y , B0, g0.R/}, and Ω.R/=E{Ψgg.·/|R}.

Now suppose that

(a) Û =n−1=2 Σn
i=1ψγ{Wi, Zi, Yi, β̂, 0, ĝ.Ri, β̂, 0/},

(b) the quantities that were defined in Section 2 use φβ,ufe{·, g.Ri/} and φγ,ufe{·, g.Ri/} in
place of φβ and φγ respectively and

(c) estimates of φβ,ufe{·, g.Ri/} and φγ,ufe{·, g.Ri/} are defined by using φβ,ufe{·, ĝ.Ri, β̂, 0/}
and φγ,ufe{·, ĝ.Ri, β̂, 0/}.

It then follows that results analogous to all those in Section 2 hold; for example Û
TΣ̂

−1
0 Û is

non-central χ2 and the Wald-type and our score-type tests are asymptotically equivalent.
To handle the situation where both the measurement error parameters need to be estimated

and an unspecified function g.R/ is included in the regression model, we need to combine the
results in Sections 3.2 and 3.3. A fully detailed technical argument showing how to do this is
not pursued here.
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4. Omnibus goodness-of-fit testing

The omnibus goodness-of-fit test that we construct is based on the idea that a smooth function
can be approximated arbitrarily well by a linear combination of sufficiently many basis func-
tions. For any fixed system of basis functions, a departure from the null model in the direction
of a given basis function is a problem of local testing, and the procedure that was developed
in Sections 2–3 can be applied. However, because departures along different directions need to
be considered, to avoid multiple testing, these tests need to be intelligently combined. In the
context of regression without measurement error, Hart (2009) proposed a goodness-of-fit test
that is a hybrid of Bayesian and frequentist ideas. Here, we use an analogous statistic and adapt
it to the general measurement error framework.

Consider a set of basis functions h1.X, Z/, h2.X, Z/, . . . , hm.X, Z/, which are arranged from
lowest to highest frequency. We may construct m different tests of the null hypothesis

H0 : pY |X,Z.Y |X, Z/=pY |X,Z{Y , f.X, Z, β/}:

For j =1, . . . , m, the jth alternative is Hj1:γj �=0, where γj is such that

pY |X,Z =pY |X,Z{Y , f.X, Z, β/+γjhj.X, Z/}:

Now, let T̂
2

j = û2
j =σ̂2

j denote the test statistic that was defined in Section 2 for testing H0 against
Hj1: γj �=0. Then the omnibus test statistic that we propose is T̂ m =Σm

j=1j−2 exp.T̂ 2
j =2/.

To motivate T̂ m, we consider the canonical regression model

Yj = r.xj/+ "j, j =1, . . . , n, .13/

where "1, . . . , "n are independent N.0,σ2/ random variables, and no measurement error is
involved. Suppose that we wish to test the null hypothesis that r is a linear combination of
finitely many known functions. A novel approach to doing so is to compute a posterior proba-
bility P0 of the null hypothesis, and then to use P0 in a frequentist fashion. The null hypothesis
is rejected at level of significance α if the observed value of P0 is smaller than the αth percentile
of the null sampling distribution of P0.

In the canonical regression model (13), Hart (2009) showed that tests based on P0 and T̂n are
related as follows. Let P̃0 be a version of P0 that is based on a non-informative prior for model
parameters and a weakly informative prior for the number of orthogonal functions that are
needed to represent the true r. Then the statistic T̂n is a monotone transformation of a Laplace
approximation to P̃0. In the regression without measurement error context, the extensive sim-
ulations of Hart (2009), section 7, demonstrated that T̂n had statistically significantly larger
power than that of either a data-driven Neyman smooth test or a regression analogue of the
Cramér–von Mises statistic in a majority of the many cases that were considered. Furthermore,
the ratio of competitor power to power of T̂n was never larger than 1.61, whereas in several
cases the power of T̂n was at least five times that of both competitors.

In the measurement error context, the statistic T̂m is omnibus in the pure sense of the term
if m tends to ∞ with n. In that case the corresponding test will be consistent against virtually
any alternative. However, to avoid making our paper overly technical, we avoid the issue of
determining an appropriate rate at which m should tend to ∞. Practically speaking, this is rel-
atively unimportant since the class of alternatives against which T̂m is consistent is much larger
than the space of functions that is spanned by h1, . . . , hm. In fact, as long as θ is such that γj

is non-zero for at least one of the m bases, then the falsity of H0 can be detected. The reader
may better appreciate the last couple of remarks by considering a familiar problem in simple
regression. Suppose that we test for no effect of the predictor x by using an F -test based on a
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straight line alternative. This test is consistent against every polynomial alternative except those
for which the best straight line approximation has slope 0. The space that is spanned by the
alternative in this case is all straight lines, but obviously the ‘consistency class’ is enormously
larger than all straight lines. In the same way the consistency class of T̂m is much larger than the
alternatives that are spanned by h1, . . . , hm. In our experience, fixing m at, say, 10 suffices for
most cases that are encountered in practice. Nonetheless, since we do not study the asymptotic
distribution of T̂m as m increases with n, it is perhaps more precise to call our fixed m test ‘well
justified with a known asymptotic distribution’ rather than ‘omnibus’.

A perhaps more important issue is the ordering of the basis functions. Since we order
h1, . . . , hm by their complexity, and T̂m weights the contribution of hj by j−2, the test will have
better power against low than against high frequency alternatives. Ordering the basis functions
as we have is not arbitrary, since low frequency functions are clearly more prevalent in practice
than are high frequency functions. However, if prior knowledge about the type of alternative is
available, then a reordering of the basis functions may lead to a more powerful test. For a more
complete discussion of the ordering issue, the reader is referred to section 7.8 of Hart (1997).

The calculation of T̂m is straightforward. Below we shall describe its asymptotic distribution
under the null hypothesis as n1=2.T̂ 1, . . . , T̂ m/T →N.0, Σ/, and we shall calculate an estimate Σ̂.
To approximate the p-value of the test, we use the following algorithm.

(a) For some large B, generate independent vectors .T11, . . . , Tm1/, . . . , .T1B, . . . , TmB/ from
the m-variate N.0, Σ̂/ distribution, and define

Tb =
m∑

j=1
j−2 exp.T 2

jb=2/

for b=1, . . . , B.
(b) The p-value is then approximated by B−1 ΣB

b=1I.Tb > T̂ m/.

We now show that n1=2.T̂ 1, . . . , T̂ m/T →N.0, Σ/, and we give the form of Σ. This means that
we must compute the joint limit distribution of the terms ûj=σ̂j. Marginally, ûj=σ̂j →N.0, 1/

in distribution. For any constants c1, . . . , cm, we have

Sn =n−1=2
n∑

i=1

m∑
j=1

cj

σj
{ψγj .Wi, Zi, Yi, ;β0, 0/−Aj2A−1

1 φβ.Wi, Zi, Yi, ;β0, 0/}+op.1/:

Here Aj2 is defined in the same manner as A2 in Section 2 but with the function hj.·/. It
follows from the central limit theorem that Sn converges to a normal distribution. Hence
û1=σ̂1, . . . , ûm=σ̂m are asymptotically jointly normal. The asymptotic covariance between ûj=σ̂j

and ûk=σ̂k is obtained as follows:

E

(
ûj

σ̂j

ûk

σ̂k

)
= 1
σjσk

n−1 E

[
n∑

i=1
{ψγj .Wi, Zi, Yi, ;β0, 0/−Aj2A−1

1 φβ.Wi, Zi, Yi, ;β0, 0/}

×
n∑

i=1
{ψγk

.Wi, Zi, Yi, ;β0, 0/−Ak2A−1
1 φβ.Wi, Zi, Yi, ;β0, 0/}

]
+o.1/

= 1
σjσk

E{ψγj .·;β0, 0/−Aj2A−1
1 φβ.·;β0, 0/}{ψγk

.·;β0, 0/−Ak2A−1
1 φβ.·;β0, 0/}+o.1/

= 1
σjσk

[Aj2A−1
1 B11A−1T

1 AT
k2 −Aj2A−1

1 Bk12 −Ak2A−1
1 Bj12 +E{ψγj .·;β0, 0/ ψγk

.·;β0, 0/}]

+o.1/:

The power of the omnibus test against the local alternative γj = cjn−1=2, 1 � j � m, can be
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obtained from the fact that .û1=σ̂1, . . . , ûm=σ̂m/T has an asymptotically multivariate normal
distribution, N.μ, Σ/, where μj = −.Aj4 − Aj2A−1

1 Aj3/cj, j = 1, . . . , m. This result implicitly
determines the asymptotic power of our omnibus test against root n local alternatives. In practice,
this power can be approximated by first generating numerous samples from the N.μ, Σ/ distri-
bution, and then proceeding in an obvious way. Specifically,

(a) For some large B, generate independent vectors .T11, . . . , Tm1/, . . . , .T1B, . . . , TmB/ from
the m-variate N.μ, Σ̂/ distribution, and define

Tb =
m∑

j=1
j−2 exp.T 2

jb=2/

for b=1, . . . , B.
(b) The power is then approximated by B−1 ΣB

b=1I.Tb > c/, where c is the estimated critical
value.

5. Simulations and an empirical example

5.1. General framework
To investigate the finite sample performance of the testing procedures, we conducted two simu-
lation studies, the first of which concerns local testing and the second our omnibus test. The null
model in both cases is the logistic regression model pr.Y =1|X/=H.β0 +β1X/, where H.·/ is the
logistic distribution function. The covariate X follows a normal distribution with mean −0:5 and
variance 1, and the measurement error is additive, i.e. W =X+U, where U follows a normal dis-
tribution with mean 0 and standard deviation 0.4. The true values of β0 and β1 are both 1.0. The
alternative in both studies is the quadratic regression model pr.Y =1|X/=H.β0 +β1X+β2X2/.
Although the specific null and alternative models seem very simple, the estimating equations
still do not have an explicit form. Procedures described between expressions (8) and (9) in Tsiatis
and Ma (2004) need to be followed to obtain equations (5) and (6).

We use the locally efficient score method to perform estimation under hypothesis H0 and to
form ψγ , where we used both the correct normal model and an incorrect uniform [−8:5, −1:5]
model for the distribution pX of the unobservable covariate X. In both tests, we based our
decision on the asymptotic distribution of the corresponding statistic under the null hypothesis.
We considered sample sizes ranging from 100 to 1000 in steps of 100. Each simulation result is
based on 1000 experiments.

5.2. Simulations for local test
Results on the level of the local test are presented in Table 1. At small sample sizes the test is
slightly conservative but essentially has the correct size for n�200. The level consistency of the
tests does not depend on the correctness of the model that we propose for pX, which is a direct
consequence of the consistency of the estimating equations.

To study power, we generated data from the alternative quadratic regression model, taking
β2 = 10=n1=2 for each sample size n. The empirical powers of the test at nominal levels 0.01,
0.05 and 0.10 are presented in Table 2. Overall, the test is quite powerful for the alternative
that was considered. One interesting observation is that we had expected the power to be better
when the correct model for pX is used in constructing the test, but our results show that the
empirical power essentially did not depend on which pX-model was assumed. Note that, when
we correctly model pX as normal, the test that is used is optimal in its class. Our simulation
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Table 1. Level of the local test†

Results for the following values of n:

100 200 300 400 500 600 700 800 900 1000

Normal pÅ
X

α=0:01 0.002 0.005 0.006 0.011 0.004 0.007 0.004 0.010 0.005 0.008
Confidence interval 0.006 0.009 0.010 0.013 0.008 0.010 0.008 0.012 0.009 0.011
α=0:05 0.023 0.039 0.039 0.044 0.043 0.043 0.046 0.054 0.037 0.043
Confidence interval 0.019 0.024 0.024 0.025 0.025 0.025 0.026 0.028 0.023 0.025
α=0:1 0.074 0.098 0.097 0.097 0.090 0.089 0.106 0.105 0.091 0.089
Confidence interval 0.032 0.037 0.037 0.037 0.036 0.035 0.038 0.038 0.036 0.035

Uniform pÅ
X

α=0:01 0.002 0.005 0.006 0.011 0.004 0.006 0.004 0.010 0.005 0.009
Confidence interval 0.006 0.009 0.010 0.013 0.008 0.010 0.008 0.012 0.009 0.012
α=0:05 0.023 0.039 0.039 0.045 0.040 0.042 0.045 0.054 0.036 0.042
Confidence interval 0.019 0.024 0.024 0.026 0.024 0.025 0.026 0.028 0.023 0.025
α=0:1 0.074 0.099 0.095 0.097 0.091 0.089 0.105 0.103 0.091 0.090
Confidence interval 0.019 0.024 0.024 0.026 0.024 0.025 0.026 0.028 0.023 0.025

†Nominal levels areα=0:01, 0:05, 0:1. Proportions of rejections among the 1000 tests and 95% confidence interval
lengths are given.

Table 2. Power of the local test†

Results for the following values of n:

100 200 300 400 500 600 700 800 900 1000

Normal pÅ
X

α=0:01 0.628 0.837 0.887 0.917 0.934 0.939 0.949 0.953 0.949 0.955
Confidence interval 0.0599 0.046 0.039 0.034 0.031 0.030 0.027 0.026 0.027 0.026
α=0:05 0.841 0.938 0.957 0.971 0.979 0.982 0.987 0.991 0.989 0.994
Confidence interval 0.045 0.030 0.025 0.021 0.018 0.017 0.014 0.012 0.013 0.010
α=0:1 0.903 0.963 0.980 0.986 0.991 0.989 0.994 0.997 0.996 0.999
Confidence interval 0.037 0.023 0.017 0.015 0.012 0.013 0.010 0.007 0.008 0.004

Uniform pÅ
X

α=0:01 0.629 0.838 0.888 0.917 0.934 0.939 0.948 0.951 0.950 0.955
Confidence interval 0.060 0.046 0.039 0.034 0.031 0.030 0.028 0.027 0.027 0.026
α=0:05 0.840 0.938 0.958 0.970 0.978 0.983 0.986 0.992 0.989 0.994
Confidence interval 0.045 0.030 0.025 0.021 0.018 0.016 0.015 0.011 0.013 0.010
α=0:1 0.903 0.964 0.979 0.986 0.991 0.989 0.993 0.998 0.996 0.999
Confidence interval 0.037 0.023 0.018 0.015 0.012 0.013 0.010 0.006 0.008 0.004

†Nominal levels are α=0:01, 0:05, 0:1. Proportions of rejections among the 1000 tests and 95% confidence interval
lengths are given.

results thus suggest that a near optimal test can be obtained even when using the wrong model
for pX, although this may not be a general phenomenon.

5.3. Simulations for omnibus test
A second simulation was conducted to study the level and power of our omnibus lack-of-fit
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Table 3. Level of the omnibus test†

Results for the following values of n:

100 200 300 400 500 600 700 800 900 1000

Normal pÅ
X

α=0:01 0.004 0.013 0.015 0.011 0.011 0.014 0.010 0.014 0.015 0.011
Confidence interval 0.008 0.014 0.015 0.013 0.014 0.015 0.012 0.015 0.015 0.013
α=0:05 0.033 0.059 0.052 0.063 0.063 0.050 0.051 0.059 0.048 0.049
Confidence interval 0.022 0.029 0.028 0.030 0.025 0.027 0.027 0.029 0.027 0.027
α=0:1 0.093 0.115 0.112 0.114 0.114 0.101 0.112 0.111 0.088 0.110
Confidence interval 0.036 0.040 0.039 0.039 0.037 0.037 0.039 0.039 0.035 0.039

Uniform pÅ
X

α=0:01 0.004 0.014 0.015 0.010 0.012 0.014 0.009 0.015 0.013 0.009
Confidence interval 0.008 0.015 0.015 0.012 0.014 0.015 0.012 0.015 0.014 0.012
α=0:05 0.034 0.058 0.053 0.059 0.043 0.047 0.051 0.058 0.048 0.048
Confidence interval 0.023 0.029 0.028 0.029 0.025 0.026 0.027 0.029 0.027 0.027
α=0:1 0.097 0.121 0.109 0.110 0.096 0.096 0.105 0.110 0.089 0.111
Confidence interval 0.037 0.040 0.039 0.039 0.037 0.037 0.038 0.039 0.035 0.039

†Nominal levels are α=0:01, 0:05, 0:1. Proportions of rejections among the 1000 tests and 95% confidence interval
lengths are given.

Table 4. Power of the omnibus test†

Results for the following values of n:

100 200 300 400 500 600 700 800 900 1000

Normal pÅ
X

α=0:01 0.559 0.773 0.848 0.877 0.911 0.901 0.916 0.914 0.917 0.924
Confidence interval 0.062 0.052 0.045 0.041 0.035 0.037 0.034 0.035 0.034 0.033
α=0:05 0.782 0.917 0.945 0.953 0.970 0.976 0.976 0.983 0.976 0.985
Confidence interval 0.051 0.034 0.028 0.026 0.021 0.019 0.019 0.016 0.019 0.015
α=0:1 0.870 0.956 0.974 0.975 0.982 0.987 0.989 0.992 0.992 0.995
Confidence interval 0.042 0.025 0.020 0.019 0.017 0.014 0.013 0.011 0.011 0.009

Uniform pÅ
X

α=0:01 0.521 0.750 0.819 0.855 0.892 0.883 0.896 0.896 0.905 0.898
Confidence interval 0.062 0.054 0.048 0.044 0.039 0.040 0.038 0.038 0.036 0.038
α=0:05 0.757 0.905 0.936 0.947 0.963 0.970 0.969 0.978 0.972 0.982
Confidence interval 0.053 0.036 0.030 0.028 0.023 0.021 0.022 0.018 0.020 0.017
α=0:1 0.852 0.948 0.968 0.973 0.978 0.982 0.986 0.989 0.988 0.995
Confidence interval 0.044 0.028 0.022 0.020 0.018 0.017 0.015 0.013 0.014 0.009

†Nominal levels are α=0:01, 0:05, 0:1. Proportions of rejections among the 1000 tests and 95% confidence interval
lengths are given.

test, where the omnibus test statistic T that was introduced in Section 4 was implemented.
The basis functions used are the trigonometric functions cos.x/, sin.x/, cos.2x/ and sin.2x/.
The level and power results are presented in Tables 3 and 4. The null sampling distribution of
the test statistic was approximated by drawing 10000 independent samples from the statistic’s
null asymptotic distribution. Although the alternative is not in the space that is spanned by the
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four basis functions that were used, our goodness-of-fit test still yields acceptable power at each
level. In fact, only at n=100 is the power markedly lower than that of the optimal test that was
used in the first study.

5.4. Empirical example
We also implemented the method on a set of nutrition data. The variable of interest is the per-
centage of calories that come from fat in the diet, which is a variable that is called fat density. The
ordinary method of computing an individual’s fat density is the food frequency questionnaire,
and this is the response Y. Typically, it is assumed that the regression of the food frequency
questionnaire on true dietary fat density is linear; see for example Kipnis et al. (2003). This is
the null hypothesis. The alternative hypothesis is that the relationship has curvature.

The data that we use are from the calibration substudy of the National Institutes of Health–
American Association of Retired Persons Diet and Health Study (Schatzkin et al., 2001). Instead
of observing true dietary fat density, we observed two 24-h recalls on each individual. We sum-
marize the recalled dietary fat densities as Wi1 and Wi2, and assume that Wij =Xi +Uij, j =1, 2,
where Xi denotes the unobserved true dietary fat density and Ui1 and Ui2 are independent
and identically distributed, and symmetrically distributed. We found that the distribution of
Ui1 − Ui2 is very close to being normal; Fig. 1. Hence, we form Wi = .Wi1 + Wi2/=2 as our
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Fig. 1. QQ-plot of W1 �W2

Table 5. Estimates and standard errors under hypothesis H0 in the nutrition example

Parameter Results for normal pÅ
X Results for uniform pÅ

X Results for estimated pÅ
X

Estimate Standard Estimate Standard Estimate Standard
error error error

var."/ 0.3449 0.0299 0.3449 0.0181 0.3192 0.0366
β0 0.2143 0.1516 0.2132 0.1125 0.3886 0.1692
β1 0.1193 0.0566 0.0784 0.0535 −0.2215 0.0792
β2 0.8709 0.0659 0.8809 0.0489 0.8786 0.0824
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Fig. 2. Curve estimation and pointwise 95% confidence band: (a) normal pX ; (b) uniform pX ; (c) pX estim-
ated through minimum distance

measurement and use the samples of .W1 − Wi2/=2 to estimate the error standard deviation,
which is approximately 0.554. The data set contains 659 women. The null hypothesis in this
problem is Y =β0 +β1Z+β2X+ ", where Z is a dummy variable for smoking status. We tested
a quadratic local alternative Y =β0 +β1Z+β2X+β3X2 +". Because there is no clear alternative
model, we also performed an omnibus test with 10 basis functions. The basis functions that we
used are the cosine functions of the form cos{kπ.X − xl/=.xr − xl/} for k = 1, . . . , 10, where xl
and xr are the estimated left-hand and right-hand limit of the support of the distribution of X.

Three different models for the distribution of the true intake fat density X were tried.
These were normal, uniform and a non-parametric estimate obtained via a minimum distance
approach, as used in Claeskens and Hart (2009). The p-values from the local test are 0.7808,
0.6885 and 0.9849, indicating that a quadratic function is not favoured over a linear function.
The resulting p-values of the omnibus test are 0.1785, 0.8424 and 0.1842 respectively. So, here
also there is not strong evidence to conclude that the linear model is inadequate for describing
the relationship between X and Y , after adjusting for smoking status. We present the estimates
under hypothesis H0 in Table 5 and the resulting fitted line at z = 0 and the 95% pointwise
confidence bands in Fig. 2. A shift of these curves will give the result for z=1.
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6. Discussion

Hypothesis testing in measurement error models has not been studied systematically. This by
no means implies that the topic is unimportant. The semiparametric nature of the model and
the impossibility of calculating the likelihood or forming residuals in functional measurement
error models presents a major difficulty in using classical testing procedures.

Taking advantage of the existence of estimating equations in a general measurement error
model setting, we have proposed a local testing procedure which has characteristics of the
classical score test. The procedure is computationally simple and has the same statistical prop-
erties as those of the computationally unwieldy Wald-type test. The procedure is not only valid
for parametric measurement error models but also applies to measurement error models that
contain unspecified functions of observable covariates or unknown error distributions. The
structure of the local test proposed permits a relatively painless adaptation in constructing an
omnibus goodness-of-fit test. In the generality of the measurement error models that we con-
sider, both the local and the omnibus tests are the only tests that are available in the literature.
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Appendix A: Sketch of technical arguments for theorem 2

Assume that the measurement error model under consideration is identifiable under the null and alterna-
tive hypotheses. Let β+ =β+n solve 0=n1=2 E{φβ.·, β+, 0/} under the alternative that γn = cn−1=2. Then it
is readily seen by Taylor expansion that n1=2.β+ −β/→A−1

1 A3c, and

n1=2 E{ψγ.·, β+, 0/}→−.A4 −A2A
−1
1 A3/c:

Therefore

Û =n−1=2
n∑

i=1
ψγ.Wi, Zi, Yi; β̂, 0/→N{−.A4 −A2A

−1
1 A3/c, Σ0},

and hence under the alternative T̂ = ÛΣ̂
−1
0 Û has an asymptotic non-centralχ2-distribution with pγ degrees

of freedom and non-centrality 1
2 cT.A4 −A2A

−1
1 A3/

TΣ−1
0 .A4 −A2A

−1
1 A3/c.

To complete the argument, set V =A−1B.A−1/T, which entails that B =AVAT. It follows that

B11 =A1V11A
T
1 +A3V

T
12A

T
1 +A1V12A

T
3 +A3V22A

T
3 ,

B12 =A1V11A
T
2 +A3V

T
12A

T
2 +A1V12A

T
4 +A3V22A

T
4 ,

B22 =A2V11A
T
2 +A4V T

12A
T
2 +A2V12A

T
4 +A4V22A

T
4 :

Straightforward calculation then gives

Σ0 = .A4 −A2A
−1
1 A3/V22.A4 −A2A

−1
1 A3/

T,

and hence

Σ−1
0 ={.A4 −A2A

−1
1 A3/

−1}TV −1
22 .A4 −A2A

−1
1 A3/

−1:
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This shows that the non-centrality parameter for our score-type test is 1
2 cTV −1

22 c. Of course, for the Wald-
type test, n1=2.γ̂compr −γn/ → N.0, V22/, and hence its local power is also 1

2 cTV −1
22 c, which establishes the

result.
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