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We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the
population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection
procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of
consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the
minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures
are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in
practice.

KEY WORDS: Efficiency; Nonrandom data; Robustness; Semiparametric model; Skewness; Symmetric distribution.

1. INTRODUCTION

Estimating the center of a population is probably one of the
most elementary problems in statistics. When the population is
symmetric, the center can be equivalently represented by the
population mean or population median, and their estimators
and corresponding statistical properties are well understood.
However, these familiar methods are based on a key assumption,
namely that we observe a random representative sample from
the population. When the sampling procedure involves some
selection mechanism, that is, when the sample obtained is no
longer a representative sample of the original population, the
problem of estimating the population center is no longer so
simple.

More specifically, let X be a random variable that is sym-
metrically distributed in a population with center μ, which we
want to estimate. Assume that a representative sample from
this population is not obtained due to various reasons. Instead,
only a biased sample from a specific data collection procedure
is available. Let the observed biased sample be X1, . . . , Xn,
where the Xi’s are independent and identically distributed (iid).
Then, we can write the probability density function (pdf) of one
observation as

g(x; μ,β, f ) = c(β)f (x − μ)w(x − μ; β)

= f (x − μ)w(x − μ; β)∫
f (t)w(t ; β)dt

, (1)

where we use w to capture the selection mechanism, and we
use f to denote the original symmetric yet unspecified popula-
tion pdf of X. Here c(β) = 1/

∫
f (t)w(t ; β)dt is a normalizing

constant. Note that in Equation (1), other than being even, the
specific form of f is not known. Thus, f can be, for example,
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a Normal or Student’s t pdf or any other symmetric pdf. The
sampling bias is described by the multiplicative factor w, which
essentially reweights the observation by taking into account the
effect of the data collection procedure. The functional form of w

is completely decided by the selection process and is not subject
to any artifactual restrictions. We consider the situation where
w is a function of the centered data x − μ instead of the un-
centered data x, because otherwise, the biased sample from the
selection procedure can be used directly as if no sampling bias
existed in estimating μ. Considering that the selection mech-
anism may also contain some aspects that are not known in
advance, we allow for an additional unknown parameter vector
β ∈ Rp−1 in the selection function w. Finally, to avoid impos-
ing additional constrains on w, we incorporate a normalizing
constant c(β) in Equation (1). If desired, one can also view
c(β)w(x − μ; β) = w(x − μ; β)/

∫
f (t)w(t ; β)dt as a weight

function.
Selection bias issues have been acknowledged and modeled

extensively (see, e.g., Rao 1985, and more recently Arellano-
Valle, Branco, and Genton 2006). The biased sample model
in Equation (1) represents one of the most general situa-
tions for such models. When special restrictions are further
imposed on either the population model f or the selection
function w, it reduces to various special models in the liter-
ature. For example, when w satisfies an antisymmetric prop-
erty, w(x − μ; β) + w(μ − x; β) = 1 for all x ∈ R, Copas and
Li (1997), Arnold and Beaver (2002), Azzalini and Capitanio
(2003), Ma and Genton (2004), Wang, Boyer, and Genton
(2004), Arellano-Valle and Genton (2007, 2008) and many
others have described the types of selection mechanisms that
lead to Equation (1). When f is further assumed to belong to
the elliptical family, Equation (1) is reduced to the general-
ized skew-elliptical distributions (Genton and Loperfido 2005),
which include the well-known skew-normal distribution intro-
duced by Azzalini (1985; see the edited book by Genton 2004,
and the review by Azzalini 2005, and references therein, for
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further details). Other special cases of Equation (1) that do not
satisfy the antisymmetric property of w include extended skew-
elliptical distributions (Arellano-Valle and Genton 2010a) and
their specific members such as extended skew-t distributions
(Arellano-Valle and Genton 2010b) and extended skew-normal
distributions (Azzalini 1985). The link between extended skew-
elliptical distributions and Heckman-type selection models has
been recently described by Marchenko and Genton (2012).

A familiar example of samples subject to selection bias was
given by Cameron and Trivedi (2010), where they considered
a dataset of ambulatory expenditures from the 2001 Medical
Expenditure Panel Survey. Because the patients’ decision to use
the ambulatory service is related to the potential medical cost,
the data contained in the survey form a biased sample due to the
hidden selection process. Cameron and Trivedi (2010) assumed
a normal distribution of the ambulatory expenditures had there
been no selection process, and they further modeled the selection
process from a normal distribution as well. Their formulation
corresponds to assuming f to be normal in Equation (1) and
w to be a normal cumulative distribution function (cdf). By
relaxing the normality assumption on both f and w, the ambu-
latory expenditure data can be more flexibly described by a less
restrictive model (1). Intuitively, one can consider the potential
ambulatory expense X, distributed as f (X − μ), and the alterna-
tive medical cost Y , distributed as h(Y ) with cdf H. In practice,
a patient or his/her relative would decide to use the ambulatory
service if the benefit associated with Y is smaller than the benefit
associated with X, that is, bY (Y ) ≤ bX(X − μ), where bX, bY de-
note the corresponding benefit functions associated with the two
expenditures. This can be described by w(X − μ) = pr{Y ≤
a + b(X − μ)} = H {a + b(X − μ)} if pure benefit is consid-
ered, where a, b capture the joint effect of typical deductible
and copay associated with an insurance policy, or a more gen-
eral form w(X − μ) = pr{bY (Y ) ≤ bX(X − μ)}. Thus, the ob-
served ambulatory expenditures included in the survey are not a
representative random sample from f , but a biased one that has
a weighted form given in Equation (1). Estimating and studying
the corresponding inference on μ using the biased sample is the
main purpose of this article.

Next, we demonstrate that the wrong parametric model for f
can lead to serious bias on the estimate of the center μ. Consider
a random sample X1, . . . , Xn from a skew-normal distribution
(Azzalini 1985), a particular version of model (1), that is, from
a distribution with probability density

2φ(x)�(βx), (2)

which has center μ = 0. We can estimate μ with the maximum
likelihood estimator (MLE) based on the skew-normal paramet-
ric model (2). Now suppose that the random sample is in fact
from a distribution with probability density

2t5(x)�(βx), (3)

which also has center μ = 0, but with original symmetric pop-
ulation density f = t5, a Student’s t with 5 degrees of freedom.
In this case, the MLE of μ based on the skew-normal parametric
model (2) is biased as we illustrate next with a simulation ex-
periment. We simulate a 1000 random samples from each of the
two data-generating mechanisms (2) and (3) with n = 400 and
β = 3. In both cases, we estimate μ based on the skew-normal

Figure 1. Boxplots of 1000 MLEs of the center μ based on a skew-
normal parametric model. Left: correct model when f = φ. Right:
incorrect model when f = t5. True value μ = 0 is indicated by the
horizontal dotted line.

MLE. Figure 1 presents the boxplots of the 1000 estimates of
μ in each of the two cases. It is apparent that when f is mis-
specified to be f0 = φ instead of the correct f = t5, then the
estimates of μ are biased. This motivates the development of
semiparametric estimators of μ that do not rely on a specific
shape of the symmetric density f .

We organize the rest of the article as follows. In Section 2, we
construct a class of consistent estimators of μ that are general
and robust to model misspecification on f using a semipara-
metric approach. We further consider the estimation efficiency
issue and construct the semiparametric efficient member of this
class by incorporating nonparametric estimation procedures of
the shape of f in Section 3. The asymptotic properties of both
the consistent and efficient estimators are derived in Section
4. We conduct numerical experiments via simulations and the
ambulatory expenditure data analysis in Section 5. We finish
the article with a discussion in Section 6. Technical details are
collected in the Appendix.

2. CONSISTENT ESTIMATION UNDER
MISSPECIFIED F

2.1 The Estimator Family

Model (1) contains several unknown quantities, including the
parameter of our central interest μ, the additional parameters
β ∈ Rp−1 related to the selection process, and the unspecified
symmetric density function f . Writing θ = (μ,βT)T ∈ Rp as the
finite dimensional parameter, and treating the unknown sym-
metric density function f as an infinite dimensional nuisance
parameter, we can consider Equation (1) as a semiparametric
model. Here, although our essential interest is only in μ, we
decide to include β as part of the parameter vector to estimate
instead of treating it as part of the nuisance parameters. This is
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because estimating β along with μ does not impose too much
complexity, and we have the additional benefit of obtaining the
estimator of β as a byproduct.

Although X1, . . . , Xn do not form an iid sample from f (X −
μ), once the selection mechanism is taken into account, they are
iid observations with pdf (1). Thus, semiparametric methods
described by Bickel et al. (1993) and Tsiatis (2006) become
applicable. The central result of the semiparametric approach is
to describe the consistent estimators via a nuisance tangent space
orthogonal complement �⊥, and to understand the asymptotic
properties of the estimators through their matching members in
�⊥. For model (1), we explicitly derived in the Appendix that

�⊥ = {v(X − μ) : v(z)w(z; β) + v(−z)w(−z; β)

= 0 a.s., v ∈ Rp}.

In the Appendix and throughout the rest of the article, we use
a subindex 0 to denote the true values of the parameters or the
true functions, and write the projection of a function h onto a
space A as �(h|A) and let c⊗2 = ccT for any vector or matrix c.

Members of the space �⊥ can be used to construct estimating
equations, and the resulting estimator that solves the correspond-
ing estimating equation has its influence function being the nor-
malized version of this member. Here, it is of interest to consider
the special situation when w = 1. This corresponds to the clas-
sical representative random sample case when there is no selec-
tion bias issue. In this case, �⊥ = {v(X − μ) : v(z) + v(−z) =
0 a.s.}. We can easily see that by choosing v(X − μ) = X − μ,
we obtain the sample mean estimator as the center estimator,
and by choosing v(X − μ) = sign(X − μ), we obtain the sam-
ple median estimator. Both estimators are consistent under the
symmetry assumption, and the fact that the median is more ro-
bust to outliers than the mean is reflected in that sign(X − μ) is
a bounded function, while X − μ is not. Comparing the general
case with an arbitrary w and the special case of w = 1, we can
view the criterion in �⊥ as a tilted version of the antisymmetric
requirement of v(z) + v(−z) = 0.

2.2 Locally Efficient Estimators and Their Robustness

The form of �⊥ allows a large selection of the function v.
For example, taking any p-component odd function of z and
dividing it by w(z; β) yields a valid v. With this vast amount
of choices, we further scale down the problem to investigate a
class of estimators that has the potential of reaching asymptotic
efficiency, yet is robust against possible model misspecifica-
tion regarding f . Our approach is through deriving the efficient
score, which is the orthogonal projection of the score function
onto the space �⊥. The score function, denoted Sθ , is defined
as ∂logg(x; θ , f )/∂θ , which has the explicit form

Sθ =
(

Sμ

Sβ

)
=

{
−f ′

0(x−μ)

f0(x−μ)
− w′(x − μ; β)

w(x − μ; β)
,

wβ(x − μ; β)T

w(x − μ; β)

−
∫

f0(t)wβ(t ; β)Tdt∫
f0(t)w(t ; β)dt

}T

,

where we write w′(·; β) = ∂w(x; β)/∂x|x=· and wβ(·; β) =
∂w(x; β)/∂β|x=·. Further projecting Sθ onto �⊥, we show in

the Appendix that the efficient score Seff = �(Sθ |�⊥) is

Seff(x; θ , f0)

=
{ −2f ′

0(x − μ)w(−x + μ; β)

f0(x − μ){w(x − μ; β) + w(−x + μ; β)}
+ w′(x − μ; β) + w′(−x + μ; β)

w(x − μ; β) + w(−x + μ; β)
− w′(x − μ; β)

w(x − μ; β)

− wβ(x − μ; β) + wβ(−x + μ; β)

w(x − μ; β) + w(−x + μ; β)
+ wβ(x − μ; β)

w(x − μ; β)

}
.

Because our goal is to search for locally efficient estimators
that are robust to model misspecification, we borrow the form of
the efficient score and propose the following estimation proce-
dure. We first postulate a density model for X that is symmetric
around a center μ. We write this model f ∗(X − μ). Of course f ∗

may not reflect the true distribution of X, hence we do not need
to have f ∗(t) = f0(t). We then estimate θ = (μ,βT)T through
solving the estimating equation

n∑
i=1

Seff(Xi ; θ , f ∗) = 0. (4)

Obviously, if we postulate a correct model, that is, if f ∗(t) =
f0(t), then the above estimating equation yields the efficient
estimator, hence we achieve the optimal efficiency. This is why
the estimator is named “locally efficient.” On the other hand,
if the postulated model is incorrect, that is, if f ∗(t) �= f0(t),
we find that the last p − 1 components of the difference
Seff(X; θ , f ∗) − Seff(X; θ , f0) is zero, and the first component
satisfies

E
{
eT

1 Seff(X; θ , f ∗) − eT
1 Seff(X; θ , f0)

}
= c(β)

∫
2{f ′

0(t)f ∗(t) − f ∗′
(t)f0(t)}w(t ; β)w(−t ; β)

f ∗(t){w(t ; β) + w(−t ; β)} dt,

where e1 is a length p vector with 1 in the first component
and zero everywhere else. Because f0, f

∗ are even functions,
f ′

0, f
∗′

are odd functions. Hence, the above integrand is an odd
function, and the expectation is therefore zero. Thus, we have
found that E{Seff(X; θ , f ∗)} = 0 regardless of the choice of f ∗.
In other words, the estimator obtained from Equation (4) has an
additional robustness property, in that even if the model for f is
misspecified, the resulting estimator is still consistent.

3. EFFICIENCY CONSIDERATIONS

3.1 Improving the Estimation Efficiency

Different choices in postulating the model f ∗ provide many
different consistent estimators for θ . In practice, a natural ques-
tion to ask is which f ∗ is the best choice? From the estimation
variability point of view, postulating f ∗ = f0 is certainly the
optimal choice because then we can obtain the efficient esti-
mator. However, it requires extremely good luck to happen to
have f ∗ = f0. Thus, one might need to compromise between
optimality and feasibility, and look to improve the estimation
efficiency in a class of possible models of f ∗. One convenient
way is to index the class by a parameter γ , which can be a vec-
tor, and postulate f ∗(x − μ; γ ) as a model family instead of one
fixed model. For example, one may postulate a normal model
with mean μ, while leaving the variance undecided. In this case,
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γ is the variance. Or, one may postulate a Student’s t distribu-
tion family with mean μ, while leaving both the variance and
degrees of freedom unspecified. In this case, γ contains both
the variance and the degrees of freedom.

Of course, the unspecified parameter γ also needs to be esti-
mated. To this end, we can calculate the score with respect to γ

to obtain the nuisance score vector

Sγ (x; θ , γ , f ∗) = ∂logg(x; θ , γ , f ∗)

∂γ
= ∂f ∗(x − μ; γ )/∂γ

f ∗(x − μ; γ )

−
∫

∂f ∗(t ; γ )/∂γw(t ; β)dt∫
f ∗(t ; γ )w(t ; β)dt

.

We can then augment Equation (4) with
∑n

i=1 Sγ (Xi ;
θ, γ , f ∗) = 0 to form the extended estimating equation to solve
for γ̂ and θ̂ jointly. The final estimator based on the partially
postulated model f ∗(x − μ; γ ) certainly retains the robustness
property, in that even if the postulated family does not contain
the true pdf f0(x − μ) as its member, the consistency is still
retained. The comparative benefit with respect to a fully postu-
lated model f ∗(x − μ) is that we only need the family to contain
f0(x − μ) to achieve the optimal efficiency.

An additional remark we would like to make regarding the
postulated family of models is about the estimation of γ . Specif-
ically, the uncertainty of the postulated model represented by
the additional parameter γ and the subsequent estimation of
γ do not incur a price to pay regarding estimating μ or θ . In
other words, if we had used a completely determined model
f ∗(x − μ; γ 0) and proceeded to obtain the estimator θ̂ γ 0

, ver-
sus if we had used a partially specified model f ∗(x − μ; γ )
and proceeded to estimate γ to obtain γ̂ and θ̂ γ̂ , the estimation
variabilities of θ̂ γ 0

and θ̂ γ̂ are the same asymptotically. This
property will be studied more carefully in Section 4.

3.2 Efficient Estimation of μ

When we postulate a family f ∗(x − μ; γ ) instead of one
single function f ∗(x − μ), we have a better chance of captur-
ing the true f0(x − μ) hence a better chance of achieving effi-
ciency. Likewise, when we increase the flexibility of the family
of f ∗(x − μ; γ ), our chance of achieving the efficiency further
increases. Thus, naturally, if we can find a most flexible fam-
ily so that it has the best chance of including f0(x − μ), then
the chance of achieving optimal efficiency will also be maxi-
mized. This most flexible way of postulating a family turns out
to be the nonparametric modeling. Using a properly constructed
nonparametric estimator of f0(x − μ), we can indeed reach the
optimal efficiency. Specifically, we recommend to estimate the
function f (t) through a refined kernel density estimator that
takes advantage of the symmetry of f (t). The explicit form of
the refined kernel estimator we propose is

f̃ (t ; θ) = 1

n

n∑
i=1

Kh (Xi − μ − t) + Kh (Xi − μ + t)

w(t ; β) + w(−t ; β)
, (5)

where Kh(t) = K(t/h)/h, K is a kernel function, and h is a
bandwidth. The form of the estimator in Equation (5) guaran-
tees that f̃ (t ; θ) is indeed symmetric. However, f̃ (t ; θ) does not
necessarily integrate to 1, hence it may not be a valid pdf esti-
mator. Nevertheless, a closer look at the efficient score reveals
that f0 (or replaced with f ∗) and its derivative appear, respec-

tively, on the numerator and denominator in Seff simultaneously;
hence, the normalizing constant in front of f̃ (t ; θ) does not have
any impact on the final estimator for θ . On the other hand, we
would like to point out that although f0(t) does not rely on θ ,
our refined nonparametric kernel estimator does involve θ . This
implies that a profile type of estimator is needed in our final con-
struction. Specifically, our algorithm for the efficient estimator
is the following:

Step 1. Choose a symmetric density function f ∗. Obtain θ̃

through solving Equation (4).
Step 2. Obtain f̃ (t ; θ̃) from Equation (5).
Step 3. Obtain θ̂ through solving Equation (4) with f ∗

replaced by f̃ (t ; θ̃) obtained in Step 2.

We point out that in the above Step 3, θ̃ is known and it is
θ̃ that appears inside the f̃ function, not θ . Hence, in terms of
solving Equation (4) in Step 3, it is completely equivalent to
the estimating equation solving procedure in Step 1. Thus, the
above three-steps procedure is much simpler than the conven-
tional profile procedure. Of course, if we wish, we can choose
to iterate Steps 2 and 3 using the most recently obtained θ es-
timate to replace θ̃ . Such an iterative procedure falls into the
conventional profile category. Although with or without itera-
tion the first-order asymptotic properties of θ̂ are identical, their
finite sample performance is often slightly different. As is often
observed in semiparametric problems, the estimation and infer-
ence of θ is very insensitive to the bandwidth h. A large range
of h can be applied including the classical nonparametric opti-
mal bandwidth. Thus, in practice, one can often use a default
bandwidth h calculated under the normal density or perform an
initial cross-validation to obtain h.

As far as our original goal of estimating the population center
μ is concerned, we have obtained the most efficient estimator.
Our final remark is about the nonparametric estimation of f0.
Obviously, once we have the efficient estimator θ̂ , plugging it
into Equation (5) with a cross-validation selected bandwidth h
will in turn provide a valid nonparametric estimation of f0, up
to a normalizing constant. In fact, for the purpose of the non-
parametric estimation of f0, merely using a consistent estimator
θ̃ in Equation (5) works equally well. This is because as a non-
parametric estimator, f̃ has slower rate than root-n; hence, as
long as root-n consistency is retained, the variance involved in
estimating θ has no first-order effect. In other words, plugging
θ̃ , θ̂ , or even θ0 all yield the same nonparametric estimator f̃ to
its first asymptotic order. Finally, to correct for the normalizing
constant, we can simply perform a numerical integration proce-
dure to obtain ĉ−1 = ∫

f̃ (t ; θ̂)dt , and form f̂ (t) = ĉf̃ (t ; θ̂).

4. ASYMPTOTIC PROPERTIES

We have proposed a class of estimators that are consistent un-
der misspecification of f . To improve the estimation efficiency,
we have allowed for an additional parameter γ in the specified
model, as well as nonparametric estimation. We also provided a
refined nonparametric kernel estimator of f . We now summarize
the asymptotic properties of these various estimators in several
theorems. The proofs are relegated to the Appendix.
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Theorem 1. Assume f ∗(t) is a symmetric density function
and E{Seff(X; θ , f ∗)} = 0 has a unique root. Let

A = E

{
∂Seff(X; θ0, f

∗)

∂θT

}
, B = E{Seff(X; θ0, f

∗)⊗2}

be bounded nonsingular matrices. Then the estimator θ̃ , obtained
by solving Equation (4) satisfies

n1/2(̃θ − θ0) → N{0, A−1B(A−1)T}
in distribution when n → ∞.

Theorem 1 is readily seen via a simple Taylor expansion,
hence we omit its proof. A more interesting result concerns
the additional parameter γ in f ∗ and its effect on θ , stated in
Theorem 2.

Theorem 2. Assume f ∗(t ; γ ) is a family of symmetric density
functions and

E{Seff(X; θ , f ∗(X − μ; γ )} = 0, E{Sγ (X; θ , γ , f ∗)} = 0

has a unique root. Denote by γ ∗ the γ component of the unique
root. Let

A = E

[
∂Seff{X; θ0, f

∗(X − μ0; γ ∗)}
∂θT

]
,

B = E[Seff{X; θ0, f
∗(X − μ0; γ ∗)}⊗2]

be bounded nonsingular matrices. Then the estimator θ̃ , ob-
tained through solving

n∑
i=1

Seff(Xi ; θ , f ∗(X − μ; γ ) = 0,

n∑
i=1

Sγ (Xi ; θ , γ , f ∗) = 0

satisfies

n1/2(̃θ − θ0) → N{0, A−1B(A−1)T}
in distribution when n → ∞.

Comparing the results in Theorem 1 and in Theorem 2, we
can see that the two estimators have essentially identical proper-
ties. More specifically, postulating a family of models f ∗(t ; γ )
with an unknown parameter γ yields an estimator that is asymp-
totically equal to the estimator if we had postulated the fixed
model f ∗(t ; γ ∗). In other words, the variability associated with
the estimation of γ does not have any impact on the variability
in estimating the parameter of interest θ .

Instead of postulating a parametric model family for f and
estimating γ , the nonparametric alternative aims to estimate f
in a model-free fashion. This is the philosophy behind the refined
nonparametric estimator proposed in Section 3.2. We summarize
the asymptotic properties of the estimator in Theorem 3 and
provide the necessary conditions and proof in the Appendix.
For notational brevity, we write w1(t ; β) = w(t ; β) + w(−t ; β),
w′

1(t ; β) = ∂w1(t ; β)/∂t , w′′
1 (t ; β) = ∂2w1(t ; β)/∂t2.

Theorem 3. Let c2 = ∫ 1
−1 s2K(s)ds, v2 = ∫ 1

−1 K2(s)ds, and
θ̃ be obtained from solving Equation (4). Under the regularity
conditions C1–C4 given in the Appendix, the nonparametric

estimator f̃ (t ; θ̃) given in Equation (5) satisfies

bias{f̃ (t ; θ̃)}
≡ E{f̃ (t ; θ̃)} − c(β0)f0(t) = h2c(β0)c2

2

×
{
f0

′′(t) + 2f ′
0(t)w′

1(t ; β0)

w1(t ; β0)
+ f0(t)w′′

1 (t ; β0)

w1(t ; β0)

}
+ o(h2)

var{f̃ (t ; θ̃)}

= c(β0)

nhw1(t ; β0)

{
v2f0(t) + 2I (|t | < h)

w1(t ; β0)

×
∫ 1− |t |

h

0
K(s − t/h)K(s + t/h)f0(hs)w1(hs; β0)ds

}
+ o{(nh)−1}

≤ 2c(β0)v2f0(t)

nhw1(t ; β0)
+ o{(nh)−1}.

The estimator f̃ (t ; θ̃) is intended to be an estimator for f0(t)
without adjusting the normalizing constant, hence our quantifi-
cation of bias takes this into account. The integration in the
variance expression in Theorem 3 is a bounded quantity under
the regularity conditions, hence the nonparametric estimator
f̃ (t ; θ̃) has the classical bias and variance properties. Because
the only a priori information we have about f is its symmetry,
this does not come as a surprise. The bias and variance properties
subsequently guarantee that the mean squared error (MSE) and
mean integrated squared error (MISE) also have the classical
nonparametric rates. Similarly, one can easily take derivative
of the estimator f̃ to obtain a nonparametric estimator f̃ ′. It
is easy to see that the derivative estimator will also have the
classical bias and variance rates. Theorem 3 prepares the results
in Theorem 4.

Theorem 4. Let X1, . . . , Xn be iid with density (1) and let θ̃

be an initial estimator obtained from solving Equation (4). Let
f̃ (t ; θ) be given by Equation (5) for any t and any θ . Assume
E{Seff(X; θ , f0)} = 0 has a unique root and θ̂ satisfies

n∑
i=1

Seff{Xi ; θ̂ , f̃ (Xi − μ̂; β̃)} = 0.

It then follows that when n → ∞, under the regularity condi-
tions C1–C4 listed in the Appendix, θ̂ is the semiparametric
efficient estimator and it satisfies

n1/2(̂θ − θ0) → N (0, [E{Seff(X; θ0, f0)⊗2}]−1)

in distribution when n → ∞.

In terms of estimating θ , Theorem 4 contains the strongest
result regarding estimation efficiency. It clearly states that as
long as we incorporate a suitable nonparametric estimation of
f , even if this nonparametric estimation is conducted using an
initial root-n consistent estimator of θ , the efficient estimator
will still be achieved in model (1).
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Table 1. Results of simulation studies for five semiparametric estimators of μ when the selection function w is known

Antisymmetric w General w

μ̂ sd ŝd 95% cvg μ̂ sd ŝd 95% cvg

f0 = φ

est1 4.0061 0.1541 0.1549 95.4 3.9889 0.1784 0.1809 96.1
est2 4.0024 0.1539 0.1587 95.3 3.9878 0.1792 0.1872 96.4
est3 4.0058 0.1539 0.1550 95.5 3.9890 0.1786 0.1809 96.1
est4 4.0015 0.1537 0.1597 95.6 3.9758 0.1849 0.1826 95.5
est5 4.0050 0.1557 0.1547 94.7 3.9873 0.1787 0.1816 95.4

f0 = t5
est1 3.9965 0.1437 0.1409 95.7 3.9893 0.1803 0.1776 94.5
est2 4.0014 0.1306 0.1313 95.5 3.9904 0.1559 0.1605 94.6
est3 3.9981 0.1429 0.1404 95.9 3.9893 0.1809 0.1776 94.4
est4 4.0016 0.1300 0.1316 95.5 3.9966 0.1733 0.1810 94.6
est5 3.9980 0.1300 0.1319 95.0 3.9952 0.1644 0.1614 94.1

NOTE: Mean, sample standard deviation (sd), average of the estimated standard deviation (ŝd), and the 95% coverage probabilities of μ = 4 are reported, when the selection function is
antisymmetric (left) and is general (right), and the symmetric density f0 is normal (φ) and is Student’s t with 5 degrees of freedom (t5). Results are obtained with sample size n = 500
and 1000 simulations.

5. NUMERICAL EXAMPLES

5.1 Simulations With Known Selection Function

We illustrate the finite sample performance of the estimators
proposed in Sections 2 and 3 through a series of simulation
studies. In each of them, we generated 1000 datasets, each with
sample size n = 500, from model (1) with different choices of
the symmetric pdf and the selection function.

The first set of simulations contain two separate studies.
In the first study, the true f0(x) pdf is normal with mean
μ = 4 and standard deviation γ = 3. The selection function
is of logit-type and is either antisymmetric around 1/2, where
w(x; β) = (0.15 + 0.85eβx)/(1 + eβx), or is general, where
w(x; β) = (0.15 + 0.85e−1+βx)/(1 + e−1+βx). In both cases,
the true β value is 2. We implemented five different semipara-
metric estimators of μ on each of the simulated datasets.

In the first estimator, we proposed the true normal density f0

as the posited model for f to form the corresponding estimating
equation. This means in the estimating Equation (4), we adopt
f ∗ = f0, and solve it to obtain θ̂ . Note that this is the oracle
estimator. Because proposing a true model is not likely achiev-
able in practice, we further implemented a second estimator,
where we plug in a wrong form for f . Specifically, we adopted
a Student’s t with 5 degrees of freedom density function with
standard deviation 3 as f ∗ and plugged it into the estimating
Equation (4) to obtain the second estimator. To further increase
the flexibility of these two estimators, we also implemented the
third and fourth estimators. In these two estimators, the func-
tion f ∗ contains an unknown scale parameter and hence is not
fully specified. Specifically, in the third estimator, we used a
normal model for f ∗, and in the fourth estimator, we used a
Student’s t with 5 degrees of freedom model for f ∗. In both
cases, the standard deviation of the model is left unspecified,
and is treated as a nuisance parameter estimated using the meth-
ods described in Section 3.1. Finally, we also implemented the
fully nonparametric estimator described in Section 3.2 as our
fifth estimator.

The second study in this set of simulations contains exactly
the same five estimators. The difference from the first study is
that now the data are generated from a Student’s t distribution
with 5 degrees of freedom. Thus, the second and fourth estima-
tors now contain the true f function or true f model, while the
first and third estimators contain a misspecified f function or
model.

The results of this set of simulations are given in Table 1. It
is evident that regardless of whether a true or false f function
is adopted, regardless of whether f is fully specified or par-
tially specified or even completely unspecified, all five estima-
tors yield estimators with very small biases. It is also clear that
when additional nuisance parameters are included in the third
and fourth estimators, the resulting estimation variability almost
remains unchanged in comparison with their simpler versions,
that is, the first and second estimators. Although the estimators
engaging a false f model (second and fourth estimators in the
first study and first and third estimators in the second study) can
lead to efficiency loss, this loss is only noticeable in the second
study. The asymptotic optimality of the fifth estimator is also re-
flected in these studies in that its sample variance is comparable
with that of the oracle estimator. Finally, the inference results
are reasonably precise, reflected in the closeness between the
sample standard deviation and their estimated version, and the
closeness of the 95% coverage to the nominal value.

5.2 Simulations With Selection Function Containing
an Unknown Parameter

To further study the properties of our proposed estimators, we
conducted a second set of simulation studies where the selection
functions are the same as in Section 5.1 but the parameter β

is now treated as unknown and therefore needs to be estimated
along with other parameters. All other designs of the simulations
are kept unchanged from the first set in Section 5.1.

The results parallel to that of the first set are presented in the
upper half of Table 2, in an identical layout. Similar claims can
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Table 2. Results of simulation studies for five semiparametric estimators of μ when the selection function w contains an unknown parameter β

Antisymmetric w General w

μ̂ sd ŝd 95% cvg μ̂ sd ŝd 95% cvg

f0 = φ

est1 4.0167 0.2057 0.2033 96.0 4.0111 0.1945 0.1900 95.9
est2 4.0221 0.2139 0.2091 95.9 4.0130 0.1992 0.1956 95.7
est3 4.0166 0.2065 0.2033 96.1 4.0111 0.1935 0.1900 95.9
est4 4.0241 0.2127 0.2116 95.5 4.0064 0.1888 0.1929 95.9
est5 4.0139 0.2100 0.2083 95.7 4.0107 0.1995 0.1906 96.0

f0 = t5
est1 3.9966 0.2413 0.2237 95.7 3.9993 0.1976 0.2009 96.5
est2 4.0111 0.2095 0.1970 94.7 4.0058 0.1690 0.1812 95.9
est3 3.9968 0.2412 0.2249 95.6 3.9993 0.1975 0.2005 96.4
est4 4.0112 0.2096 0.1989 94.1 4.0000 0.1653 0.1873 96.6
est5 4.0059 0.2135 0.2068 94.4 4.0056 0.1851 0.1842 96.5

β̂ sd ŝd 95% cvg β̂ sd ŝd 95% cvg

f0 = φ

est1 1.9793 0.6289 0.5862 93.9 1.9479 0.5313 0.5440 92.6
est2 1.9759 0.6257 0.5954 93.0 1.9607 0.5307 0.5472 92.5
est3 1.9775 0.6289 0.5882 93.8 1.9479 0.5310 0.5440 92.6
est4 1.9654 0.6277 0.6053 92.4 1.9599 0.5262 0.5500 93.2
est5 1.9734 0.6328 0.5949 93.4 1.9553 0.5242 0.5450 92.7

f0 = t5
est1 1.9886 0.6999 0.7222 96.4 1.9582 0.5433 0.5655 93.8
est2 1.9594 0.6256 0.6498 94.3 1.9688 0.5194 0.5441 92.9
est3 1.9875 0.7006 0.7256 96.4 1.9576 0.5443 0.5655 93.7
est4 1.9578 0.6222 0.6496 93.6 1.9815 0.5237 0.5537 94.8
est5 1.9564 0.6426 0.6628 94.4 1.9737 0.5246 0.5511 93.0

NOTE: Mean, sample standard deviation (sd), average of the estimated standard deviation (ŝd), and the 95% coverage probabilities of μ = 4 and of β = 2 are reported, when the selection
function is antisymmetric (left) and is general (right), and the symmetric density f0 is normal (φ) and is Student’s t with 5 degrees of freedom (t5). Results are obtained with sample size
n = 500 and 1000 simulations.

be made regarding the finite sample bias. However, in this set
of simulations, the efficiency loss caused by engaging a false
f model is better manifested, where the second and fourth es-
timators in the first study, and the first and third estimators in
the second study resulted in the largest sample standard devia-
tion among all five estimators. The optimality of the nonpara-
metric fifth estimator is still quite clear in the situation when
the selection function is antisymmetric around 1/2, while it is
less obvious for the general selection function, indicating that
when additional parameters in the selection function are in-
volved, the first-order asymptotic results regarding estimation
efficiency may require a sample size larger than n = 500. In
the lower half of Table 2, we provide the estimation and infer-
ence results regarding the parameter β in the selection function.
Generally speaking, the estimates show very small finite sam-
ple bias, while the inference results are somewhat less precise
in comparison to the μ estimation. We have investigated this
issue further, and found that this is a common observation in
the parametric model, where both the f model and the w model
are parametrically specified. In this parametric setting, the diffi-
culty of the estimation and inference regarding β is caused by a
flat likelihood function as a function of β (see Branco, Genton,
and Liseo 2013, and references therein). Thus, when the model
is further weakened to semiparametric in our setting, it is not
surprising that the inference of β is even more difficult.

To provide a visual inspection of the various simulation set-
tings and the results of the function estimation, we provided the
plots of both f̂ (left panels) and ĝ (right panels) in Figure 2 for
f0 = φ and in Figure 3 for f0 = t5. Although, for the purpose of
estimating the center μ, our theoretical results have shown that
the bandwidth selection is a secondary issue and can be han-
dled crudely, it is a rather important aspect for estimating the
ultimate f and g function themselves. To this end, we used an in-
direct cross-validation procedure (Savchuk, Hart, and Sheather
2010) to select the bandwidth. In summary, the indirect cross-
validation procedure follows the general idea of the classical
cross-validation, except that it uses a special kernel function
during the bandwidth selection procedure. This special kernel is
a linear combination of two normal densities and can sometimes
yield a negative value. Although this type of kernel function
is almost never used in nonparametric estimation, it turns out
to have superior features for bandwidth selection purpose (see
Savchuk, Hart, and Sheather 2010, for further investigation of
indirect cross-validation). The selected bandwidth is then trans-
formed back to the proper scale according to the asymptotically
optimal bandwidth formula based on the kernel function used
in the density estimation procedure. Regarding our simulation
results, we would like to point out that in all these cases the
f and g curves are visually rather different; hence, this pro-
vides intuitive evidence that the selection bias should not be
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Figure 2. Pointwise quantile curves from Simulation 2 when f0 = φ. In each plot, the solid line is the true density and the other three curves
are the median (dotted), 5% (dashed), and 95% (dot-dashed) quantile curves of all 1000 density estimates derived from Table 2. The left and
right panels correspond to the underlying population density, f (x), and the observed selected sample density, g(x), respectively. The top panels
are for an antisymmetric w and the bottom panels are for a general w.

ignored. Obviously, when the true f0 function is normal, the
nonparametric estimation performs much better than when f0 is
Student’s t with 5 degrees of freedom, where the tails are much
heavier.

5.3 Ambulatory Expenditures Data

The ambulatory expenditures data mentioned in the Introduc-
tion consists of n = 2802 observations. To take into account the
possible selection bias, we fit model (1) with the selection func-
tion being a general probit model w(x; β1, β2) = �(β1 + β2x),
and its corresponding antisymmetric version by setting β1 = 0.
The selection functions here are chosen with the intention of cap-
turing the possible behavior patterns when the decision of using

the ambulatory service is made. In particular, the antisymmetric
probit model is motivated by the assumption of normality used
by Cameron and Trivedi (2010), and the general probit model
is its natural generalization.

We performed the analysis on the logarithm of the data and
implemented five semiparametric estimators for the center μ,
respectively, with a posited normal model for f with a fixed stan-
dard deviation 1.4107 (this is the sample standard deviation), a
posited Student’s t with 5 degrees of freedom model for f with
standard deviation 1.4107, a posited normal model for f with
an unspecified standard deviation, a posited Student’s t with 5
degrees of freedom model for f with an unspecified standard
deviation, and a nonparametrically estimated f .
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Figure 3. Pointwise quantile curves from Simulation 2 when f0 = t5. In each plot, the solid line is the true density and the other three curves
are the median (dotted), 5% (dashed), and 95% (dot-dashed) quantile curves of all 1000 density estimates derived from Table 2. The left and
right panels correspond to the underlying population density, f (x), and the observed selected sample density, g(x), respectively. The top panels
are for an antisymmetric w and the bottom panels are for a general w.

The results for the five estimators as well as the estimated
standard deviations, in conjunction with the two different se-
lection functions, are listed in Table 3. All estimates resulted in
the population center to be significantly larger than the sample
average of 6.56, an estimate that does not correct for sample
selection bias. All estimates of β1 and β2 suggested skewness
to the left. This yields a monotonically decreasing weighting
function as the expenditure increases, indicating the increasing
unwillingness of using the ambulatory service with the increase
of the associated cost. This is an indication that patients or their
family are less likely to opt for the ambulatory service when the
situation tends to incur very large costs. The closeness of the
center estimation under the two selection functions implies that

an antisymmetric probit model is probably adequate to capture
the selection pattern in this example. In addition, when a more
general probit model is assumed, the variability of the center
estimation increases due to the increased model complexity,
especially for the four parametric-model-based estimators.

The estimated densities of the population distribution f̂ and
the selected sample distribution ĝ are plotted in Figure 4 when
the selection process is modeled through the general probit
model. The corresponding plots under an antisymmetric pro-
bit model yield very similar curves hence are omitted. These
nonparametric estimates used a bandwidth selected through in-
direct cross-validation procedure (Savchuck, Hart, and Sheather
2010), which is more reliable than the classical cross-validation

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
2:

10
 2

9 
Se

pt
em

be
r 

20
13

 



Ma, Kim, and Genton: Estimation Under Arbitrary Sample Selection Bias 1099

Table 3. Five semiparametric estimates of μ and β and their
estimated standard deviation for the ambulatory expenditures data,

under two selection function models w

Antisymmetric w General w

μ̂ ŝd(μ̂) μ̂ ŝd(μ̂)

est1 8.0806 0.1862 7.7101 0.8818
est2 8.0805 0.1862 7.7101 0.8904
est3 8.0806 0.1861 7.7103 0.8264
est4 8.0804 0.1862 7.7101 0.9508
est5 7.9467 0.1456 7.9649 0.2098

– – β̂1 ŝd(β̂1)
est1 – – 0.5913 1.4726
est2 – – 0.5913 1.4827
est3 – – 0.5910 1.3832
est4 – – 0.5913 1.5796
est5 – – 0.1821 0.4119

β̂2 ŝd(β̂2) β̂2 ŝd(β̂2)

est1 −1.0190 0.1523 −1.0542 0.1369
est2 −1.0190 0.1523 −1.0542 0.1361
est3 −1.0190 0.1523 −1.0542 0.1348
est4 −1.0189 0.1524 −1.0542 0.1383
est5 −0.9150 0.1133 −1.0312 0.1483

procedure. The estimated sample density curve is overlayed on
the histogram of the observations and shows a good fit. The
estimated density f̂ has a nonnormal and non-Student’s t shape,
hence confirming that it is wise to leave f completely unspeci-
fied.

6. DISCUSSION

We have proposed methods of estimation for the center of
a symmetric population when a representative sample of the

population is unavailable due to selection bias. Unlike previous
studies, we have allowed an arbitrary sample selection mecha-
nism determined by the data collection procedure, and we have
not imposed any parametric form on the population distribution.
Under this general framework, we have constructed a family of
consistent estimators that is robust to population model misspec-
ification, and identified the efficient member that reaches the
minimum possible estimation variance. The asymptotic prop-
erties and finite sample performance of the estimation and in-
ference procedures were illustrated through theoretical analysis
and simulations. A data example about ambulatory expenditures
was also provided to illustrate the usefulness of the methods in
practice.

We have treated the case of model (1) where the pdf f is
completely unspecified and the selection function w is assumed
to have a known parametric form. An alternative setting is when f
has a known parametric form, whereas the selection mechanism
is somewhat hidden; hence, the selection function w is unknown.
Such models, with the additional antisymmetric assumption on
w, have been investigated by Ma, Genton, and Tsiatis (2005),
Ma and Hart (2007), and Azzalini, Genton, and Scarpa (2010).

One may also consider some further generalization of our
current model. For example, one possibility is to relax the sym-
metry assumption on f , and hence leave f completely arbitrary.
In this context, the notion of “center” is of course not well de-
fined. Depending on the circumstance, one might be interested
in estimating the mean, or the median, or the mode. Our prelim-
inary investigation indicates that interestingly, these different
“center-like” statistics require different estimation procedures,
and these procedures are not a generalization of the method-
ology developed here. Research along this line can be quite
interesting and promising.

It is worth pointing out that because a parametric form is
not assumed on f , the structure of the data relies largely on the
selection model w. In fact, the selection procedure is entirely
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Figure 4. The estimated densities of the population distribution f̂ (left) and the selected sample distribution ĝ for the ambulatory expenditures
data (right), under a general selection function. The estimated sample density curve is overlayed on the histogram of the observations, along with
the median (dotted), 5% (dashed), and 95% (dot-dashed) quantile curves of the pointwise confidence bands. The online version of this figure is
in color.
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Table 4. Results of simulation studies for five semiparametric estimators of μ when the selection function w is misspecified (true selection
logit, misspeficied to probit)

Antisymmetric w General w

μ̂ sd ŝd 95% cvg μ̂ sd ŝd 95% cvg

f0 = φ

est1 4.0090 0.1990 0.1992 95.4 4.0057 0.1958 0.1896 96.3
est2 4.0029 0.2097 0.2051 95.6 4.0051 0.1959 0.1946 95.4
est3 4.0086 0.1988 0.1996 95.5 4.0060 0.1964 0.1896 96.2
est4 4.0051 0.2096 0.2075 95.5 4.0042 0.1901 0.1943 95.6
est5 4.0068 0.2047 0.2011 95.1 4.0088 0.1996 0.1898 95.8

f0 = φ

est1 3.9815 0.2198 0.2305 95.6 3.9474 0.1654 0.1687 92.3
est2 3.9844 0.2353 0.2324 94.0 3.9268 0.1782 0.1776 92.5
est3 3.9812 0.2195 0.2305 95.5 3.9475 0.1654 0.1702 92.3
est4 3.9860 0.2368 0.2327 94.3 3.9248 0.1751 0.1775 92.1
est5 3.9832 0.2320 0.2298 93.8 3.9520 0.1763 0.1668 90.5

NOTE: Mean, sample standard deviation (sd), average of the estimated standard deviation (ŝd), and the 95% coverage probabilities of μ = 4 are reported, when the selection function is
antisymmetric (left) and is general (right). The symmetric density f0 is normal. Results are obtained with sample size n = 500 and 1000 simulations.

captured in this function, hence it is intuitive to expect that a
misspecified selection model would lead to biased estimation.
This is indeed what we observed in our numerical experiment.
We performed a simple example, where even though the true
selection process follows a logistic pattern, we assumed a probit
model. Depending on the true selection parameter value β, we
see different levels of estimation bias. We listed two sets of
such results in Table 4 as an illustration. Although under the
first set of selection parameters (upper half of Table 4), the
estimators exhibit some robustness to the misspecification of w;
this property quickly vanishes when we change the selection
parameter values (lower half of Table 4).

Finally, in practice, further data complications can occur,
in that besides selection bias, the observations can be further
censored or missing. With the help of the methods developed
here, extensions to handle such additional data features become
feasible. For example, one can incorporate an inverse prob-
ability weighting or augmented inverse probability weighting
technique on the estimating Equation (4) to handle censored
observations or more generally missing at random issues.

APPENDIX

A.1 Derivation of �⊥

To prepare for the derivation of �⊥, we first show that the nuisance
tangent space of Equation (1) is

� =
{

u(X − μ) : u(z) = u(−z),∫ ∞

−∞
u(t)f0(t)w(t ; β)dt = 0 a.s., u ∈ Rp

}
.

To show the above result, we first write the right-hand side of the above
expression as A, and then show A ⊂ � and � ⊂ A.

To show A ⊂ �, assume that we have an arbitrary u(X − μ) ∈ A.
Therefore,

∫ ∞
−∞ u(t)f0(t)w(t ; β)dt = 0 and u is an even function. This

obviously yields E{u(X − μ)} = 0. Consider a parametric submodel

g(X; θ , γ ) = f (X − μ; γ )w(X − μ; β)∫
f (t ; γ )w(t ; β)dt

,

where f (z; γ ) = f0(z){1 + e−2γ Tu(z)}−1/
∫

f0(t){1 + e−2γ Tu(t)}−1dt , γ

is a finite dimensional nuisance parameter, and γ = 0 yields the true
model. Some algebra yields that

∂logg(x; θ , γ )

∂γ

∣∣∣∣
γ=0

= ∂logf (x − μ0; γ )

∂γ

∣∣∣∣
γ=0

−∂log
∫

f (t ; γ )w(t ; β)dt

∂γ

∣∣∣∣
γ=0

=u(x − μ).

Hence, u(X − μ) is a nuisance score vector of a particular submodel,
that is, u(X − μ) ∈ �.

We now show � ⊂ A. Consider an arbitrary element of �, which is
the nuisance score of a corresponding parametric submodel

g(X; θ , γ ) = f (X − μ; γ )w(X − μ; β)∫
f (t ; γ )w(t ; β)dt

.

Then, we can write it as

u(x − μ) =
∂f (x − μ; γ )/∂γ

∣∣
γ=γ 0

f0(x − μ)
−

∫
∂f (t ; γ )/∂γ

∣∣
γ=γ 0

w(t ; β)dt∫
f0(t)w(t ; β)dt

.

Since f (z; γ ) = f (−z; γ ), we have ∂f (z; γ )/∂γ = ∂f (−z; γ )/∂γ for
any γ . This implies

∂f (z; γ )/∂γ

f (z; γ )
= ∂f (−z; γ )/∂γ

f (−z; γ )

for any γ . The second term in the expression of u(x − μ) is a constant.
Thus, we obtain u(z) = u(−z). Simple algebra can verify that∫ ∞

−∞
u(t)f0(t)w(t ; β)dt = 0.

Thus, we have shown � ⊂ A.
We are now ready to demonstrate the form of �⊥. Again, we prove

the form of �⊥ by defining a space L = {v(X − μ) : v(z)w(z; β) +
v(−z)w(−z; β) = 0 a.s., v ∈ Rp}, and showing that L ⊂ �⊥ and
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�⊥ ⊂ L. We point out that for any function u ∈ �, we have the relation

E{u(X − μ)vT(X − μ)}
=

∫ ∞

0
u(z){vT(z)w(z; β) + vT(−z)w(−z; β)}c(β)f0(z)dz.

In addition, the normalizing constant can be expressed as

c(β) =
[∫ ∞

0
f0(t) {w(t ; β) + w(−t ; β)} dt

]−1

.

We first show that L ⊂ �⊥. For any function v(X − μ) ∈ L and any
function u ∈ �, we have

E{u(X − μ)vT(X − μ)}
=

∫ ∞

0
u(t){vT(t)w(t ; β) + vT(−t)w(−t ; β)}c(β)f0(t)dt = 0

by the definition of L. Hence, v(X − μ) ⊥ �. In addition,

E{v(X − μ)} =
∫ ∞

−∞
v(t)c(β)f0(t)w(t ; β)dt

=
∫ ∞

0
c(β)f0(t){v(t)w(t ; β) + v(−t)w(−t ; β)}dt = 0

due to the definition of L as well. The above two equalities ensure that
v(X − μ) ∈ �⊥, hence L ⊂ �⊥.

We now show that �⊥ ⊂ L. Suppose v(X − μ) ∈ �⊥, then
E{u(X − μ)vT(X − μ)} = 0 for any u(X − μ) ∈ �. Let

u1(z) = v(z)w(z; β) + v(−z)w(−z; β)

w(z; β) + w(−z; β)
,

u(z) = u1(z) − E{u1(X − μ)},
where

E{u1(X − μ)} = c(β)
∫ ∞

0
u1(z)f0(z){w(z; β) + w(−z; β)}dz

= c(β)
∫ ∞

0
{v(z)w(z; β) + v(−z)w(−z; β)}f0(z)dz

= E{v(X − μ)}.
We have u(z) = u(−z) and

∫ ∞
0 u(z)f0(z){w(z; β) + w(−z; β)}dz = 0,

so u(z) ∈ �. Some algebra yields

E{u(X − μ)vT(X − μ)}
= c(β)

∫ ∞

0

{v(t)w(t ; β) + v(−t)w(−t ; β)}⊗2f0(t)

w(t ; β) + w(−t ; β)
dt

− [E{v(X − μ)}]⊗2,

where for any vector c, c⊗2 = ccT. Since v(z) ∈ �⊥, we have E{v(X −
μ)} = 0. Hence, the relation E{u(X − μ)vT(X − μ)} = 0 yields∫ ∞

0

{v(t)w(t ; β) + v(−t)w(−t ; β)}⊗2f0(t)

w(t ; β) + w(−t ; β)
dt = 0.

Hence, we have v(t)w(t ; β) + v(−t)w(−t ; β) = 0 a.s. This indicates
that v(X − μ) ∈ L, hence �⊥ ⊂ L.

A.2 Derivation of the Efficient Score Seff

Define

u1(t) = −f ′
0(t){w(t ; β) − w(−t ; β)}

f0(t){w(t ; β) + w(−t ; β)} − w′(t ; β) + w′(−t ; β)

w(t ; β) + w(−t ; β)
,

v1(t) = −2f ′
0(t)w(−t ; β)

f0(t){w(t ; β) + w(−t ; β)} + w′(t ; β) + w′(−t ; β)

w(t ; β) + w(−t ; β)
− w′(t ; β)

w(t ; β)
.

Then we have Sμ = u1(x − μ) + v1(x − μ). In the following, we show
that u1(x − μ) ∈ � and v1(x − μ) ∈ �⊥. To show u1(x − μ) ∈ �, we

can easily verify that u1(t) = u1(−t) and∫ ∞

−∞
u1(t)f0(t)w(t ; β)dt

=
∫ ∞

0
u1(t)f0(t){w(t ; β) + w(−t ; β)}dt

= −
∫ ∞

0
f ′

0(t){w(t ; β) − w(−t ; β)}dt

−
∫ ∞

0
{w′(t ; β) + w′(−t ; β)}f0(t)dt

= −
∫ ∞

0

[
∂f0(t){w(t ; β) − w(−t ; β)}

∂t

]
dt = 0.

Hence, u1(x − μ) ∈ �. To show v1(x − μ) ∈ �⊥, we can easily verify
that v1(t)w(t ; β) + v1(−t)w(−t ; β) = 0. Combining the above results,
we obtain that �(Sμ|�⊥) = v1(x − μ).

Now we decompose Sβ . Define

u2(t) = wβ (t ; β) + wβ (−t ; β)

w(t ; β) + w(−t ; β)
−

∫
f0(t)wβ (t ; β)dt∫
f0(t)w(t ; β)dt

,

v2(t) = −wβ (t ; β) + wβ (−t ; β)

w(t ; β) + w(−t ; β)
+ wβ (t ; β)

w(t ; β)
.

Then we have Sβ = u2(x − μ) + v2(x − μ). In the following, we show
that u2(x − μ) ∈ � and v2(x − μ) ∈ �⊥. Obviously, u2(t) = u2(−t)
and∫ ∞

−∞
u2(t)f0(t)w(t ; β)dt =

∫ ∞

0
u2(t)f0(t){w(t ; β) + w(−t ; β)}dt

=
∫ ∞

0
f0(t){wβ (t ; β) + wβ (−t ; β)}dt

−
∫ ∞

−∞
f0(t)wβ (t ; β)dt = 0.

Thus, u2(x − μ) ∈ �. To show v2(x − μ) ∈ �⊥, we can easily verify
that

v2(t)w(t ; β) + v2(−t)w(−t ; β) = 0.

Hence, v2(t) ∈ �⊥. Combining the above results, we obtain that
�(Sβ |�⊥) = v2(x − μ).

Combining �(Sμ|�⊥) and �(Sβ |�⊥), we obtain the desired form
of the efficient score.

A.3 Proof of Theorem 2

Obviously at θ = θ0, we have E{Seff (X; θ0, f
∗(X − μ0; γ )} = 0

for any γ . Hence, the unique solution is (θT
0 , γ ∗T)T. For simplic-

ity, we denote α = (θT, γ T)T, the roots of the estimating equation as

α̃ = (̃θ
T
, γ̃ T)T, the unique root α0 = (θT

0 , γ ∗T)T, and S(X; α, f ∗) =[
Seff{X; θ , f ∗(X − μ; γ )}T, Sγ (X; θ , γ , f ∗)T

]T
. Then a standard Tay-

lor expansion yields

0 = n−1/2
n∑

i=1

S(Xi ; α̃, f ∗) = n−1/2
n∑

i=1

S(Xi ; α0, f
∗)

+ n−1
n∑

i=1

∂S(Xi ; α∗, f ∗)

∂αT
n1/2(̃α − α0),

where α∗ is on the interval connecting α0 and α̃. This yields

n1/2(̃α − α0) = −n−1/2

[
E

{
∂S(Xi ; α0, f

∗)

∂αT

}]−1

×
n∑

i=1

S(Xi ; α0, f
∗) + op(1). (A.1)

Note that the upper-left p × p block of E
{
∂S(Xi ; α0, f

∗)/∂αT
}

is
the A matrix defined in Theorem 2. The remaining upper-right block
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satisfies

E

{
∂Seff (X; α0, f

∗)

∂γ T

}
= −E{Seff (X; α0, f

∗)Sγ (X; α0, f
∗)T} = 0,

where the last equality is because Sγ is an element of the nuisance
tangent space while Seff is orthogonal to this space. Thus, extracting
the first p components from Equation (A.1), we have

n1/2(̃θ − θ0) = −n−1/2A−1
n∑

i=1

Seff{Xi ; θ0, f
∗(Xi − μ0; γ ∗)} + op(1),

which subsequently proves Theorem 2. �
A.4 List of Regularity Conditions

C1: The symmetric function f0 is twice differentiable with a compact
support, f0 and f ′

0 are bounded away from zero and ∞, and∫
f 2

0 (t)dt,
∫

(f ′
0)2(t)dt,

∫
(f ′′

0 )2(t)dt are bounded.
C2: The selection function w satisfies 0 < w(t ; β0) ≤ 1 and is twice

differentiable with respect to t on the support of f0 and its first
and second derivatives w′(t ; β0), w′′(t ; β0) are bounded. Note
that as long as w is bounded, we can always rescale it to achieve
w(t ; β0) ≤ 1.

C3: The kernel function K integrates to 1, is symmetric about 0, has
support (−1, 1), and is twice differentiable on [−1, 1].

C4: The bandwidth satisfies h = O(n−1/5). In fact, a bandwidth h
satisfying nh2 → ∞, h → 0 when n → ∞ is already sufficient.
This is a very large range and it certainly includes the optimal
bandwidth of order n−1/5.

Although these conditions are often satisfied in applications, they
can be made weaker at the cost of further technicalities. For instance,
C1 can be replaced by a weaker condition that requires the tails of the
distribution of Xi’s to be sufficiently thin at the cost of a much more
tedious proof (see Ma and Hart 2007).

A.5 Proof of Theorem 3

To simplify the proof, we split the n observations into two groups,
with sample sizes n1 = n − n1−ε, n2 = n1−ε , respectively, where ε is
a sufficiently small positive number. Suppose that θ̃ is obtained us-
ing the observations Xn1+1, . . . , Xn, and f̃ (·; θ̃ ) is obtained using
the observations X1, . . . , Xn1 and θ̃ . From Theorem 1, θ̃ satisfies
θ̃ − θ0 = Op(n−1/2

2 ). To calculate the bias, we have

E{f̃ (t ; θ̃ )}
= E{f̃ (t ; θ0)} + O

(
n

−1/2
2

)
= 1

hw1(t ; β0)
E

{
K

(
X − μ0 − t

h

)
+ K

(
X − μ0 + t

h

)}
+ O

(
n

−1/2
2

) = c(β0)

hw1(t ; β0)

∫ t+μ0+h

t+μ0−h

K

(
x − μ0 − t

h

)
× f0(x − μ0)w(x − μ0; β0)dx + c(β0)

hw1(t ; β0)

×
∫ μ0−t+h

μ0−t−h

K

(
x − μ0 + t

h

)
f0(x − μ0)w(x − μ0; β0)dx

+ O
(
n

−1/2
2

) = c(β0)

w1(t ; β0)

∫ 1

−1
K(s){f0(t + hs)w(t + hs; β0)

+ f0(hs − t)w(hs − t ; β0)}ds + O
(
n

−1/2
2

) = c(β0)f0(t)

+ h2c(β0)c2

2

{
f0

′′(t) + 2f ′
0(t)w′

1(t ; β0)

w1(t ; β0)
+ f0(t)w′′

1 (t ; β0)

w1(t ; β0)

}
+ o(h2).

Thus, the bias is

bias{f̃ (t ; θ̃ )}
= E{f̃ (t ; θ̃ )} − c(β0)f0(t)

= h2c(β0)c2

2

{
f0

′′(t) + 2f ′
0(t)w′

1(t ; β0)

w1(t ; β0)
+ f0(t)w′′

1 (t ; β0)

w1(t ; β0)

}
+ o(h2).

To analyze the variance, we have

var{f̃ (t ; θ̃ )}
= var{f̃ (t ; θ0)} + O

(
n−1

2

)
= var

[
1

w1(t ; β0)

n1∑
i=1

1

n1h

{
K

(
Xi − μ0 − t

h

)

+ K

(
Xi − μ0 + t

h

)}]
+ O

(
n−1

2

)
= 1

n1h2w2
1(t ; β0)

var

{
K

(
X − μ0 − t

h

)
+ K

(
X − μ0 + t

h

)}
+ O

(
n−1

2

)
= 1

n1h2w2
1(t ; β0)

var

{
K

(
X − μ0 − t

h

)}
+ 1

n1h2w2
1(t ; β0)

var

{
K

(
X − μ0 + t

h

)}
+ 2

n1h2w2
1(t ; β0)

cov

{
K

(
X − μ0 − t

h

)
, K

(
X − μ0 + t

h

)}
+ O

(
n−1

2

)
.

We can easily obtain

1

n1h2w2
1(t ; β0)

var

{
K

(
X − μ0 − t

h

)}
= c(β0)

n1hw2
1(t ; β0)

∫
K2(s)f0(t + hs)w(t + hs; β0)ds + O

(
n−1

1

)
= c(β0)v2

n1hw2
1(t ; β0)

f0(t)w(t ; β0) + O
(
n−1

1

)
.

Similarly,

1

n1h2w2
1(t ; β0)

var

{
K

(
X − μ0 + t

h

)}
= c(β0)v2

n1hw2
1(t ; β0)

f0(t)w(−t ; β0) + O
(
n−1

1

)
.

The covariance term vanishes unless t satisfies −h + |X − μ0| < t <

h − |X − μ0|. Thus, for |t | ≥ h, the covariance term is zero. Otherwise,
we have

2

n1h2w2
1(t ; β0)

cov

{
K

(
X − μ0 − t

h

)
, K

(
X − μ0 + t

h

)}
= 2c(β0)

n1hw2
1(t ; β0)

∫ 1− |t |
h

|t |
h −1

K(s − t/h)K(s + t/h)

× f0(hs)w(hs; β0)ds + O
(
n−1

1

)
= 2c(β0)

n1hw2
1(t ; β0)

∫ 1− |t |
h

0
K(s − t/h)K(s + t/h)

× f0(hs)w1(hs; β0)ds + O
(
n−1

1

)
.

Obviously,

2cov

{
K

(
X − μ0 − t

h

)
, K

(
X − μ0 + t

h

)}
≤ var

{
K

(
X − μ0 − t

h

)}
+ var

{
K

(
X − μ0 + t

h

)}
,
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hence the above integral is a bounded quantity. Combining the above
results, we have

var{f̃ (t ; θ̃ )}

= c(β0)

n1hw1(t ; β0)

{
v2f0(t) + 2I (|t | < h)

w1(t ; β0)

×
∫ 1− |t |

h

0
K(s − t/h)K(s + t/h)f0(hs)w1(hs; β0)ds

}

+ o{(n1h)−1} ≤ 2c(β0)v2f0(t)

n1hw1(t ; β0)
+ o{(n1h)−1}.

Note that n1/n → 1, hence we have proved the results. �
A.6 Proof of Theorem 4

To simplify the proof, we split the n observations into three
groups, with sample sizes n1 = n − 2n1−ε, n2 = n3 = n1−ε , respec-
tively, where ε is a sufficiently small positive number. The data split-
ting technique helps to circumvent the complexity of correlations
among different components in the estimation procedure. It is not
necessary in practice. Let θ̃ be an estimator obtained using the ob-
servations Xn1+n2+1, . . . , Xn; let f̃ (·; θ̃ ) be obtained using observa-
tions Xn1+1, . . . , Xn1+n2 and θ̃ ; and let the final estimating equation
be based on the observations X1, . . . , Xn1 . From Theorem 1, we have
θ̃ − θ0 = Op(n−1/2

3 ).
We write the estimating equation as

0 = n
−1/2
1

n1∑
i=1

Seff{Xi ; θ̂ , f̃ (·; θ̃ )}

= n
−1/2
1

n1∑
i=1

Seff (Xi ; θ0, f0) + n−1
1

n1∑
i=1

∂Seff{Xi ; θ
∗, f̃ (·; θ̃ )}

∂θT

× n
1/2
1 (̂θ−θ 0) + n

−1/2
1

n1∑
i=1

[Seff{Xi ; θ0, f̃ (·; θ̃ )}−Seff (Xi ; θ0, f0)],

where θ∗ = λ̂θ + (1 − λ)θ0 for 0 ≤ λ ≤ 1. It is easy to see that

n−1
1

n1∑
i=1

∂Seff{Xi ; θ
∗, f̃ (·; θ̃ )}

∂θT
= E

{
∂Seff (X; θ0, f0)

∂θT

}
+ op(1)

= −E{Seff (X; θ0, f0)⊗2} + op(1),

where we used the results from Theorems 1 and 3 in the first equality
and the last equality is because Seff is the orthogonal projection of the
score function to �⊥. It remains to demonstrate that

n
−1/2
1

n1∑
i=1

[
Seff{Xi ; θ0, f̃ (·; θ̃ )} − Seff (Xi ; θ0, f0)

] = op(1),

or equivalently, using the explicit form of Seff , we need to show

n
−1/2
1

n1∑
i=1

{
f̃ ′(Xi − μ0; θ̃ )

f̃ (Xi − μ0; θ̃ )
− f ′

0(Xi − μ0)

f0(Xi − μ0)

}

× w(−Xi + μ0; β0)

w1(Xi − μ0; β0)
= op(1). (A.2)

Consider the first moment of the left side of Equation (A.2). We have

n
−1/2
1

n1∑
i=1

E

[{
f̃ ′(Xi − μ0; θ̃ )

f̃ (Xi − μ0; θ̃ )
− f ′

0(Xi − μ0)

f0(Xi − μ0)

}

× w(−Xi + μ0; β0)

w1(Xi − μ0; β0)

]
= n

1/2
1 E

∫ {
f̃ ′(t ; θ̃ )

f̃ (t ; θ̃ )
− f ′

0(t)

f0(t)

}

× w(−t ; β0)

w1(t ; β0)
c(β0)f0(t)w(t ; β0)dt = 0,

because the integrand is an odd function. Consider the second moment
of the left side of Equation (A.2). We have

E

([
n

−1/2
1

n1∑
i=1

{
f̃ ′(Xi − μ0; θ̃ )

f̃ (Xi − μ0; θ̃ )
− f ′

0(Xi − μ0)

f0(Xi − μ0)

}

× 2w(−Xi + μ0; β0)

w1(Xi − μ0; β0)

]2
⎞⎠

= E

⎡⎣{
f̃ ′(Xi − μ0; θ̃ )

f̃ (Xi − μ0; θ̃ )
− f ′

0(Xi − μ0)

f0(Xi − μ0)

}2
4w2(−Xi + μ0; β0)

w2
1(Xi − μ0; β0)

⎤⎦
= E

∫ {
f̃ ′(t ; θ̃ )

f̃ (t ; θ̃ )
− f ′

0(t)

f0(t)

}2
4w2(−t ; β0)

w2
1(t ; β0)

c(β0)f0(t)w(t ; β0)dt

≤ 4c(β0)E
∫ ⎡⎣{

f̃ ′(t ; θ̃ )

f̃ (t ; θ̃ )
− f̃ ′(t ; θ0)

f̃ (t ; θ0)

}2

+
{

f̃ ′(t ; θ0)

f̃ (t ; θ0)
− f ′

0(t)

f0(t)

}2
⎤⎦ f0(t)dt,

where we used

w(t ; β0)w(−t ; β0)

w1(t ; β0)
≤ 1

2
and

w(−t ; β0)

w1(t ; β0)
≤ 1.

Using the delta method, we have

E

∫ {
f̃ ′(t ; θ̃ )

f̃ (t ; θ̃ )
− f̃ ′(t ; θ0)

f̃ (t ; θ0)

}2

f0(t)dt

= E

∫
E

⎡⎣{
f̃ ′(t ; θ̃ )

f̃ (t ; θ̃ )
− f̃ ′(t ; θ0)

f̃ (t ; θ0)

}2 ∣∣∣Xn1+1, . . . , Xn1+n2

⎤⎦ f0(t)dt

= E{Op

(
n−1

3

)} = o(1).

On the other hand,

E

∫ {
f̃ ′(t ; θ0)

f̃ (t ; θ0)
− f ′

0(t)

f0(t)

}2

f0(t)dt

is the MISE of the nonparametric estimations and has order O{h4 +
(n2h

3)−1} = o(1) for h = O(n−1/5) following the results in Theorem 3.
Thus, the second moment of the left side of Equation (A.2) converges to
zero as n → ∞. From the book by Serfling (2002, sec. 1.2.3), Equation
(A.2) is indeed true.

Summarizing the above results, taking into account that n1 = n −
2n1−ε implies

n1/2(̂θ − θ0) − n
1/2
1 (̂θ − θ0) = op(1),

we have

n1/2(̂θ − θ0) → Np(0, [E{Seff (X, θ0, f0)⊗2}]−1).

�
[Received August 2011. Revised May 2013.]
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