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Abstract

We consider a problem motivated by issues in nutritional epidemiology, across diseases and
populations. In this area, it is becoming increasingly common for diseases to be modeled
by a single diet score, such as the Healthy Eating Index, the Mediterranean Diet Score, etc.
For each disease and for each population, a partially linear single-index model is fit. The
partially linear aspect of the problem is allowed to differ in each population and disease.
However, and crucially, the single-index itself, having to do with the diet score, is common
to all diseases and populations, and the nonparametrically estimated functions of the single-
index are the same up to a scale parameter. Using B-splines with an increasing number of
knots, we develop a method to solve the problem, and display its asymptotic theory. An
application to the NIH-AARP Study of Diet and Health is described, where we show the
advantages of using multiple diseases and populations simultaneously rather than one at a
time in understanding the effect of increased Milk consumption. Simulations illustrate the
properties of the methods.

Some Key Words: Asymptotic theory; B-splines; Combining data sets; Healthy Eating In-
dex; Logistic regression; Partially linear single-index models; Semiparametric models; Single-
index models.

Short title: Single Index Models Across Populations



1 Introduction

We describe a novel partially linear logistic single index model in which there are multiple

populations, and multiple diseases within each population, but where the single index part of

the model is shared across the populations and diseases. In the case of a single disease across

independent populations, we derive B-spline based semiparametric efficient methodology. In

other cases, such as multiple populations with multiple diseases, our B-spline based methods

are consistent and we derive their asymptotic theory.

The problem arises from common practice in nutritional epidemiology, where the goal

is to relate nutritional intakes to disease. In this area, it is increasingly common to

relate the patterns of multiple dietary components, rather than an individual dietary

component, to a disease. One popular way to summarize dietary intake patterns is

through a dietary pattern score. While there are many flavors of dietary pattern scores,

in our example we use the U.S. Department of Agriculture’s (USDA’s) Healthy Eating

Index-2005 (HEI-2005, http://www.cnpp.usda.gov/HealthyEatingIndex.htm). It is based

on the key recommendations of the 2005 Dietary Guidelines for Americans available at

http://www.health.gov/dietaryguidelines/dga2005/document/default.htm. The HEI-2005

comprises 12 distinct component scores. Intakes of each food or nutrient, represented by

one of the 12 components, are expressed as a ratio to energy (caloric) intake, assessed, and

given a score. See Table 1 for a list of these components and the standards for scoring, and

see Guenther et al. (2008) and Guenther et al. (2008) for details. The 12 different component

scores are then summed to get a total score, ranging from 0 for a terrible diet to 100 for the

best possible diet.

The key concept here is that the total score is developed before any health outcome data

are considered. Once a total score is developed, it is then used, across multiple populations, in

risk models to relate any disease to the total score. As an example, Panagiotakos et al. (2006)

show that for colorectal cancer in the NIH-AARP Study of Diet and Health (Schatzkin et al.,

2001), with diet assessed by a food frequency questionnaire, higher HEI-2005 total scores are

statistically significantly associated with lower disease risks. They also consider three other

dietary pattern scores. George et al. (2010) show that among breast cancer survivors, higher
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HEI-2005 total scores are associated with lower levels of chronic inflammation. Chiuve et al.

(2012) show that the HEI-2005 total score and the Alternative Healthy Eating Index (AHEI)

(McCullough et al., 2002) are significant predictors of chronic diseases such as coronary heart

disease, diabetes, stroke and cancer, and that closer adherence to the 2005 Dietary Guidelines

may lower the risk of major chronic diseases. The AHEI is also associated with all cause

mortality (Akbaraly et al., 2011).

In its most general form, there are k = 1, ..., K populations. Within population k, there

are ` = 1, ..., Lk diseases. As in the HEI-2005, there are j = 0, ..., J dietary components.

Let the J + 1 individual component scores in population k be (X0k, ..., XJk): in our case,

J + 1 = 12. Then the current practice in nutritional epidemiology would be to form a total

score
∑J

j=0Xjk for population k and use it as the risk predictor for all populations/diseases.

Thus, for example, in a logistic regression with a binary outcome Yk`, and with H(·) being

the logistic distribution function, the model for population k and disease ` is

pr(Yk` = 1|X0k, ..., XJk) = H(β0k` + β1k`

∑J
j=0Xjk). (1)

This is important and convenient from a public health perspective, because it enables nutri-

tional epidemiologists to use the same predictor, namely
∑J

j=0Xjk, for all diseases, and to

describe the effect of that predictor through a single quantity, β1k`.

Crucially, it is undesirable to try to fit different parameters for each component score.

That is, instead of fitting (1), one might fit

pr(Yk` = 1|X0k, ..., XJk) = H(β0k` +
∑J

j=0βjk`Xjk). (2)

The reason why (1) is preferred to (2) for public health purposes is that it is much more

interpretable. Model (1) describes how a single, interpretable score,
∑J

j=0Xjk, affects disease

risk. Model (2) is chaotic because it requires policy makers to say things such as “if you are

in population k = 1 and are worried about disease ` = 1 then your diet improves your risk if

you eat this kind of food more and that kind of food less, but for disease ` = 2 you need to

consider your dietary composition in another way”. Interpretability is even more complicated

because the component scores have a reasonably complex pattern of correlations, see Table

S.1 of the Supplementary Material. Since there are so many diseases and populations,
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this is not helpful practically and would not be used. Indeed, as seen above, the single HEI-

2005 score is associated with colon cancer (Reedy et al., 2008), chronic inflammation, (George

et al., 2010) and many chronic diseases (Chiuve et al., 2012), and its ease of interpretation

is apparent.

Our goal is to develop a single interpretable score that, unlike the HEI-2005 score or

other scores, is calibrated to different populations or diseases. We do this not by summing

the component scores, but by weighting them and allowing a more flexible shape. Thus,

for an unknown function m(·) and weights (α0, ..., αJ), we propose the single-index score

m(
∑J

j=0Xjkαj), and model the risk as

pr(Yk` = 1|X0k, ..., XJk) = H{β0k` + β1k`m(
∑J

j=0Xjkαj)}. (3)

Model (3), like model (1), is based upon a single interpretable score, m(
∑J

j=0Xjkαj), that

can be used across populations and/or diseases.

In Section 2, we present our model more formally. Section 3 describes how to fit the

model for a single disease across independent populations, and we show that our method is

semiparametric efficient in this case. In Section 4 we describe generalizations. Section 4.1

considers a single population with multiple diseases, while Section 4.2 describes the real goal

of our data analysis, where there are multiple populations and multiple diseases. Section 5

gives results of the data example, while Section 6 describes simulation results. Computational

and technical details are in an Appendix and in Supplementary Material.

2 Multiple Population Single-Index Model

2.1 Model and Splines

In this section, we consider a single disease across multiple different populations. There

are k = 1, ..., K populations. For the kth population, there are i = 1, ..., nk individuals

with binary responses Yik. Define Xik = (Xik1, . . . , XikJ)T. In addition to the responses,

for individual i in population k we observe (Gik, Xik0, Xik, Zik, GikWik), defined as follows.

The J + 1 dietary component scores are (Xik0, X
T
ik)

T. Covariates that are observed for all
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individuals are Zik = (Zik1, . . . , Zikd)
T. Further, we allow for a subset of individuals to have

additional covariates Wik = (Wik1, . . . ,Wika)
T, and define Gik to be the binary indicator

that these individuals have such additional covariates. For example, Reedy et al. (2008)

fit models to men and women with many common covariates such as age and levels of

educational status, but for women they in addition include indicators of types of hormone

replacement therapy.

For the ith individual and the kth outcome, we posit the marginal model

pr(Yik = 1 | Gik, Xik0, Xik, Zik, GikWik) (4)

= Hik = H{(βk1 + βk2Gik)m(Xik0 +XT
ikα) + ZT

ik(θk1 + θk2Gik) +GikW
T
ikθk3}.

Here α ∈ RJ , θk1 ∈ Rd, θk2 ∈ Rd, θk3 ∈ Ra, βk1 ∈ R and βk2 ∈ R. Crucially, for use in

practice, the function m(·) and the parameter α do not depend on k.

Remark 1 In model (4), the most general form of the single-index is m(Xik0α0 + XT
ikα).

However, because m(·) is modeled nonparametrically, such a formulation is not identifiable.

There are three equivalent ways to obtain identifiability. The first common method, what

we have done, is to select one variable that is known to be related to the response, which

we label as Xik0, and to set its parameter α0 = 1. A second common method is to make the

restriction that α2
0 + αTα = 1. In the context of our problem, there is a third way. Since

common nutritional epidemiology practice is to weight each variable the same, namely = 1,

the sum of the weights = J + 1. For comparison purposes, we can achieve identifiability via

the restriction α0 + (1, ..., 1)α = J + 1. We use the first method in our computations, but

report results for the third.

Model (4) generalizes the now-classical generalized partially linear single-index model

(Carroll et al., 1997), with the novelty being both the context and that the same single-

index m(Xik0 +XT
ikα) is used across multiple outcomes.

Single-index models have been widely used as a popular tool in multivariate nonpara-

metric regression to alleviate the “curse of dimensionality” (Bellman, 1961). For example,

recently Yu and Ruppert (2002) used penalized spline least squares estimation for single-

index models with independent and identically distributed observations: their number of
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knots was fixed, unlike in our development. Wang and Yang (2009a) proposed polynomial

spline estimation and extended the results to weakly dependent response variables. Cui et al.

(2011) developed a kernel estimating function method for generalized single-index models,

while Ma and Zhu (2013) constructed robust and efficient estimation with high dimensional

covariates. These papers are restricted to the case of one population, K = 1, and one out-

come, L = 1. Here we consider multiple populations and multiple outcomes. We propose a

regression spline based profile estimation procedure and establish the asymptotic properties

of the estimators in model (4).

To set the main ideas clearly, it is convenient to first assume that the Yik are independent,

see Section 4 for the more general cases of interest in the HEI-2005 problem. To ensure

identifiability, we set β11 = −1, and we set the first component of θ11 = (θ111, ..., θ11d) equal

to zero, i.e., θ111 = 0. Hence, our parameters are (ν,m), where m is an unspecified function

that is sufficiently smooth, while

ν = (αT, β12, β21, β22, . . . , βK1, βK2, θ112, . . . , θ11d, θ
T
12, θ

T
13, θ

T
21, θ

T
22, θ

T
23, . . . , θ

T
K1, θ

T
K2, θ

T
K3)T.

Thus, ν has total dimension dν = J + 2K + 2Kd+Ka− 2.

Let Uik(α) = Xik0 +XT
ikα be the realizations of Uk(α) = Xk0 +XT

k α. The unknown func-

tion m(·) is estimated by polynomial splines described as follows. Without loss of generality,

assume u ∈ [a, b]. Let N = Nn be the number of interior knots. Divide [a, b] into (N + 1)

subintervals Ip = {(ξp, ξp+1), p = r, r + 1, . . . , N + r − 1}, IN = (ξN+r, 1), where (ξp)
N+r
p=r+1 is

a sequence of interior knots, given as

ξ1 = · · · = a = ξr < ξ(r+1) < · · · ξ(r+N) < b = ξN+r+1 = · · · = ξN+2r.

Define the distance between neighboring knots as hp = ξp+1 − ξp, r ≤ p ≤ N + r, and

h = maxr≤p≤N+r hp. Let Gn be the space of B-splines of order r, so that Pn = N + r is

the number of functions in Gn. For u ∈ [a, b], let Gn be the linear space spanned by the

B-spline functions Br(u) = {Br,p(u), 1 ≤ p ≤ Pn}T. Then m(u) can be approximated by

m̃(u) =
∑Pn

p=1Br,p(u)λp = BT
r (u)λ , where λ = (λ1, . . . , λPn)T. B-splines have been used

frequently to estimate the nonparametric functions in nonparametric and semiparametric

models because they are easy to compute with derivable asymptotic theory. See Huang
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(2003) and Wang and Yang (2009b) for their utility in nonparametric models, Stone (1985)

and Huang and Yang (2004) in additive models, and Huang et al. (2002), Liu et al. (2011)

and Wang et al. (2011) in semiparametric models.

3 Profile Estimating Procedure

Our estimation is performed through a conceptually simple profiling procedure, as described

below.

Step 1. Define

H̃ik = H[(βk1 + βk2Gik)B
T
r {Uik(α)}λ+ ZT

ik(θk1 + θk2Gik) +GikW
T
ikθk3].

Treating ν as a fixed parameter, estimatem(u) by spline functions m̂(u, ν) =
∑Pn

p=1Br,p(u)λ̂p(ν)

with λ̂(ν) = {λ̂1(ν), · · · , λ̂Pn(ν)}T through maximizing

Ln(λ, ν) =
∑K

k=1

∑nk
i=1{Yiklog(H̃ik) + (1− Yik)log(1− H̃ik)}. (5)

To prepare for the second step, we perform the following additional calculations. Let

Br−1(u) = {Br−1,p(u) : 2 ≤ p ≤ Pn}T be the B-spline functions of order r − 1. We estimate

m′(u, ν), the first derivative of m, through m̂′(u, ν) =
∑Pn

p=2 Br−1,p(u)λ̂
(1)
p (ν), where λ̂

(1)
p (ν) =

(r − 1){λ̂p(ν)− λ̂p−1(ν)}/(ξp+r−1 − ξp), for 2 ≤ p ≤ Pn. This is because the first derivative

of a spline function can be expressed in terms of a spline of one order lower see page 116

of de Boor (2001). Let D = (djj′)1≤j,j′≤Pn−1 be a (Pn − 1) × (Pn − 1) diagonal matrix with

djj = 1/ (ξj+r − ξj+1) and djj′ = 0 for j 6= j′, and let D11 = (−D, 0Pn−1)(Pn−1)×Pn and

D12 = (0Pn−1, D)(Pn−1)×Pn , where 0Pn−1 is the (Pn − 1)-dimensional vector with 0’s as its

elements. Then m̂′(u, ν) = BT
r−1(u)D1λ̂(ν), where D1 = (r − 1) (D11 +D12). For u ∈ [a, b],

define

σ̂2(u, ν) = BT
r (u)[

∑K
k=1

∑nk
i=1Vik(ν)(βk1 + βk2Gik)

2Br{Uik(α)}Br{Uik(α)}T]−1Br(u), (6)

where Vik(ν) = Hik(ν)(1−Hik(ν)), and

Hik(ν) = H{(βk1 + βk2Gik)m(Xik0 +XT
ikα) + ZT

ik(θk1 + θk2Gik) +GikW
T
ikθk3}.
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Step 2. Define

Ĥik(ν) = H{(βk1 + βk2Gik)B
T
r (Uik(α))λ̂(ν) + ZT

ik(θk1 + θk2Gik) +GikW
T
ikθk3}. (7)

Estimate ν by ν̂ through maximizing

Ln(ν) =
∑K

k=1

∑nk
i=1[Yiklog{Ĥik(ν)}+ (1− Yik)log{1− Ĥik(ν)}].

Once we obtain ν̂, we can plug it into m̂ to obtain ν̂, m̂(u, ν̂) as the final estimator. To

prepare the description of the asymptotic properties of our procedure, we define

Qi1(ν) =
{

(−1 + β12Gi1)m′(Xi10 +XT
i1α)XT

i1, Gi1m(Xi10 +XT
i1α), 01,2K−2, Z1i2, · · · ,

Zi1d, Gi1Z
T
i1, Gi1W

T
i1 , 01,(K−1)(2d+a)

}T
,

and for k = 2, ..., K define

Qik(ν) =
{

(βk1 + βk2Gik)m
′(Xik0 +XT

ikα)XT
ik, 01,2k−3,m(Xik0 +XT

ikα), Gikm(Xik0 +XT
ikα),

01,2K−2k+(k−1)(2d+a)−1, Z
T
ik, GikZ

T
ik, GikW

T
ik, 01,(K−k)(2d+a)

}T
.

Denote the elements of Qik(ν) = (Qik,`(ν))dνl=1. Let

ν0 = (α0T, β0
12, β

0
21, β

0
22, . . . , β

0
K1, β

0
K2, θ

0
112, . . . , θ

0
11d, θ

0T
12 , θ

0T
13 , θ

0T
21 , θ

0T
22 , θ

0T
23 , . . . , θ

0T
K1, θ

0T
K2, θ

0T
K3)T

be the collection of the true parameters. Let [a0, b0] be the support of Xk0 + XT
k α

0, where

α0 is the true population parameter. Denote ‖ · ‖ as the L2 norm of any square integrable

function on [a0, b0]. For 1 ≤ ` ≤ dν , let η0
` (·) be the function η`(·) ∈L2([a0, b0]) that min-

imizes E[
∑K

k=1nk{Qik,`(ν
0) − (β0

k1 + β0
k2Gik)η`(Uik (α0))}2Vik]. Also, define η0{Uik(α)} =

{η0
1{Uik(α)}, . . . , η0

dν
{Uik(α)}]T. For simplicity of notations, we let Vik = Vik(ν

0), Qik =

Qik(ν
0) and Uik = Uik(α

0). Let n =
∑K

k=1 nk.

In the following three theorems, we establish the consistency, asymptotic normality and

efficiency of our procedure.

Theorem 1 Under the conditions in Appendix A.2, when ν is the collection of the true

parameters or a
√
n-consistent estimator of ν0, (a) |m̂(u, ν) −m(u)| = Op{(nh)−1/2 + hq}

uniformly in u ∈ [a0, b0]; (b) |m̂′(u, ν) −m′(u)| = Op(n
−1/2h−3/2 + hq−1) uniformly in u ∈

[a0, b0]; and (c) as n→∞, σ̂−1(u, ν0){m̂(u, ν)−m(u)} → Normal(0, 1).
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Theorem 2 Define n = n1 and for k = 2, ..., K, define nk = nckn, where there are constants

c∗ > 0 and c∗∗ <∞ such that c∗ ≤ ck = limn→∞ ckn ≤ c∗∗. Under the conditions in Appendix

A.2, ‖ν̂ − ν0‖2 = Op

(
n−1/2

)
, and

n1/2(ν̂ − ν0) = [n−1
∑K

k=1

∑nk
i=1Hik(1−Hik)(Qik − (β0

k1 + β0
k2Gik)η

0(Uik))
⊗2]−1 (8)

×[n−1/2
∑K

k=1

∑nk
i=1(Yik −Hik){Qik − (β0

k1 + β0
k2Gik)η

0(Uik)}] + op(1),

for ν̂ in a neighborhood of ν0. Then as n→∞, n1/2(ν̂ − ν0)→ Normal(0dν ,Σ), where

Σ = (
∑K

k=1ckE[Vik{Qik − (β0
k1 + β0

k2Gik)η
0(Uik)}⊗2])−1,

and 0dν is a dν-dimensional vector with “0” as its elements. Here and throughout the text,

a⊗2 ≡ aaT for any matrix or vector a.

In practice, Σ is estimated by

Σ̂ = n(
∑K

k=1

∑nk
i=1[V̂ik(Qik(ν̂)− Π̂nQik(ν̂))⊗2])−1,

where V̂ik = Ĥik(ν̂)(1− Ĥik(ν̂)), Π̂nQik(ν̂) = (Π̂nQik,`(ν̂), 1 ≤ ` ≤ dν)
T, and for 1 ≤ l ≤ dν ,

Π̂nQik,`(ν̂) = (β̂k1 + β̂k2Gik)B
T
r (Uik(α̂))δ̂`, where

δ̂` = arg min
δ`∈RPn

∑K
k=1

∑nk
i=1

{
Qik,`(ν̂)− ((β̂k1 + β̂k2Gi)B

T
r (Uik(α̂))δ

}2

V̂ik.

In addition, under the assumption of independence, or conditional independence of the

Yik given the covariates, our estimation method is semiparametric efficient. We state this as

Theorem 3 Under the conditions in Appendix A.2, profile likelihood estimation of the pa-

rameter ν reaches the semiparametric efficiency bound. The minimum variance bound for

estimating ν can be further simplified to

covopt{n1/2(ν̂ − ν0)} =
{
E
(∑K

k=1ckVik
[
QikQ

T
ik − (β0

k1 + β0
k2Gik)

2{η0(Uik)}⊗2
])}−1

.

The proofs of the theorems are given in the Appendix.
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4 Generalizations

4.1 Single Population, Multiple Diseases

In this section, we relax the assumption of independence of the Yik given the covariates,

and consider the case of a single population with K outcomes, with a common sample

size n. The response indicators remain as (Yi1, ..., YiK), but now the covariates are the

same for each response, and are written as Ci = (Gi, Xi0, Xi, Zi, GiWi), and now we use

Ui(α) = Xi0 + XT
i α. Ignoring this correlation and invoking a “working independence”

principle, the profile likelihood procedure described in Section 3 will still provide consistent

estimation. However, more efficient estimation can be generally obtained through taking

into account the correlation structure.

Specifically, the derivative of Yiklog(H̃ik) + (1 − Yik)log(1 − H̃ik) with respect to λ is

(Yik−H̃ik)(βk1 +βk2Gi)Br(Ui(α)). Translated to the setting of this section, Step 1 in Section

3 is equivalent to solving

∑K
k=1

∑nk
i=1(Yik − H̃ik)(βk1 + βk2Gi)Br(Ui(α)) = 0.

Here, we modify this step to

Step 1d. Let Ωi = (Ωi,k,k′)
K
k,k′=1 represent a working covariance matrix of (Yi1, ..., YiK)

conditional on Ci. Let Bi(ν) be a K×K matrix with the (k, k′) entry Bi,k,k′(ν) = Ωi,k,k′(βk1+

βk2Gi)(βk′1 + βk′2Gi). Obtain λ̂w(ν) by solving
∑n

i=1Br{Ui(α)}Ãi(ν)Bi(ν)−1Φi(ν) = 0,

where

Φi(ν) = {(Yi1 − H̃i1)(β11 + β12Gi), . . . , (YiK − H̃iK)(βK1 + βK2Gi)}T,

Ãi(ν) = {Ṽi1(β11 + β12Gi)
2, . . . , Ṽik(βK1 + βK2Gi)

2},

where Ṽik = H̃ik(1− H̃ik).

Using λ̂w(ν), we form the corresponding estimators of m(u) and m′(u), which are

m̂w(u, ν) = BT
r (u)λ̂w(ν) and m̂′w(u, ν) = {B′r(u)}Tλ̂w(ν). Define Ai(ν) = {Vi1(β11 +

β12Gi)
2, . . . , Vik(βK1 + βK2Gi)

2}. Let Ai = Ai(ν
0) and Bi = Bi(ν

0). For u ∈ [a, b], de-
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fine σ̂2
w(u, ν) = BT

r (u)Π−1
n ΞnΠ−1

n Br(u), where

Πn =
∑n

i=1Br(Ui)AiB
−1
i AT

i Br(Ui)
T,

Ξn =
∑n

i=1Br(Ui)AiB
−1
i QiB

−1
i AT

i Br(Ui)
T,

and where Qi is a K ×K matrix with the (k, k′) entry

Qi,k,k′(ν) = {E(YikYik′ | Ci)−HikHik′}(β0
k1 + β0

k2Gi)(β
0
k′1 + β0

k′2Gi).

In the description above, Ωi is a generic working covariance matrix. Here is how we

implemented it. Let Ωi be the conditional covariance matrix of Yi = (Yi1, . . . , YiK)T given

Ci. Then the (k, k′) entry of Ωi is Ωi,k,k′ = E(YikYik′ | Ci) − HikHik′ . In practice, we

estimate Ωi by Ω̂i = V̂
1/2
i R̂V̂

1/2
i , where V̂i is a K × K diagonal matrix with the kth

diagonal as Ĥik(1−Ĥik) and R̂=n−1
∑n

i=1 V̂
−1/2
i

(
Yi − Ĥi

)(
Yi − Ĥi

)T

V̂
−1/2
i , where Ĥi =(

Ĥi1, . . . , ĤiK

)T

and Ĥik = Ĥik(ν̂).

Similarly, the derivative of the (i, k) term in (7) with respect to ν is

(Yik − Ĥik(ν)){Q̂ik(ν) + (βk1 + βk2Gi){λ̂′w(ν)}TBr(Xi0 +XT
i α)},

where Ĥik(ν) is the same as H̃ik except that λ in H̃ik is replaced by λ̂w(ν) in Ĥik(ν), and

Q̂ik(ν) is the same asQik(ν) except thatm(·),m′(·) inQik(ν) are replaced by m̂w(·, ν), m̂′w(·, ν)

in Q̂ik, and λ̂′w(ν) = ∂λ̂w(ν)/∂νT is the Pn × dν derivative matrix of λ̂w(ν) with respect to

ν. We thus modify Step 2 to

Step 2d. Let Ψi(ν) be the dνK× 1 vector formed by K vectors, each of length dν , with the

kth, k = 1, . . . , K, vector being (Yik−Ĥik(ν)){Q̂ik(ν)+(βk1+βk2Gi){λ̂′w(ν)}TBr(Xi0+XT
i α)}.

Obtain ν̂w from solving
∑n

i=1 Ĉi(ν)D̂i(ν)−1Ψi(ν) = 0, where Ĉi(ν) is a dν × dνK matrix,

with kth block

Ĉi,k(ν) = V̂ik(ν){Q̂ik(ν) + (βk1 + βk2Gi)λ̂
′
w(ν)TBr(Xi0 +XT

i α)}⊗2,

where V̂ik(ν) = Ĥik(ν)(1− Ĥik(ν)) and D̂i(ν) is a dνK × dνK matrix, with (k, k′) block

D̂i,k,k′(ν) = Ωi,k,k′{Q̂ik(ν) + (βk1 + βk2Gi)λ̂
′
w(ν)TBr(Xi0 +XT

i α)},

×{Q̂ik′(ν) + (βk′1 + βk′2Gi)λ̂
′
w(ν)TBr(Xi0 +XT

i α)}T,
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and λ̂′w(ν) can be obtained via numerical differentiation. Let β1+β2Gi = {(βk1 + βk2Gi), 1 ≤ k ≤ K}T,

and Θi(ν) =diag({Vik(ν)(βk1 + βkGi)}Kk=1. Then Ai(ν) = (β1 + β2Gi)
TΘi(ν). Denote 1dν as

the dν-dimensional vector with 1’s as its elements. Let Θi = Θi(ν
0). Let Qi = (Qi1, ..., QiK)T

and let η be a vector of functions η(u) = {η1(u), . . . , ηdν (u)}T with η`(·) ∈L2([a, b]) that min-

imizes

1T
dνE

[{
Qi − (β0

1 + β0
2Gi)η

T(Ui)
}T

ΘiB
−1
i Θi

{
Qi − (β0

1 + β0
2Gi)η

T(Ui)
}]

1dν .

Define Ci as a dν × dνK matrix, with kth block Ci,k = Vik{Qik − (β0
k1 + β0

k2Gi)η(Ui)}⊗2.

Define Di as a dνK × dνK matrix, with (k, k′) block

Di,k,k′ = Ωi,k,k′{Qik − (β0
k1 + β0

k2Gi)η(Ui)}{Qik′ − (β0
k′1 + β0

k′2Gi)η(Ui)}T,

and define D∗i as a dνK × dνK matrix, with (k, k′) block

D∗i,k,k′ = {E(YikYik′ | Ci)−HikHik′}{Qik − (β0
k1 + β0

k2Gi)η(Ui)}

×{Qik′ − (β0
k′1 + β0

k′2Gi)η(Ui)}T.

In the following two theorems, we establish the consistency and asymptotic normality of

our procedure. Different from the independent disease case, without a correct specification

of the correlation structure of the occurrences of different diseases, we can no longer achieve

semiparametric efficiency.

Theorem 4 Under the conditions in Appendix A.2, when ν is the collection of the true pa-

rameters or a
√
n-consistent estimator of ν, (a) σ̂−1

w (u, ν0) {m̂w(u, ν)−m(u)} → Normal(0, 1);

(b) |m̂w(u, ν)−m(u)| = Op

{
(nh)−1/2 + hq

}
uniformly in u ∈ [a0, b0]; and (c) |m̂′w(u, ν)−m′(u)| =

Op(n
−1/2h−3/2 + hq−1) uniformly in u ∈ [a0, b0].

Let D̂∗i be a dνK × dνK matrix, with (k, k′) block

D̂∗i,k,k′ = Ω̂i,k,k′{Qik(ν̂)− (β̂k1 + β̂k2Gi)η̂(Ui(ν̂))}{Qik′(ν̂)− (β̂k′1 + β̂k′2Gi)η̂(Ui(ν̂))}T,

where η̂(Ui(ν̂)) = {η̂1(Ui(ν̂)), . . . , η̂dν (Ui(ν̂))}T and η̂`(Ui(ν̂)) = BT
r (Uik(ν̂))τ̂` with {τ̂`} min-

imizing

1T
dν

∑n
i=1

[{
Qi(ν̂)− (β̂1 + β̂2Gi)η̂

T(Ui(ν̂))
}T

Θi(ν̂)Bi(ν̂)−1Θi(ν̂)

×
{
Qi(ν̂)− (β̂1 + β̂2Gi)η̂

T(Ui(ν̂))
}]

1dν .
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Theorem 5 Let (C,D,D∗) be generic notation for random variables with the same distri-

bution as (Ci,Di,D
∗
i ). Under the conditions in Appendix A.2,

√
n(ν̂−ν0)→ Normal(0dν ,Σ)

for ν̂ in a neighborhood of ν0, where

Σ =
{
E(CD−1CT)

}−1
E(CD−1D∗D−1CT)

{
E(CD−1CT)

}−1
.

Here, Σ is consistently estimated by the sandwich estimator

Σ̂ = (n−1
∑n

i=1ĈiD̂
−1
i ĈT

i )−1(n−1
∑n

i=1ĈiD̂
−1
i D̂∗i D̂

−1
i ĈT

i )(n−1
∑n

i=1ĈiD̂
−1
i ĈT

i )−1. (9)

4.2 Multiple Populations and Multiple Diseases

Finally, we consider the general case that there are k = 1, ..., K independent populations,

and within the kth population, there are ` = 1, ..., Lk diseases and i = 1, ..., nk observations.

The outcomes are Yik` and the covariates are Cik = (Gik, Xik0, Xik, Zik, GikWik). The model

is

pr(Yik` = 1 | Cik) = Hik` (10)

= H{(βk`1 + βk`2Gik)m(Xik0 +XT
ikα) + ZT

ik(θk`1 + θk`2Gik) +GikW
T
ikθk`3}.

We make the same assumptions as in Section A.2. As in Theorem 2, we write n = n1 and

for k = 2, .., K, define nk = nckn, where there are constants c∗ > 0 and c∗∗ < ∞ such that

c∗ ≤ ck = limn→∞ ckn ≤ c∗∗.

Make the definitions of the terms in Section 4.1 appropriate to population k = 1, .., K,

e.g., Ãik(ν), Bik(ν), Φik(ν), Ĉik(ν), D̂ik(ν), Ψik(ν), Cık, Dik, Πnk, Ξnk, etc. Obtain

λ̂w(ν) by solving
∑K

k=1

∑nk
i=1Br{Uik(α)}Ãik(ν)Bik(ν)−1Φik(ν) = 0, and obtain ν̂w by solving∑K

k=1

∑nk
i=1 Ĉik(ν)D̂ik(ν)−1Ψik(ν) = 0. Define

σ̂2
w(u, ν) = BT

r (u){
∑K

k=1(nk/n)Πnk}−1{
∑K

k=1(nk/n)Ξnk}{
∑K

k=1(nk/n)Πnk}−1Br(u);

Σ =
{∑K

k=1ckE(CikD
−1
ik CT

ik)
}−1 {∑K

k=1ckE(CikD
−1
ik D∗ikD

−1
ik CT

ik)
}

×
{∑K

k=1ckE(CikD
−1
ik CT

ik)
}−1

;

Σ̂ = (n−1
∑K

k=1

∑nk
i=1ĈikD̂

−1
ik ĈT

ik)
−1(n−1

∑K
k=1

∑nk
i=1ĈikD̂

−1
ik D̂∗ikD̂

−1
ik ĈT

ik)

×(n−1
∑K

k=1

∑nk
i=1ĈikD̂

−1
ik ĈT

ik)
−1.
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Then Theorems 4-5 hold with these definitions, see Appendix A.8, and Σ̂ remains a sandwich

estimator.

As in other problems involving correlated binary data and generalized estimating equa-

tions, the semiparametric efficiency established in Theorem 3 does not hold for the multiple

populations and multiple diseases case, mainly due to the fact that the responses are corre-

lated among different diseases and the correlation structure is unknown. Discussion of the

working correlation matrix in parametric generalized estimating equation problems can be

found in many papers, see for example Chaganty and Joe (2004).

Instead of embedding the problem in the generalized estimating equation framework,

as we have done, there is some literature on developing a likelihood function that allows

correlation among the binary responses while having the marginal probabilities be of logistic

form, see for example Zhao and Prentice (1990) and Le Cessie and Van Houwelingen (1994).

Our methods can be extended to this approach, but the ease of computation associated with

a generalized estimating equation approach is a considerable advantage. This computational

advantage is one of the reasons that generalized estimating equation methods are so widely

employed in practice.

5 Data Analysis

5.1 Spline Setup

In all our implementations, we used cubic splines (r = 4) with equally spaced knots to

approximate the nonparametric function m (·). We selected the number of interior knots N

by minimizing a BIC criterion, where BIC(N) = −2Ln(λ̂, ν̂) + (N + p)log(n). See Xue and

Yang (2006) and Ma and Yang (2011) for the properties of the BIC criterion.

5.2 Dietary Score Example

We applied our methods to the NIH-AARP Study of Diet and Health (Schatzkin et al.,

2001). The method used for assessing dietary component intakes is the National Cancer

Institute’s Dietary History Questionnaire (DHQ) (Subar et al., 2001). There were 294,673
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men and 199,285 women in the data set. There were also dummy variables for various

groups of age, body mass index, education, ethnicity, physical activity and smoking, making

up the variables Z. In addition, for women, there were two dummy variables for hormone

replacement therapy, making up the variables W . The HEI-2005 score for whole grains were

taken as Xik0 and Xik. The sum of the weights was normalized to equal J + 1 = 12 for ease

of comparison with the HEI-2005 total score, all of whose weights = 1: the standard errors

of these weights were obtained by the delta-method after fitting the data as described in

Sections 3 and 4.

For women, the data set contains four diseases, breast cancer, ovarian cancer, colorectal

cancer and lung cancer, while for men there are prostate cancer, colorectal cancer and lung

cancer. See Table 2 for the numbers and percentages of cancer cases. The minimum HEI-

2005 total score in the data set was xmin = 19.67, while the maximum was xmax = 96.61.

We used F {U (α̂)} = Φ
(

[U (α̂)− E {U (α̂)}] /
√

Var {U (α̂)}
)

to construct B-spline

functions, where Φ (·) is the distribution function of the standard normal distribution and

U (α̂) = X0 + XTα̂. Thus the nonparametric function m is estimated by m̂{u (α̂) , ν} =∑Pn
p=1Br,p [F {u (α̂)}] λ̂p(ν).

We performed two analyses. In the first, we took a single disease and the two independent

populations of men and women, using the method in Section 3, and applied to colorectal

cancer and lung cancer separately. In the second, we analyzed all the cancer outcomes, using

the method in Section 4.2. The point of doing the former is to illustrate that analyzing

single diseases at a time can lead to very different results than those from analyzing multiple

diseases simultaneously, a point we made in Section 1.

5.3 Independent Populations, Single Disease

Our first analysis uses the setup in Section 3, where there areK = 2 independent populations,

men and women, and L = 1 disease. We performed analyses separately for colorectal cancer

and lung cancer, and display here the results for both. Because hormone replacement therapy

occurs only for women, the right had side of model (4) is identifiable when the parameter

subscripts do not involve k, e.g., β1 + β2Gik.
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Table 3 shows the estimates of the weights of the component scores, their standard errors

and their p-values for testing whether the weights = 1, i.e., whether the weight equals the

HEI-2005 weight.

The main conclusion of Table 3 is that the weights for the HEI-2005 component scores

are strikingly different for total fruit, whole grains and dairy, depending on whether one is

interested in colorectal cancer or lung cancer. This is a point we made in the discussion after

equation (2) about having a single score and not one for every disease. Table 3 suggests that

if one is worried about colorectal cancer, one should increase consumption of whole grains

and dairy products, but if one is worried about lung cancer, such consumption would have

only a minor effect, but total fruit intake should be increased.

One can see in Table 3 that the weights of many of the individual component scores differ

from HEI-2005’s weight of 1.0. We also tested whether the HEI-2005 weights fit the data

as well, by testing H0 : α1 = α2 = · · · = αJ = 1. To this end, we constructed the Wald

chi-square statistic χ2
W = (α̂− 1J)T {V̂ (α̂)}−1 (α̂− 1J), which has an asymptotic chi-square

distribution with J degrees of freedom under H0. Here, V̂ (α̂) is the estimated asymptotic

variance-covariance matrix of α̂, and is calculated following Theorem 5. The p-value for this

hypothesis is < 0.0001.

5.4 Multiple Populations and Multiple Diseases Analysis

Our second analysis uses the setup in Section 4.2, with all the cancers available in our data

set: lung, colorectal, breast and ovarian cancers for women, and lung, colorectal and prostate

cancers for men. We found that the working correlations among men and women were all

< 0.03 in absolute value, so we report results for the working independence estimate.

Table 4 shows the estimated weights of the component scores and their standard errors.

Because we are using multiple diseases and populations, and not just colorectal or lung cancer

separately, but all the cancers simultaneously, we can expect differences between Table 4

and either analysis in Table 3. One of the striking difference is the vast down-weighting

of increased Milk consumption compared to the results for colorectal cancer only. In the

HEI-2005 score, increase of Milk consumption results in a monotonically increasing score for

15



Milk. In the colorectal cancer case, a person who gets the top score of 10 on Milk contributes

24.4 to the single index. After accounting for the other diseases, however, the contribution

is 0.61, a vast decrease. To us, this makes perfect sense, because the value of increased Milk

consumption in adults is hardly universally accepted. For example, The Alternative Healthy

Eating Index (McCullough et al., 2002) does not even include dairy as part of its index,

i.e., increased Milk consumption gets zero weight. The Modified Mediterranean Diet Score

(Trichopoulou et al., 2005) and the MedDietScore (Panagiotakos et al., 2006), have been

shown to be related to overall survival and coronary heart disease respectively, but for these

scores, increases in Milk consumption lead to decreases in the score for Milk, i.e., negative

weight.

Table 5 shows the estimates, standard errors (se) and p-values for the coefficients β. The

β coefficient for men associated with lung cancer was = −1 for identifiability. However,

when we instead set the coefficient for lung cancer for women to be = −1, the estimated

coefficient for lung cancer for men was −1.06, and the p-value was very small. It is clear

from the table that the real practical impact of diet here is its contribution to decreases in

risk for lung and colorectal cancers, and for both men and women, and that the impact is

greater for lung cancers. See below for a discussion of the relative risks, displayed in Figure

2, which supports our conclusion. The estimated values for all other groups are also negative

except for the two groups: (a) men and prostate cancer; and (b) women and ovarian cancer,

where the coefficients are very small: they have both been set = 0 under the constraint that

a better diet is not a risk factor for either cancer. In the figures that we discuss, the index

(x-axis) plotted is from the 3rd to the 97th percentiles of the actual index.

Figure 1 shows the plot of the estimates of m(·) against the index u (α̂) along with point-

wise 95% confidence intervals, without any additional monotonicity constraints on m(·). The

estimated function itself is monotone as expected. Observe that the estimated function is

not an exact linear function, especially when considering the pointwise confidence intervals.

Indeed, from the index value of 50 to 72, the estimated function has an increasing acceler-

ation, then it becomes flat, and it increases quickly again when the index value is greater

than 82. When we refit the data with a linear link, the results, while different, are in good

agreement, both in the estimated functions, the tables, and the analyses that are described
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next.

Figure 2 displays the estimated relative risks of the various cancers and separately for

men and women. Clearly, we see that the index predicts stronger decreases for lung cancer

relative risks for better diet index score as compared to the other diseases. In Figure 2, the

effect of better diet on prostate cancer in men and ovarian cancer in women are is nearly

null, and the effect of better diet is quite modest on breast cancer. When analyzing the

HEI-2005 total score, the p-values for prostate cancer, breast cancer and ovarian cancer were

0.15, 0.09, and 0.44, respectively, roughly what is seen in Figure 2.

Figure S.1 of the Supplementary Material shows how the estimated relative risks

differ between men and women for lung and colorectal cancer. In both cases, women have

the lower risk in general, with the largest difference being in colorectal cancer, but even

there, the differences are not great. This agrees with the marginal rate of lung cancer for

men and women being 2.08% and 1.82%, respectively, while the marginal rate of colorectal

cancer for men and women 1.59% and 1.15%, respectively, see Table 2.

The hypothesis for testing that the weights all equal 1.0 is rejected with a p-value nu-

merically very close to 0, as expected.

6 Simulation

In this section, we describe a simulation study to assess the finite-sample performance of

our method in the case of two populations and multiple diseases. Section S.1 of the Sup-

plementary Material has results for two independent populations and one disease. Here

simulated data from the logistic model with multiple populations and diseases, so that

pr(Yik` = 1 | Cik) = H{βk`m(XT
ikα) + ZT

ikθk`1 +GikW
T
ikθk`3},

for i = 1, . . . , n and k = 1, 2. We consider two independent populations, and within the kth

population, there are ` = 1, ..., Lk diseases and i = 1, ..., n observations. We let L1 = 3 and

L2 = 4, so that, as in the example of Section 5, the first and second populations have four

and three diseases, respectively. There were 1, 000 simulated data sets.

For each simulated data set, we let n = 3, 000, and set the covariates to be randomly
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selected, without replacement, from the real data in Section 5. We set each component of α =

1, and made the convention that the estimates should sum to 12. The true values of βk` are

listed in Table 7. We simulated the components in θk`1 and θk`3 from the Uniform[−0.5, 0.5]

distribution, except that, for identifiability, the first component in θk1 is taken to be zero.

The true function is m(u) = exp(u/3).

To generate the correlated binary data, we use the following algorithm. Suppose we

want to generate M binary variables with probabilities (π1, ..., πM). Let (U1, ..., UM) be

equicorrelated standard normal random variables with correlation ρ, and for m = 1, ...,M ,

define Tm = log{πm/(1 − πm)} + log[Φ(Um)/{1 − Φ(Um)}]. Then setting Ym = I(Tm > 0)

creates correlated binary random variables with the desired probabilities. In our setting,

the correlations of the binary variables were approximately ρ/2, so for the simulation in this

section we set ρ = 0.10. This resulted in correlations somewhat higher than in the real data

in Section 5.

We also conducted simulation experiments for independent binary outcomes and the

sample size but with correlation nearly 0.10, (ρ = 0.20), and both correlations with n = 2000.

These results similar to the results in this section, are in Section S.2 of the Supplementary

Material.

To give some idea of how this simulation compares with the real data, Table 7 also lists

the mean number of cases by disease and by population: the mean across both is 7, 975.

These are many fewer than the number of cases seen in the actual data, see Table 2. Hence,

since the effective sample size might be thought of as the number of cases, the simulation

approximates a smaller study than the NIH-AARP data analyzed in Section 5.

Table 6 gives the results for the estimates of α, while Table 7 gives the results for the

estimates of the βk`. In both cases, the estimates are very nearly unbiased, the estimated

standard errors very nearly equal the actual standard errors, and the coverage probabilities

are close the nominal 95%.

Figure S.2 of the Supplementary Material shows that the mean estimated function

across the simulated data sets is also very nearly unbiased. Overall, the simulation suggests

that our methodology leads to nearly unbiased estimates and inferences that achieve their

nominal levels.
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7 Discussion

Based on motivation from the current practice in nutritional epidemiology, we have developed

generalized partially linear logistic single index models in the case that there are several

populations and/or diseases. The novelty of the modeling is that the single-index function

itself is the same across populations and diseases. In the case that the populations/diseases

are independent given covariates, we developed a computable B-spline based semiparametric

efficient methodology. In the case that the populations/diseases are correlated given the

covariates, our method makes no assumptions about how the diseases are related.

The importance of developing a score that is constructed for health risk prediction across

multiple diseases and populations, versus a different score for each population and disease,

were illustrated in our work. When we analyzed men for colorectal cancer solely, increasing

Milk consumption was given a very high weight in the single index. However, when we fit

the model simultaneously for multiple diseases, the weight for increasing Milk consumption

became much smaller. The importance of Milk consumption is a source of controversy in

the nutrition literature, and our results agree with the Alternative Healthy Eating Index

(AHEI), which assigns zero weight to increased Milk consumption, and the Mediterranean

diets scores assigns negative weight to increased Milk consumption.

Our results are focused on logistic regression, so that they are readily transparent, but

they are easily adapted to apply to any generalized linear model, by replacing H and its

related quantities with a more general link function and its corresponding related quantities

in the derivation.

We have strived to use a single overall score, which we have argued (a) avoids different

diet for different disease; and (b) is important for interpretability. It is important to use as

many diseases and populations as possible, and to draw inferences and projections only to

those populations and diseases. One can think of what we have done as to come up with a

framework for a type of “average” version of the individual model fits across multiple diseases

and populations. We do not average directly, instead, we average across the estimating

functions.
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Supplementary Material

The Supplementary Material contains results of addition simulations, and R and Matlab
programs to run the analysis. The NIH-AARP data used in the data analysis are available
from the NIH via a data transfer agreement (www.http://dietandhealth.cancer.gov/) but we
are not allowed to distribute it. The program files include simulated data as described in
Section 6.
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Appendix

A.1 Some Simplifications and Definitions

For simplicity of notation, we work through the asymptotics in the case that there is one

population with a common sample size n, and thus the covariates are the same across the pop-

ulations/diseases. The statements of Theorems 1-3 are readily verified when the responses

are independent with different sample sizes and different covariates across k = 1, ..., K.

For any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs, denote the norm ‖ζ‖r = (|ζ1|r + · · ·+ |ζs|r)1/r, 1 ≤

r ≤ ∞. For positive numbers an and bn, n > 1, let an � bn denote that limn→∞ an/bn = c,

where c is some nonzero constant. Denote the space of the qth order smooth functions as

C(q)([a, b]) =
{
φ
∣∣φ(q) ∈ C [a, b]

}
. For any s × s symmetric matrix A, denote its Lr norm

as ‖A‖q = maxς∈Rs,ς 6=0 ‖Aς‖q‖ς‖−1
q . Let ‖A‖∞ = max1≤i≤s

∑s
j=1 |aij|. For a vector a, let

‖a‖∞ = max1≤i≤s |ai|.

A.2 Regularity Conditions

(C1) The density function fX0+XTα(x0 + xTα) of random variable X0 + XTα is bounded

away from 0 on Sα and satisfies the Lipschitz condition of order 1 on Sα, where Sα ={
X0 +XTα,(X0, X

T)T∈S
}

and S is a compact support set of (X0, X
T)T, for α in a

neighborhood of its true values α0.

(C2) m(·) ∈ C(q)([a0, b0]) for q ≥ 2, η0
` ∈ C(1)([a0, b0]), 1 ≤ l ≤ dν , and the spline order

satisfies r ≥ q.

(C3) There exists 0 < c <∞, such that the distances between neighboring knots satisfies

max
r≤p≤N+r

|hp+1 − hp| = o(N−1) and h/ min
r≤p≤N+r

hJ ≤ c.

Furthermore, the number of knots satisfies N → ∞, as n → ∞, N−4n → ∞ and

Nn−1/(2q+2) →∞.

(C4) supi,k |Gik| ≤M <∞. The eigenvalues of
∑K

k=1ckE[Vik{Qik−(β0
k1+β0

k2Gik)η
0(Uik)}⊗2]

are bounded below from zero. The eigenvalues of E(CD−1CT) given in Theorem 5 are

bounded below from zero.

Conditions (C1)-(C3) are commonly used in the nonparametric smoothing literature;

see, for example, Zhou et al. (1998) and Cui et al. (2011). Condition (C4) is needed for

asymptotic normality of the parametric estimator.
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A.3 Proof of Theorem 1

We first introduce two lemmas which will be used in the following proofs.

Lemma 1 For any a = (ap : 1 ≤ p ≤ Pn), there exist constants 0 < cB ≤ CB < ∞, such

that for n large enough,

cBa
Tah ≤ aTE

{
Br(Uik(α

0))BT
r (Uik(α

0))
}
a ≤ CBa

Tah. (A.1)

max
1≤p,p′≤Pn

∣∣∣n−1
∑K

k=1

∑nk
i=1[Br,p(Uik(α

0))Br,p′(Uik(α
0))− E

{
Br,p(Uik(α

0))Br,p′(Uik(α
0))
}

]
∣∣∣

= Op{
√
hn−1log(n)}. (A.2)

Proof of Lemma 1: Result (A.1) follows from Theorem 5.4.2 of DeVore and Lorentz (1993),

and (A.2) can be proved by Bernstein’s inequality in Bosq (1961).

Define

V0
n(ν) = n−1

∑K
k=1

∑nk
i=1E

{
Vik(βk1 + βk2Gi)

2Br(Uik(α))BT
r (Uik(α))

}
. (A.3)

Lemma 2 There are constants 0 < cv < Cv < ∞, and 0 < CS < ∞, such that for n large

enough,

‖V0
n(ν0)−1‖∞ ≤ CSh

−1. (A.4)

and

cvh ≤ ‖V0
n(ν0)‖2 ≤ Cvh,C

−1
v h−1 ≤ ‖V0

n(ν0)−1‖2 ≤ c−1
v h−1, (A.5)

Proof of Lemma 2: Result (A.5) follows from (A.1). The result that ‖V0
n(ν0)−1‖∞ ≤ CSh

−1

follows from (A.5) and Theorem 13.4.3 in DeVore and Lorentz (1993).

If m ∈ Cq [a0, b0], there exists λ0 ∈ RPn , such that

sup
u∈[a0,b0]

|m(u)− m̃(u)| = O(hq), (A.6)

where m̃(u) = BT
r (u)λ0 (de Boor, 2001). In the following, we prove the results for the

nonparametric estimator m̂(u, ν) in Theorem 1 when ν = ν0. Then the results also hold

when ν is a
√
n consistent estimator of ν0, since the nonparametric convergence rate in

Theorem 1 is slower than n−1/2. Let αn = n−1/2Pn + P
−q+1/2
n . We will show that for any

given ε > 0, for n sufficiently large, there exists a large constant C > 0 such that

pr{ sup
‖τ‖2=C

Ln(λ0 + αnτ, ν
0) < Ln(λ0, ν0)} ≥ 1− ε. (A.7)

This implies that for n sufficiently large, with probability at least 1− ε, there exists a local

maximum for (5) in the ball {λ0 + αnτ :‖τ‖2 ≤ C}. Hence, there exists a local maximizer
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such that ‖λ̂(ν0) − λ0‖2 = Op(αn). Since Ln(λ, ν0) is a concave function of λ, the local

maximizer is the global maximizer of (5).

Define

H̃ik(λ, ν) = H[(βk1 + βk2Gik)B
T
r {Uik(α)}λ+ ZT

ik(θk1 + θk2Gik) +GikW
T
ikθk3],

then

∂Ln(λ, ν)/∂λ

=
∑K

k=1

∑nk
i=1{Yik − H̃ik(λ, ν)}(βk1 + βk2Gik)Br{Uik(α)},

∂2Ln(λ, ν)/∂λ∂λT

= −
∑K

k=1

∑nk
i=1H̃ik(λ, ν){1− H̃ik(λ, ν)}(βk1 + βk2Gi)

2Br{Uik(α)}BT
r {Uik(α)}.

By Taylor’s expansion, we have

Ln(λ0 + αnτ, ν
0)− Ln(λ0, ν0)

= {∂Ln(λ0, ν0)/∂λ}Tαnτ − [−2−1(αnτ)T{∂2Ln(λ∗, ν0)/∂λ∂λT}αnτ ], (A.8)

where λ∗ = %λ+ (1− %)λ0 for some % ∈ (0, 1). Moreover,

|{∂Ln(λ0, ν0)/∂λ}Tαnτ | ≤αn||∂Ln(λ0, ν0)/∂λ||2||τ ||2 = Cαn||∂Ln(λ0, ν0)/∂λ||2,

and ∂Ln(λ0, ν0)/∂λ = ∆n1 + ∆n2, where

∆n1 =
∑K

k=1

∑nk
i=1(Yik −Hik(ν

0))(β0
k1 + β0

k2Gik)Br(Uik(α
0)),

∆n2 =
∑K

k=1

∑nk
i=1(Hik(ν

0)− H̃ik(λ
0, ν0))(β0

k1 + β0
k2Gik)Br(Uik(α

0)).

Since E(∆n1) = 0, and E[{Yik − Hik(ν
0)}(β0

k1 + β0
k2Gik)Br,p{Uik(α0)}]2 ≤ C1h for some

constant 0 < C1 < ∞, then E(||n−1∆n1||22) ≤ PnKn
−1C1h. By Condition (C3), we have

h ≤ cP−1
n . Then E(||n−1∆n1||22) ≤ PnKn

−1C1cP
−1
n = KC1cn

−1. Then for any ε > 0, by

Chebyshev’s inequality, we have pr(||n−1∆n1||2 ≥
√
n−1KC1cε−1) ≤ ε. Hence, there exists an

event An1 with pr(ACn1) ≤ ε, such that on An1 we have ||∆n1||2 <
√
KC1cε−1n1/2. Moreover,

by (A.6), we have supi,k |Hik(ν
0)− H̃ik(λ

0, ν0)| = O(hq). Denote

∆ikp = (Hik(ν
0)− H̃ik(λ

0, ν0))(β0
k1 + β0

k2Gik)Br,p(Uik(α
0)).

Then, there exist constants 0 < C2, C
′
2 <∞ such that

E(||∆n2||2)

≤ P 1/2
n { sup

1≤p≤Pn
E(
∑K

k=1

∑nk
i=1∆ikp)

2}1/2

≤ P 1/2
n [{ sup

1≤p≤Pn

∑K
k=1

∑nk
i=1E(∆2

ikp)}1/2 + { sup
1≤p≤Pn

∑
(k,i) 6=(k′,i′)

E(∆ikp∆i′k′p)}1/2]

≤ P 1/2
n {(C2nh

2qh)1/2 + (C
′

2n
2h2qh2)1/2}

≤ P 1/2
n (

√
C2 +

√
C

′
2)nhq+1 ≤ P 1/2

n C3nc
q+1P−(q+1)

n = C3c
q+1nP−q−1/2

n ,
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where C3 = (
√
C2 +

√
C

′
2), for n sufficiently large given that nh→∞. Again by Chebyshev’s

inequality, for any ε > 0, we have pr(||∆n2||2 ≥ ε−1/2C3c
q+1nP

−q−1/2
n ) ≤ ε. Hence, there ex-

ists an event An2 with pr(ACn2) ≤ ε, such that on An2 we have ||∆n2||2 < ε−1/2C3c
q+1nP

−q−1/2
n .

Therefore, by the above results, we have for n sufficiently large, on the event An1 ∩An2 with

pr(An1 ∩ An2) ≥ 1− 2ε, such that

|{∂Ln(λ0, ν0)/∂λ}Tαnτ | ≤ Cαn||∂Ln(λ0, ν0)/∂λ||2 ≤ Cαn(||∆n1||2 + ||∆n2||2)

≤ Cαn(
√
KC1cε−1n1/2 + ε−1/2C3c

q+1nP−q−1/2
n ). (A.9)

Moreover, by (A.1) and (A.2), we have for n sufficiently large, with probability approaching

1,

−2−1τT{∂2Ln(λ∗, ν0)/∂λ∂λT}τ ≥nC3τ
Tτh ≥ C4C

2nP−1
n .

Thus, there exists an event An3 with pr(ACn3) ≤ ε for any ε > 0, such that on An3,

−2−1(αnτ)T{∂2Ln(λ∗, ν0)/∂λ∂λT}(αnτ) ≥α2
nC4C

2nP−1
n . (A.10)

Therefore, by (A.8), (A.9) and (A.10), for n sufficiently large, on the event An1 ∩An2 ∩An3

with pr(An1 ∩ An2 ∩ An3) ≥ 1− 3ε, we have

Ln(λ0 + αnτ, ν
0)− Ln(λ0, ν0)

≤ Cαn(
√
KC1cε−1n1/2 + ε−1/2C3c

q+1nP−q−1/2
n )− α2

nC4C
2nP−1

n

= CαnP
−1
n {
√
KC1cε−1n1/2Pn + ε−1/2C3c

q+1nP−q+1/2
n − CC4nαn}

= CαnP
−1
n {
√
KC1cε−1n1/2Pn + ε−1/2C3c

q+1nP−q+1/2
n − CC4n

1/2Pn − CC4nP
−q+1/2
n }

< 0,

when C > max(C−1
4

√
KC1cε−1, ε−1/2C−1

4 C3c
q+1). This shows (A.7). Hence, we have ‖λ̂(ν0)−

λ0‖2 = Op(αn) = Op(n
−1/2Pn+P

−q+1/2
n ). A similar strategy for proving consistency has been

used in the literature when the dimension of the parameter is diverging, see for example the

proof of Theorem 3 in Fan and Lv (2011).

Next, let

Vik = var(Yik |Gik, Xik0, Xik, Zik, GikWik ) = Hik(1−Hik),

and

Vn(ν) = n−1
∑K

k=1

∑nk
i=1Vik(βk1 + βk2Gik)

2Br(Uik(α))BT
r (Uik(α)). (A.11)

By (A.2), (A.6) and the assumption that P 4
nn
−1 = o(1),∥∥−n−1∂2Ln(λ0, ν0)/∂λ∂λT −Vn(ν0)

∥∥
∞

= O(hq)
∥∥∥n−1

∑K
k=1

∑nk
i=1Br(Uik(α

0))BT
r (Uik(α

0))
∥∥∥
∞

= O(hq)
∥∥E {Br(Uik(α

0))BT
r (Uik(α

0))
}∥∥
∞ +O(hq)PnOp{

√
hn−1log(n)}

= O(hq)O(h) +O(hq)PnOp{
√
hn−1log(n)} = Op(h

q+1).
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By (A.2) and (A.4), we have ‖Vn(ν0)−1‖∞ = Op(h
−1). Thus by the above results, one has∥∥∥{−n−1∂2Ln(λ0, ν0)/∂λ∂λT

}−1 −Vn(ν0)−1
∥∥∥
∞

= Op(h
q−1).

Let

Dn(ν) = n−1
∑K

k=1

∑nk
i=1(Yik −Hik)(βk1 + βk2Gik)Br(Uik(α)).

Since E{(β0
k1 + β0

k2Gik)Br,p(Uik(α
0))} = O(h), by Bernstein’s inequality, we have∥∥∥n−1

∑n
i=1

∑K
k=1(β0

k1 + β0
k2Gik)Br(Uik(α

0))
∥∥∥
∞

= Op (h) .

By the above result and (A.6),∥∥n−1∂Ln(λ0, ν0)/∂λ−Dn(ν0)
∥∥
∞

= O(hq)
∥∥∥n−1

∑n
i=1

∑K
k=1(β0

k1 + β0
k2Gik)Br(Uik(α

0))
∥∥∥
∞

= Op

(
hq+1

)
.

Let Cik = (Gi, Xik0, X
T
ik, Z

T
ik, GiW

T
ik)

T, Ci = (CT
ik, 1 ≤ k ≤ K)T, and C = (C1, . . . ,Cn)T. It

can be proved by Bernstein’s inequality in Bosq (1961) that ‖Dn(ν0)‖∞ = Op

(√
hn−1log(n)

)
.

Also, by (A.4),
∥∥∥{−n−1∂2Ln(λ0, ν0)/∂λ∂λT

}−1
∥∥∥
∞

= Op (h−1). Thus for a ∈ RPn with

‖a‖2 = 1,

aT
[{
−n−1∂2Ln(λ0, ν0)/∂λ∂λT

}−1 {n−1∂Ln(λ0, ν0)/∂λ} −Vn(ν0)−1Dn(ν0)
]

≤ ‖a‖∞
∥∥∥{−n−1∂2Ln(λ0, ν0)/∂λ∂λT

}−1
∥∥∥
∞

∥∥n−1∂Ln(λ0, ν0)/∂λ−Dn(ν0)
∥∥
∞

+ ‖a‖∞
∥∥∥{−n−1∂2Ln(λ0, ν0)/∂λ∂λT

}−1 −Vn(ν0)−1
∥∥∥
∞

∥∥Dn(ν0)
∥∥
∞

= Op (hq) +Op

(
hq−1

)
Op

(√
hn−1log(n)

)
. (A.12)

Let ê = Vn(ν0)−1Dn(ν0). By Central Limit Theorem,
[
BT
r (u)var (ê |C)Br(u)

]−1/2
BT
r (u)ê→

Normal(0, 1), where var(ê |C) = {nVn(ν0)}−1 and BT
r (u)var(ê |C)Br(u) = σ̂2(u, ν0). By

Lemma 2 and (A.2), there are constants 0 < c′v < C ′v < ∞, such that with probability

approaching 1, c′vh
−1 ≤ ‖Vn(ν0)−1‖2 ≤ C ′vh

−1, and

‖Vn(ν0)−1 −V0
n(ν0)−1‖2 = Op(h

−2
√
hn−1log(n)). (A.13)

Therefore, there exist constants 0 < cσ ≤ Cσ <∞ such that with probability approaching 1

and for large enough n,

cσ(nh)−1/2 ≤ inf
u∈[a0,b0]

σ̂(u, ν0) ≤ sup
u∈[a0,b0]

σ̂(u, ν0) ≤ Cσ(nh)−1/2. (A.14)

Thus BT
r (u)ê = Op

{
(nh)−1/2

}
uniformly in u ∈ [a0, b0], and

BT
r (u)

{
−∂2Ln(λ0, ν0)/∂λ∂λT

}−1 {∂Ln(λ0, ν0)/∂λ} = Op

{
(nh)−1/2 + hq

}
27



uniformly in u ∈ [a0, b0]. By Taylor’s expansion,

λ̂(ν0)− λ0 =
{
−∂2Ln(λ0, ν0)/∂λ∂λT

}−1 {∂Ln(λ0, ν0)/∂λ} {1 + op(1)} . (A.15)

Thus by (A.12), (A.14), and Condition (C3),

sup
u∈[a0,b0]

∣∣∣σ̂(u, ν0)−1
[
BT
r (u)

{
λ̂(ν0)− λ

}
−BT

r (u)ê
]∣∣∣

= Op

{
(nh)1/2

}
Op

{
(hq) +Oa.s.

(
hq−1

)
Oa.s.

(√
hn−1log(n)

)}
+Op

{
(nh)1/2

}
op{(nh)−1/2 + hq}

= op(1).

Therefore by Slutsky’s theorem σ̂−1(u, ν0) {m̂(u, ν0)− m̃(u)} → Normal(0, 1) and m̂(u, ν0)−
m̃(u) = Op

{
(nh)−1/2

}
uniformly in u ∈ [a0, b0]. By supu∈[a0,b0] |m(u)− m̃(u)| = o(hq), we

have |m̂(u, ν0)−m(u)| = Op{(nh)−1/2 + hq} uniformly in u ∈ [a0, b0]. By Slutsky’s theorem,

we have

σ̂−1(u, ν0)
{
m̂(u, ν0)−m(u)

}
→ Normal(0, 1).

Since m̂′(u, ν) = BT
r−1(u)D1λ̂(ν) and Br−1(u) are B-spline basis functions with one order

lower than Br(u), by the same argument as in Zhou and Wolfe (2000) and the proof for

m̂(u, ν0), we have the result (b) in Theorem 1. Then the proof is complete.

A.4 Proof of Theorem 2

Define Lik(ν) = (βk1 +βk2Gik)m(Xik0 +XT
ikα)+ZT

ik(θk1 +θk2Gik)+GikW
T
ikθk3. It is straight-

forward to prove that ∂Li1(ν)/∂ν = Qi1(ν), and for k = 2, . . . , K, ∂Lik(ν)/∂ν = Qik(ν).

Then by (A.15) and Condition (C3) and by the same arguments as the proof for proposition

4.1 in Ai and Chen (2003), we have

∂Ln(ν0)/ν =
∑K

k=1

∑nk
i=1[(Yik −Hik(ν

0))×
{∂Lik(ν0)/∂ν − (β0

k1 + β0
k2Gik)η

0(Uik(α
0))}] {1 + op(1)}

=
∑K

k=1

∑nk
i=1[(Yik −Hik(ν

0))×
{Qik(ν

0)− (β0
k1 + β0

k2Gik)η
0(Uik(α

0))}] {1 + op(1)} ,

∂2Ln(ν0)/∂ν∂νT

= −
∑K

k=1

∑nk
i=1[Hik(ν

0)(1−Hik(ν
0))×

{∂Lik(ν0)/∂ν − (β0
k1 + β0

k2Gik)η
0(Uik(α

0))}⊗2] {1 + op(1)}
= −

∑K
k=1

∑nk
i=1[Vik(ν

0){Qik(ν
0)− (β0

k1 + β0
k2Gik)η

0(Uik(α
0))}⊗2] {1 + op(1)} .

By Taylor’s expansion, we have

ν − ν0 = −{∂2Ln(ν0)/∂ν∂νT}−1{∂Ln(ν0)/ν} {1 + op(1)} .

By the above result, we have (8). Then the asymptotic normality in Theorem 2 follows from

the Central Limit Theorem and (8).
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A.5 Proof of Theorem 3

Here we show that our method for estimating ν is semiparametric efficient when (Yi1, ..., YiK)

are independent given Ci. We have that

log{pr(Yi = yi | Ci)} =
∑K

k=1 {yiklog(Hik) + (1− yik)log(1−Hik)} .

The ith score with respect to ν is Sνi =
∑K

k=1(Yik −Hik)Qik. The nuisance tangent space is

Λ =
{∑K

k=1(Yik −Hik)(β
0
k1 + β0

k2Gik)η(Xik0 +XT
ikα

0) : η(·) ∈ RJ+2K+2Kd+Ka−2
}
.

We decompose Sνi as Sνi = Seff,i + S1i, where

Seff,i =
∑K

k=1(Yik −Hik)
{
Qik − (β0

k1 + β0
k2Gik)η0i

}
,

S1i =
∑K

k=1(Yik −Hik)(β
0
k1 + β0

k2Gik)η0i,

η0i =
E
{∑K

k=1VikQik(β
0
k1 + β0

k2Gik) | Xik0 +XT
ikα

0
}

E
{∑K

k=1Vik(β
0
k1 + β0

k2Gik)2 | Xik0 +XT
ikα

0
} .

Obviously, S1i ∈ Λ. For any element Si ∈ Λ, say Si =
∑K

k=1(Yik−Hik)(β
0
k1 +β0

k2Gik)η(Xik0 +

XT
ikα

0), we can easily verify that E(ST
eff,iSi) = 0.

Thus, Seff,i is the residual of the orthogonal projection of Sνi onto Λ, hence it is the

efficient score. The minimum variance bound for estimating ν is therefore

covopt{n1/2(ν̂ − ν)} = {E(Seff,iS
T
eff,i)}−1 = [E

∑K
k=1Vik

{
Qik − (β0

k1 + β0
k2Gik)η0i

}⊗2
]−1.

Since S1i is the orthogonal projection of Sνi onto Λ, it minimizes the covariance matrix

of Sνi − Si among all the functions Si ∈ Λ, i.e., η0i minimizes

cov[
∑K

k=1(Yik −Hik){Qik − (β0
k1 + β0

k2Gi)η(Xik0 +XT
ikα

0)}]
= E[

∑K
k=1Vik{Qik − (β0

k1 + β0
k2Gi)η(Xik0 +XT

ikα
0)}⊗2]

among all possible η(Xik0 + XT
ikα

0) ∈ RJ+2K+2Kd+Ka−2. This shows that Σ in Theorem 2

reaches the semiparametric efficiency bound, as claimed.

A.6 Proof of Theorem 4

Let εik = (β0
k1 + β0

k2Gi)(Yik − Hik) and εi = (εi1, . . . , εiK)T. Following the same procedure

as the proof of Theorem 1, we have that ||λ̂w(ν0)− λ0||2 = Op(n
−1/2Pn + P

−q+1/2
n ). By this

result and Taylor’s expansion, we have

0 =
∑n

i=1Br(Ui)AiB
−1
i AT

i B
T
r (Ui){λ0 − λ̂w(ν0)}+

∑n
i=1Br(Ui)AiB

−1
i εi + op(n

1/2).
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Thus

λ̂w(ν0)− λ0 = {n−1
∑n

i=1Br(Ui)AiB
−1
i AT

i B
T
r (Ui)}−1

×{n−1
∑n

i=1Br(Ui)AiB
−1
i εi}{1 + op(1)}. (A.16)

Then with probability approaching 1,var{λ̂w(ν0)− λ0|Ci} approaches Π−1
n ΞnΠ−1

n . Theorem

4 can be proved following the same methods as in the proof of Theorem 1.

A.7 Proof of Theorem 5

Let ζi be the dνK × 1 vector formed by K length dν vectors. The kth, k = 1, . . . , K vector

component is (Yik−Hik(ν)){Q̂ik(ν) + (βk1 +βk2Gi){λ̂′w(ν)}TBr(Xi0 +XT
i α)}. Following the

same outline as the proof of Theorem 2, it can be proved that

√
n(ν̂w − ν0) =

√
n(
∑n

i=1CiD
−1
i CT

i )−1(
∑n

i=1CiD
−1
i ζi) + op(1).

Therefore,

var(
√
n(ν̂w − ν0) |Ci ) = n(

∑n
i=1CiD

−1
i CT

i )−1(
∑n

i=1CiD
−1
i D∗iD

−1
i CT

i )

×(
∑n

i=1CiD
−1
i CT

i )−1 + op(1),

and the asymptotic normality of
√
n(ν̂w − ν0) given in Theorem 5 follows from the Central

Limit Theorem.

A.8 Extending to Multiple Study Centers

Here we indicate briefly the necessary changes needed if there are multiple study centers,

and multiple dependent disease outcomes within each study center. Suppose that there are

k = 1, ..., K study centers, with ` = 1, ..., Lk binary disease outcomes in each center, and

with i = 1, ..., nk observations at the kth center. Write the outcomes at Yik = (Yik1, ..., YikLk),

and write the covariates as Cik = (Gik, Xik0, Xik, Zik, GikWik). The model is

pr(Yik` = 1 | Cik) = Hik` (A.17)

= Hik` = H{(βk`1 + βk`2Gik)m(Xik0 +XT
ikα) + ZT

ik(θk`1 + θk`2Gik) +GikW
T
ikθk`3}.

We make the same assumptions as in Section A.2, but in addition we assume that

limn1,...,nK→∞(maxnk/minnk) = c with 0 < c <∞.

From the above model, we can see that in different centers, because different physical

populations are studied, the same disease occurrence is modeled with different parameters.

Thus, we can simply view the Lk diseases in k = 1, ..., K centers as
∑K

k=1 Lk different diseases

from a single center, and all our analyses formulated for data from one center applies.
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Component Units HEI-2005 score calculation

Total Fruit cups min {5, 5× (density/.8)}
Whole Fruit cups min {5, 5× (density/.4)}
Total Vegetables cups min {5, 5× (density/1.1)}
DOL cups min {5, 5× (density/.4)}
Total Grains ounces min {5, 5× (density/3)}
Whole Grains ounces min {5, 5× (density/1.5)}
Milk cups min {10, 10× (density/1.3)}
Meat and Beans ounces min {10, 10× (density/2.5)}
Oil grams min {10, 10× (density/12)}
Saturated Fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8− {8× (density− 10)/5}
else, score = 10− {2× (density− 7)/3}

Sodium milligrams if density ≥ 2000 score=0
else if density ≤ 700 score=10
else if density ≥ 1100

score = 8− {8× (density− 1100)/(2000− 1100)}
else score = 10− {2× (density− 700)/(1100− 700)}

SoFAAS % of if density ≥ 50 score = 0
energy else if density ≤ 20 score=20

else score = 20− {20× (density− 20)/(50− 20)}

Table 1: Description of the HEI-2005 scoring system. Except for saturated fat and SoFAAS,
density is obtained by multiplying intake by 1000 and dividing by intake of kilo-calories. For
saturated fat, density is 9×100 saturated fat (grams) divided by calories, i.e., the percentage
of calories coming from saturated fat intake. For SoFAAS, the density is the percentage of
intake that comes from intake of calories, i.e., the division of intake of SoFAAS by intake of
calories. Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS”
is calories from solid fats, alcoholic beverages and added sugars. The total HEI-2005 score
is the sum of the individual component scores.



Men Women
Description # Cases Percentages # Cases Percentages

Sample size 294,673 199,285
Breast cancer 7,736 3.88%
Ovarian cancer 759 0.38%
Prostate cancer 23,477 7.97%
Colorectal cancer 4,693 1.59% 2,291 1.15%
Lung cancer 6,135 2.08% 3,630 1.82%

Table 2: Summary of the NIH-AARP data.



Colorectal Cancer Lung Cancer
Estimate se p-value Estimate se p-value

Total Fruit 0.27 0.87 0.40 2.18 0.34 0.00
Whole Fruit 0.54 0.81 0.57 1.33 0.33 0.32
Total Grains 2.58 0.85 0.06 2.96 0.33 0.00
Whole Grains 2.44 0.85 0.09 0.53 0.27 0.08
Total Vegetables 0.01 1.02 0.33 0.99 0.36 0.98
DOL Vegetables 1.33 0.72 0.65 0.99 0.26 0.96
Dairy 2.44 0.42 0.00 0.42 0.10 0.00
Meat and Beans 0.00 0.53 0.06 0.00 0.18 0.00
Oils 0.58 0.32 0.20 0.33 0.11 0.00
Sodium 0.80 0.45 0.65 1.12 0.16 0.45
Saturated Fat 0.53 0.31 0.13 0.94 0.13 0.65
Empty Calories 0.49 0.21 0.02 0.21 0.08 0.00

Table 3: Results for the analysis of Section 5.3, where lung cancer and colorectal cancer were
analyzed separately, thus each analysis has one disease and 2 independent populations. The
weights of the component scores were normalized so that their sum = 12, thus placing the
weights on the same scale as the HEI-2005 total score, whose weights all = 1. The p-values
for the test that the individuals components = 1 are also displayed.

Estimate se p-value

Total Fruit 1.89 0.31 0.00
Whole Fruit 1.32 0.30 0.27
Total Grains 2.94 0.30 0.00
Whole Grains 0.70 0.26 0.32
Total Vegetables 0.97 0.34 0.93
DOL Vegetables 0.93 0.24 0.81
Dairy 0.61 0.09 0.00
Meat and Beans 0.00 0.17 0.00
Oils 0.39 0.11 0.00
Sodium 1.13 0.15 0.36
Saturated Fat 0.89 0.12 0.40
Empty Calories 0.23 0.07 0.00

Table 4: Results for estimated weights α̂ in the analysis of Section 5.4, with two populations
(men and women), three diseases for men (lung, colorectal and prostate cancer) and four
diseases for women (lung, colorectal, breast and ovarian cancer). The weights of the compo-
nent scores were normalized so that their sum = 12, thus placing the weights on the same
scale as the HEI-2005 total score, whose weights all = 1. The p-values for the test that the
individuals components = 1 are also displayed. The actual estimated weights for Meat and
Beans was actually negative, but we have set it = 0 for nutritional purposes.



Estimate se p-value

Men, Lung -1.00 NA NA
Men, Colorectal -0.39 0.06 0.00
Men, Prostate 0.00 0.06 0.07
Women, Lung -0.91 0.07 0.00
Women, Colorectal -0.28 0.08 0.00
Women, Breast -0.07 0.04 0.11
Women, Ovarian 0.00 0.14 0.90

Table 5: Results for β̂ for the analysis of Section 5.4, with two populations (men and women),
three diseases for men (lung, colorectal and prostate cancer) and four diseases for women
(lung, colorectal, breast and ovarian cancer). The weights of the component scores were
normalized so that their sum = 12, thus placing the weights on the same scale as the HEI-

2005 total score, whose weights all = 1. The p-values for the test that the individual β̂ terms
= 0 are also displayed. The actual estimated coefficients for Prostate and Ovarian cancers
were positive, but we have set them = 0 for nutritional purposes, with the constraint that a
better diet is not a risk factor for either disease.

Mean Estimated se Actual se Coverage

Total Fruit 1.03 0.32 0.34 93.00
Whole Fruit 1.04 0.55 0.59 95.40
Total Grains 1.00 0.55 0.58 95.00
Whole Grains 0.99 0.37 0.38 94.10
Total Vegetables 1.01 0.44 0.45 94.20
DOL Vegetables 0.99 0.38 0.38 94.90
Dairy 1.01 0.27 0.28 95.10
Meat and Beans 1.01 0.29 0.31 94.00
Oils 1.00 0.28 0.29 94.10
Sodium 0.98 0.35 0.37 94.30
Saturated Fat 0.98 0.40 0.42 94.20
Empty Calories 0.96 0.46 0.47 94.40

Table 6: Results of the simulation study when n = 3000, the binary responses have corre-
lation 0.05 and where the actual values of α all = 1.00. Here Estimate is the mean of the
estimates, Estimated se is the mean of the estimated standard errors, Actual se is the actual
standard deviation of the estimates, and Coverage is the actual coverage of a nominal 95%
confidence interval. The actual estimates α̂ were normalized to sum to 12.



Mean # True Mean Estimated Actual
Cases β β̂ se se Coverage

Population 1, Disease 1 826 -1.00 -1.00 NA NA NA
Population 1, Disease 2 1052 -0.60 -0.61 0.12 0.11 97.00
Population 1, Disease 3 1347 -0.20 -0.21 0.10 0.09 97.70
Population 2, Disease 1 957 -0.80 -0.80 0.14 0.14 94.40
Population 2, Disease 2 1104 -0.57 -0.57 0.12 0.13 94.50
Population 2, Disease 3 1265 -0.33 -0.34 0.11 0.11 94.00
Population 2, Disease 4 1422 -0.10 -0.11 0.10 0.09 98.40

Table 7: Simulation results for β when n = 3000 and the binary responses have correlation
0.05. Estimate is the mean, Estimated se is the mean of the estimated standard errors, Actual
se is the actual standard deviation of the estimates, and Coverage is the actual coverage of
a nominal 95% confidence interval. The average total number of cases across the simulation
= 7,975.
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Figure 1: Analysis of multiple diseases as in Section 5.4. The function m̂(XTα̂) along with
its pointwise 95% confidence interval.
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Figure 2: Analysis of multiple diseases as in Section 5.4. Relative risks for men and women
on a grid between the 3rd and 97th percentile of the index. Left panel is for men: solid blue
line is the relative risk for lung cancer, while the dashed red line is for colorectal cancer. The
right is for women: solid blue line is the relative risk for lung cancer, dashed red line is for
colorectal cancer and the dot-dashed magenta line is for breast cancer.



NOT FOR PUBLICATION SUPPLEMENTARY MATERIAL S.1

Supplementary Material to A Semiparametric

Single-Index Risk Score Across Populations

Shujie Ma
Department of Statistics, University of California at Riverside, Riverside, CA 92521,

shujie.ma@ucr.edu

Yanyuan Ma
Department of Statistics, University of South Carolina, Columbia SC 29208,

ma44@mailbox.sc.edu

Yanqing Wang
Fred Hutchinson Cancer Research Center, Seattle WA 98109, ywang237@fredhutch.org

Eli S. Kravitz
Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX

77843-3143, kravitze@tamu.edu

Raymond J. Carroll
Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX
77843-3143, and School of Mathematical Sciences, University of Technology Sydney,

Broadway NSW 2007, carroll@stat.tamu.edu

S.1 Correlations in the HEI Component Scores

Table S.1 gives correlations of the HEI-2005 component scores.
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Men

FTot FWhl GTot GWhl VTot DOL Milk Meat Oil SFat Sodi SoFS
FTot 1.00 0.74 0.12 0.20 0.20 0.22 0.07 -0.06 -0.09 0.33 -0.02 0.43
FWhl 0.74 1.00 0.18 0.23 0.26 0.27 0.08 -0.02 -0.04 0.26 -0.11 0.42
GTot 0.12 0.18 1.00 0.49 0.15 0.11 0.00 0.12 0.04 0.12 -0.49 0.44
GWhl 0.20 0.23 0.49 1.00 0.09 0.13 0.09 -0.07 -0.07 0.24 -0.25 0.39
VTot 0.20 0.26 0.15 0.09 1.00 0.66 -0.09 0.22 0.17 0.13 -0.49 0.41
DOL 0.22 0.27 0.11 0.13 0.66 1.00 -0.08 0.15 0.04 0.20 -0.35 0.40
Milk 0.07 0.08 0.00 0.09 -0.09 -0.08 1.00 -0.13 -0.13 -0.11 -0.07 0.16
Meat -0.06 -0.02 0.12 -0.07 0.22 0.15 -0.13 1.00 0.24 -0.20 -0.42 0.13
Oil -0.09 -0.04 0.04 -0.07 0.17 0.04 -0.13 0.24 1.00 -0.16 -0.20 0.16
SFat 0.33 0.26 0.12 0.24 0.13 0.20 -0.11 -0.20 -0.16 1.00 0.07 0.27
Sodi -0.02 -0.11 -0.49 -0.25 -0.49 -0.35 -0.07 -0.42 -0.20 0.07 1.00 -0.54
SoFS 0.43 0.42 0.44 0.39 0.41 0.40 0.16 0.13 0.16 0.27 -0.54 1.00

Women

FTot FWhl GTot GWhl VTot DOL Milk Meat Oil SFat Sodi SoFS
FTot 1.00 0.72 0.02 0.12 0.17 0.22 0.08 -0.10 -0.14 0.34 0.06 0.38
FWhl 0.72 1.00 0.09 0.15 0.24 0.26 0.10 -0.04 -0.09 0.27 -0.04 0.37
GTot 0.02 0.09 1.00 0.49 0.05 0.02 -0.05 0.08 -0.01 0.15 -0.39 0.30
GWhl 0.12 0.15 0.49 1.00 0.03 0.09 0.07 -0.09 -0.11 0.24 -0.22 0.33
VTot 0.17 0.24 0.05 0.03 1.00 0.65 -0.08 0.19 0.12 0.15 -0.44 0.38
DOL 0.22 0.26 0.02 0.09 0.65 1.00 -0.06 0.12 -0.02 0.23 -0.32 0.38
Milk 0.08 0.10 -0.05 0.07 -0.08 -0.06 1.00 -0.17 -0.19 -0.01 -0.03 0.14
Meat -0.10 -0.04 0.08 -0.09 0.19 0.12 -0.17 1.00 0.20 -0.14 -0.40 0.09
Oil -0.14 -0.09 -0.01 -0.11 0.12 -0.02 -0.19 0.20 1.00 -0.17 -0.18 0.09
SFat 0.34 0.27 0.15 0.24 0.15 0.23 -0.01 -0.14 -0.17 1.00 -0.02 0.41
Sodi 0.06 -0.04 -0.39 -0.22 -0.44 -0.32 -0.03 -0.40 -0.18 -0.02 1.00 -0.46
SoFS 0.38 0.37 0.30 0.33 0.38 0.38 0.14 0.09 0.09 0.41 -0.46 1.00

Table S.1: The correlations of the HEI-2005 component scores for men and women separately.
Here ”FTot” is Total Fruit, ”FWhl” is Whole Fruit, ”GTot” is Total Grains, ”GWhl” is
Whole Grains, ”VTot” is Total Vegetables, ”DOL” is DOL, ”Milk” is Milk, ”Meat” is Meat
and Beans, ”Oil” is Oil, ”SFat” is Saturated Fat, ”Sodi” is Sodium and ”SoFS” is SoFAAS.
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Figure S.1: Analysis of multiple diseases as in Section 5.4. Relative risks for lung and
colorectal cancer. Solid blue lines are for men, dashed red lines are for women. Left panel is
lung cancer, and right panel is colorectal cancer.
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Figure S.2: Results of the simulation study in Section 6 when n = 3000. The solid blue
line is the true function m(u), while the dashed red line is the mean estimates from the
simulation.



S.1 Simulation Study for Independent Populations, Single Disease

We simulate data from the marginal logit model,

logit{pr(Yik = 1 | Gik, Xik0, Xik, Zik, GikWik)}

= βkm(XT
ikα) + ZT

ikθk1 +GikW
T
ikθk3,

for i = 1, . . . , n and k = 1, 2, so that we consider two independent populations, men and

women as given in the real data example and let Gi1 = 0 for men and Gi2 = 1 for women.

Moreover, we use the twelve HEI-2005 scores described in Table 1 as the variables Xik, k =

0, . . . , 11. We use dummy variables for age categories and body mass index categories as

the variables Zik, and for women, we use the two dummy variables for hormone replacement

therapy as the variables Wik from the NIH-AARP Study of Diet and Health. We let each

component in α be 1/
√

12 = 0.289, and simulate βk from Uniform[0, 1] and θk1 and θk3 from

Uniform[−0.5, 0.5]. The nonparametric function takes the form m(u) = exp(u/3).

The sample size were n = 1000, 2000, 5000, respectively, and 200 simulation replications

are run to draw summary statistics. Table S.1 reports the median value of the asymptotic

standard error (ASE) calculated according to Theorem 5, the empirical standard error (ESE)

and the absolute mean of the bias (Bias) among 200 replications for the estimate of each

component in α. The biases for estimating α are small, and as expected from the theory,

decrease with increasing sample size. In addition, the differences between the asymptotic

standard errors for the estimates of α and the estimated standard errors are small and

decrease with increasing sample size. In results not reported here, the function estimates

were nearly unbiased, and became more precise as sample size increases.



n α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

ASE 0.162 0.242 0.239 0.185 0.213 0.187 0.147 0.159 0.150 0.202 0.187 0.218

1000 ESE 0.129 0.201 0.204 0.162 0.184 0.170 0.119 0.131 0.122 0.146 0.173 0.205

Bias 0.066 0.043 0.046 0.048 0.057 0.068 0.074 0.045 0.050 0.065 0.030 0.031

ASE 0.121 0.200 0.197 0.148 0.169 0.142 0.112 0.125 0.115 0.156 0.148 0.158

2000 ESE 0.110 0.176 0.181 0.128 0.140 0.127 0.098 0.111 0.092 0.122 0.138 0.148

Bias 0.033 0.039 0.021 0.039 0.028 0.036 0.038 0.017 0.040 0.031 0.018 0.041

ASE 0.086 0.144 0.122 0.108 0.116 0.101 0.080 0.085 0.081 0.091 0.107 0.114

5000 ESE 0.077 0.128 0.112 0.091 0.098 0.088 0.072 0.069 0.064 0.073 0.094 0.108

Bias 0.019 0.011 0.011 0.017 0.004 0.021 0.017 0.018 0.015 0.023 0.002 0.007

Table S.2: Results of the simulation of Section S.1 with two independent populations and
one disease. The median value of the asymptotic standard error (ASE), empirical standard

error (ESE) and the absolute mean of the bias (Bias) of the estimators for α = (α1, . . . , α12)T

for n = 1000, 2000, 5000. Here, ||α||2 = 1.

S.2 Simulation Study for Multiple Populations and Diseases

The data are simulated from the logistic model with multiple populations and diseases as

described in Section 6. The tables below report the numerical results for simulation studies

for n = 2000 with independent binary outcomes and the binary responses having correlation

0.05 and 0.1, and n = 3000 with independent binary outcomes and the binary responses

having correlation 0.10. We observe similar results as given in the tables in Section 6.
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Mean Estimated se Actual se Coverage

Total Fruit 1.03 0.37 0.40 93.40
Whole Fruit 1.05 0.63 0.70 96.30
Total Grains 1.04 0.63 0.70 95.90
Whole Grains 0.97 0.43 0.47 92.60
Total Vegetables 0.99 0.50 0.52 94.70
DOL Vegetables 1.00 0.43 0.46 94.60
Dairy 0.98 0.31 0.32 94.30
Meat and Beans 0.98 0.34 0.37 92.80
Oils 1.00 0.32 0.36 92.50
Sodium 0.99 0.40 0.42 94.70
Saturated Fat 0.99 0.46 0.51 91.00
Empty Calories 0.98 0.53 0.56 94.90

Table S.3: Results for α of the simulation study in Section 6 when n = 2000, the binary
outcomes are independent, and where the actual of α all = 1.00. Here Estimate is the mean
of the estimates, Estimated se is the mean of the estimated standard errors, Actual se is the
actual standard deviation of the estimates, and Coverage is the actual coverage of a nominal
95% confidence interval. The actual estimates α̂ were normalized to sum to 12.

Mean Estimated se Actual se Coverage

Total Fruit 1.01 0.39 0.41 94.50
Whole Fruit 1.01 0.66 0.72 96.40
Total Grains 1.08 0.66 0.77 94.20
Whole Grains 0.98 0.45 0.50 92.20
Total Vegetables 1.01 0.52 0.56 94.50
DOL Vegetables 0.98 0.45 0.47 93.70
Dairy 0.98 0.32 0.33 94.80
Meat and Beans 1.00 0.35 0.40 92.00
Oils 0.99 0.33 0.35 94.00
Sodium 0.99 0.42 0.43 94.50
Saturated Fat 0.99 0.47 0.53 91.50
Empty Calories 0.98 0.55 0.59 93.80

Table S.4: Results of the simulation study when n = 2000, the binary responses have
correlation 0.05 and where the actual of α all = 1.00. Here Estimate is the mean of the
estimates, Estimated se is the mean of the estimated standard errors, Actual se is the actual
standard deviation of the estimates, and Coverage is the actual coverage of a nominal 95%
confidence interval. The actual estimates α̂ were normalized to sum to 12.
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Mean Estimated se Actual se Coverage

Total Fruit 1.01 0.40 0.42 94.00
Whole Fruit 1.02 0.68 0.75 95.90
Total Grains 1.09 0.69 0.81 94.50
Whole Grains 0.98 0.46 0.52 91.90
Total Vegetables 1.01 0.54 0.58 95.10
DOL Vegetables 0.98 0.47 0.50 94.20
Dairy 0.98 0.33 0.35 93.40
Meat and Beans 0.99 0.37 0.42 91.80
Oils 0.99 0.35 0.38 93.40
Sodium 0.98 0.43 0.45 94.30
Saturated Fat 0.99 0.49 0.56 92.30
Empty Calories 0.98 0.57 0.63 93.10

Table S.5: Results for α of the simulation study in Section 6 when n = 2000, the correlation
among the binary outcomes is 0.10, and where the estimates of α all = 1.00. Here Estimate is
the mean of the estimates, Estimated se is the mean of the estimated standard errors, Actual
se is the actual standard deviation of the estimates, and Coverage is the actual coverage of
a nominal 95% confidence interval. The actual estimates α̂ were normalized to sum to 12.

Mean Estimated se Actual se Coverage

Total Fruit 0.99 0.31 0.33 94.00
Whole Fruit 0.98 0.53 0.56 96.20
Total Grains 1.04 0.53 0.57 93.70
Whole Grains 1.00 0.36 0.37 95.80
Total Vegetables 1.01 0.42 0.45 93.40
DOL Vegetables 0.98 0.36 0.36 95.20
Dairy 1.01 0.26 0.26 94.70
Meat and Beans 1.00 0.28 0.29 94.70
Oils 1.00 0.27 0.27 96.00
Sodium 0.99 0.33 0.33 94.60
Saturated Fat 1.02 0.38 0.41 93.30
Empty Calories 0.98 0.44 0.45 95.00

Table S.6: Results of the simulation study when n = 3000 when the binary outcomes are
independent and where the actual of α all = 1.00. Here Estimate is the mean of the estimates,
Estimated se is the mean of the estimated standard errors, Actual se is the actual standard
deviation of the estimates, and Coverage is the actual coverage of a nominal 95% confidence
interval. The actual estimates α̂ were normalized to sum to 12.
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Mean Estimated se Actual se Coverage

Total Fruit 1.03 0.34 0.35 94.20
Whole Fruit 1.04 0.57 0.62 95.80
Total Grains 1.01 0.57 0.60 95.40
Whole Grains 1.00 0.39 0.40 94.10
Total Vegetables 1.01 0.45 0.47 93.90
DOL Vegetables 0.98 0.39 0.40 94.20
Dairy 1.01 0.28 0.29 95.40
Meat and Beans 1.01 0.30 0.32 93.30
Oils 1.00 0.29 0.30 94.20
Sodium 0.98 0.36 0.38 94.10
Saturated Fat 0.98 0.41 0.44 93.90
Empty Calories 0.96 0.48 0.49 95.60

Table S.7: Results of the simulation study when n = 3000,the binary responses have corre-
lation 0.10 and where the actual of α all = 1.00. Here Estimate is the mean of the estimates,
Estimated se is the mean of the estimated standard errors, Actual se is the actual standard
deviation of the estimates, and Coverage is the actual coverage of a nominal 95% confidence
interval. The actual estimates α̂ were normalized to sum to 12.

Mean # True Mean Estimated Actual
Cases β β̂ se se Coverage

Population 1, Disease 1 545 -1.00 -1.00 NA NA NA
Population 1, Disease 2 718 -0.60 -0.61 0.15 0.15 95.80
Population 1, Disease 3 898 -0.20 -0.20 0.12 0.12 97.10
Population 2, Disease 1 626 -0.80 -0.81 0.18 0.18 95.90
Population 2, Disease 2 738 -0.57 -0.57 0.16 0.15 94.30
Population 2, Disease 3 837 -0.33 -0.34 0.14 0.14 95.10
Population 2, Disease 4 954 -0.10 -0.12 0.13 0.11 98.10

Table S.8: Results for β of the simulation study in Section 6 when n = 2000 and the binary
outcomes are independent. Here True is the true value, Estimate is the mean of the estimates,
Estimated se is the mean of the estimated standard errors, Actual se is the actual standard
deviation of the estimates, and Coverage is the actual coverage of a nominal 95% confidence
interval.
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Mean # True Mean Estimated Actual
Cases β β̂ se se Coverage

Population 1, Disease 1 531 -1.00 -1.00 NA NA NA
Population 1, Disease 2 721 -0.60 -0.60 0.15 0.15 95.70
Population 1, Disease 3 894 -0.20 -0.21 0.12 0.11 96.50
Population 2, Disease 1 636 -0.80 -0.81 0.18 0.19 94.20
Population 2, Disease 2 732 -0.57 -0.57 0.16 0.16 95.80
Population 2, Disease 3 830 -0.33 -0.34 0.14 0.14 95.70
Population 2, Disease 4 956 -0.10 -0.12 0.13 0.11 97.80

Table S.9: Simulation results for β when n = 2000 and the binary responses have correlation
0.05. Here True is the true value, Estimate is the mean of the estimates, Estimated se is
the mean of the estimated standard errors, Actual se is the actual standard deviation of the
estimates, and Coverage is the actual coverage of a nominal 95% confidence interval. The
mean total number of cases is 5300.

Mean # True Mean Estimated Actual
Cases β β̂ se se Coverage

Population 1, Disease 1 531 -1.00 -1.00 NA NA NA
Population 1, Disease 2 720 -0.60 -0.61 0.14 0.14 96.10
Population 1, Disease 3 896 -0.20 -0.21 0.12 0.11 96.50
Population 2, Disease 1 636 -0.80 -0.81 0.18 0.19 94.30
Population 2, Disease 2 731 -0.57 -0.58 0.16 0.16 95.60
Population 2, Disease 3 829 -0.33 -0.35 0.14 0.14 95.10
Population 2, Disease 4 959 -0.10 -0.13 0.13 0.11 97.20

Table S.10: Results for β of the simulation study in Section 6 when n = 2000 and the
correlations among the binary outcomes = 0.10. Here True is the true value, Estimate is the
mean of the estimates, Estimated se is the mean of the estimated standard errors, Actual se
is the actual standard deviation of the estimates, and Coverage is the actual coverage of a
nominal 95% confidence interval. The mean number of cases overall is 5302.
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True Mean Estimated Actual
β β̂ se se Coverage

Population 1, Disease 1 -1.00 -1.00 NA NA NA
Population 1, Disease 2 -0.60 -0.61 0.12 0.12 96.00
Population 1, Disease 3 -0.20 -0.21 0.10 0.09 96.10
Population 2, Disease 1 -0.80 -0.80 0.15 0.14 95.30
Population 2, Disease 2 -0.57 -0.56 0.13 0.12 95.90
Population 2, Disease 3 -0.33 -0.33 0.11 0.11 95.90
Population 2, Disease 4 -0.10 -0.11 0.10 0.09 98.50

Table S.11: Simulation results for β when n = 3000 and the binary outcomes are independent.
Estimate is the mean, Estimated se is the mean of the estimated standard errors, Actual se
is the actual standard deviation of the estimates, and Coverage is the actual coverage of a
nominal 95% confidence interval.

True Mean Estimated Actual
β β̂ se se Coverage

Population 1, Disease 1 -1.00 -1.00 NA NA NA
Population 1, Disease 2 -0.60 -0.61 0.12 0.11 96.80
Population 1, Disease 3 -0.20 -0.21 0.10 0.09 97.30
Population 2, Disease 1 -0.80 -0.80 0.14 0.14 94.40
Population 2, Disease 2 -0.57 -0.58 0.12 0.13 95.10
Population 2, Disease 3 -0.33 -0.34 0.11 0.11 95.00
Population 2, Disease 4 -0.10 -0.11 0.10 0.09 97.80

Table S.12: Simulation results for β when n = 3000 and the binary responses have correlation
0.10.

HEI Total Score Our method, Table 5
Estimate se pvalue Estimate se pvalue

Male Lung -1.00 NA NA -1.00 NA NA
Male Colorectal -0.47 0.05 0.00 -0.39 0.06 0.00
Male Prostate 0.04 0.03 0.15 0.11 0.06 0.07
Female Lung -0.95 0.06 0.00 -0.91 0.07 0.00

Female Colorectal -0.33 0.08 0.00 -0.28 0.08 0.00
Female Breast -0.08 0.05 0.09 -0.07 0.04 0.11

Female Ovarian 0.12 0.15 0.44 0.02 0.14 0.90

Table S.13: Results for β using the original HEI-2005 Total Score, but normalized as in the
paper so that the coefficient for Male Lung Cancer = -1. This can be compared to the results
of Table 5, repeated in the last 3 columns.


