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We develop second-order hypothesis testing procedures in functional measurement error models for small or moderate sample sizes, where
the classical first-order asymptotic analysis often fails to provide accurate results. In functional models no distributional assumptions are
made on the unobservable covariates and this leads to semiparametric models. Our testing procedure is derived using saddlepoint techniques
and is based on an empirical distribution estimation subject to the null hypothesis constraints, in combination with a set of estimating
equations which avoid a distribution approximation. The validity of the method is proved in theorems for both simple and composite
hypothesis tests, and is demonstrated through simulation and a farm size data analysis.
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1. INTRODUCTION

Regression is arguably the most widely studied problem in
statistics. Estimating and testing the parameters in the regres-
sion function thus has been well studied in the statistics litera-
ture and various approaches exist to best handle the situation at
hand of a practitioner. However, when covariates are measured
with error, the problem becomes more complex from a statis-
tical point of view. A large body of literature in statistics, bio-
statistics, and econometrics has been devoted to the estimation
and inference in regression problems such as linear or general-
ized linear models. For instance, Stefanski and Carroll (1987)
derived unbiased estimating equations and the corresponding
Wald tests for GLM with additive normal measurement error.
For the same model, Buzas and Stefanski (1996) introduced
estimating equations through instrumental variables. Finally,
Hanfelt and Liang (1997) derived estimators and tests through
an approximate likelihood. Excellent overviews are provided by
the books Fuller (1987) and Carroll et al. (2006). In this article
we consider the functional measurement error model approach
by Tsiatis and Ma (2004) who constructed

√
n-consistent esti-

mators for general regression measurement error models, where
the estimators are obtained through solving an estimating equa-
tion of the form

∑n
i=1 ψ(Ai;β) = 0 for β , where A1, . . . ,An

are n independent identically distributed (iid) observations and
ψ is the semiparametric efficient score derived under a possi-
bly incorrect distribution of the unobserved variables. Explicit
forms of ψ are available in important special cases, such as
GLM with normal additive errors; see Appendix.

In spite of the availability of this estimation procedure, prac-
tical application remains an issue due to the sample size require-
ment. Although regularization or shrinkage type of methods
have been proposed to handle small sample estimation (Fuller
1987, section 2.5), they only apply to very special models. In
many situations, regression with errors in covariates are suffi-
ciently complex that standard first order asymptotics provides
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reasonable approximations only for very large sample sizes.
Simulation studies for these problems are typically carried out
with sample sizes as large as 1000 in order to obtain a close
approximation to root n consistency for the estimator and 95%
coverage for the corresponding confidence intervals, even when
the estimation procedure is already optimal in the sense of
Bickel et al. (1990). The difficulty is inherent to these mod-
els and an intuitive and informal understanding can be obtained
by noting that in these models, the distribution of the unobserv-
able latent variable in many situations can only be obtained at
the log(n) rate, although being able to recover this distribution
ensures the identifiability of such models.

A direct consequence on the restriction of sample size is the
lack of accuracy of the subsequent testing procedure. Indeed the
computation of p-values requires the knowledge of the distrib-
ution of the test statistic in its tails, which is harder to obtain
and requires even larger sample sizes. For instance, the first-
order optimal Wald test statistic is based on the estimator and
its first-order mean and estimated variance, hence may not be
sufficiently accurate for even moderate sample sizes in the mea-
surement error model context.

In order to improve the accuracy of the testing procedure,
we could consider two possible routes. The first one would be
to compute adjustments to the asymptotic distributions of the
test statistic by means of Edgeworth expansions, Bartlett cor-
rections and related methods. However, these techniques would
lead in general only to marginal improvements, in particular
in terms of relative errors which is the meaningful measure in
the tails of the distribution; see the remarks in Section 2. In
this article we follow a second approach and we consider a
new test for measurement error models, based on saddlepoint
techniques. Saddlepoint approximations in statistics go back
to the seminal article by Daniels (1954) and a rich literature
has developed from there; cf., for instance, the books Field
and Ronchetti (1990), Jensen (1995), and Butler (2007), and
chapter 14 in Huber and Ronchetti (2009). These techniques
provide extremely accurate approximations of tail probabilities
of estimators and test statistics. Starting from the saddlepoint
approximation of the distribution of M-estimators, Robinson,
Ronchetti, and Young (2003) proposed a saddlepoint test sta-
tistic for testing hypotheses in general parametric models (see
Appendix) which is asymptotically χ2-distributed as the three
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classical tests (Wald, score, likelihood ratio) but with a relative
error of order O(n−1). The test can be applied nonparametri-
cally and recently Field, Robinson, and Ronchetti (2008) estab-
lished its properties when testing a one-dimensional hypothesis.
The main difference between the parametric and nonparametric
setting is the availability of the distribution of the observations
under the null hypothesis, which is used in constructing the test
statistic. In the parametric setting, this distribution can be di-
rectly calculated under H0 and using the estimated parameters,
while in the nonparametric situation, one has to take an em-
pirical distribution approach while satisfying the H0 constraint.
This can be obtained by means of the discrete distribution sat-
isfying H0 and closest in Kullback–Leibler divergence to the
standard empirical distribution of the observations.

Regression with errors in the covariates falls into the category
of semiparametric models, hence we need to take a combination
of both, using the parametric model flavored M-estimator and
the nonparametric model flavored empirical likelihood under
constraints. By applying the empirical likelihood approach, we
preserve a key advantage of the M-estimator in Tsiatis and Ma
(2004), in that the distribution of the latent variable is never
estimated.

The rest of the article is organized as follows. In Section 2,
we describe the new testing procedure for the simple hypoth-
esis case and establish its asymptotic distribution and relative
error term under the null hypothesis. In Section 3, the proce-
dure is extended to the composite hypothesis testing. We pro-
vide numerical results through simulations for linear and logis-
tic models in Section 4 and illustrate the practical usefulness
of the method in a data example in Section 5. Some discussion
remarks are provided in Section 6. In the Appendix we give
technical details and the conditions and proofs of the theorems.

2. SIMPLE HYPOTHESIS TESTING

Assume we have a regression model

Y = m(X; θ) + ε,

where m is a known function up to the d-dimensional parame-
ter θ and ε is a random variable with conditional mean zero
E(ε|X) = 0. Here and throughout the text, vectors are column
vectors. In this section, we assume the distribution of ε is nor-
mal with known variance σ 2, although the following develop-
ment does not rely on this assumption. In the situation when
errors occur in the covariates, X is not observable and we ob-
serve instead W . Here we assume W = X + U, where U is in-
dependent of X and has a known distribution. Note that the as-
sumptions on U and ε are unnecessarily strong and are made
here for the sole purpose of simplifying the simple hypothesis
setting. These assumptions will be relaxed when we consider
composite hypothesis testing in Section 3. We denote the iid
observations Ai = (Wi,Yi), i = 1, . . . ,n.

In the simple hypothesis testing situation, we want to test
H0 : θ = θ0. When identifiable, root n consistent estimators are
known as the solution of a d-dimensional estimating equations
of the form

n∑
i=1

ψ(ai; θ) = 0. (1)

Here, the form of ψ(ai; θ) is not explicit. We give the descrip-
tion on how to obtain ψ(ai; θ) in the Appendix, and refer the
readers to Tsiatis and Ma (2004) for more details on its deriva-
tion and properties. Notice however that our testing procedure
is general and can be applied with other ψ -functions.

Consistency implies that E{ψ(Ai; θ)} = 0, and this reduces
to the constraints that E{ψ(Ai; θ0)} = 0 under H0. Denote by
F0 the true cumulative distribution function (cdf) of A1, . . . ,An
under H0 and by F̂0 its empirical cdf. The conventional ap-
proach to obtain F̂0 is to follow Owen (2001), which results
in maximizing the empirical likelihood under various con-
straints. Denote the empirical likelihood without constraints
F̂ = ( 1

n , . . . , 1
n ). This conventional approach is equivalent to

minimizing the (forward) Kullback–Leibler divergence be-
tween F̂ and F0 = (ω1, . . . ,ωn), that is,

dKL(F̂,F0) =
n∑

i=1

1

n
log

[
1/n

ωi

]
= −1

n

n∑
i=1

logωi − log n.

This gives Owen’s empirical log-likelihood ratio test statistic
which is asymptotically χ2-distributed under H0 with absolute
error of order O(n−1/2) as its classical counterpart. Similarly,
in a saddlepoint test, we need to construct a suitable nonpara-
metric estimation under H0 in order to retain the second-order
property of the saddlepoint test statistic. Indeed the idea is to
apply the parametric saddlepoint test (see Appendix) by replac-
ing the underlying distribution of the observations under H0 by
its nonparametric version. This nonparametric estimation cor-
responds to obtaining F̂0 through minimizing the (backward)
Kullback–Leibler divergence, that is,

dKL(F0, F̂) =
n∑

i=1

ωi log

[
ωi

1/n

]
=

n∑
i=1

ωi logωi + log n,

subject to the constraints mentioned above. Specifically, we
need to solve a constrained minimization problem

min
ω1,...,ωn

n∑
i=1

ωi log

[
ωi

1/n

]
,

subject to ωi ≥ 0,
∑n

i=1 ωi = 1, and
∑n

i=1 ωiψ(Ai; θ0) = 0.
The resulting F̂0 is of the form

F̂0(a) =
n∑

i=1

eψT (ai;θ0)μI(ai ≤ a)

/ n∑
i=1

eψT (ai;θ0)μ,

where μ = μ(θ0) ∈ Rd satisfies
n∑

i=1

eψT (ai;θ0)μψ(ai; θ0) = 0.

This is a distribution with point mass at ai with weights
eψT (ai;θ0)μ/

∑n
i=1 eψT (ai;θ0)μ for i = 1, . . . ,n. The advantage of

this choice is that the resulting test will have relative error prop-
erties; see below.

Following the basic idea of the saddlepoint test (see Ap-
pendix) and using F̂0 as the underlying distribution F0, a
second-order test statistic 2n̂h(̂θ) can be formed as 2n̂h(̂θ) =
2n supλ{−Kψ(λ; θ̂)} where θ̂ is the solution to (1), and

Kψ(λ; θ̂) = log

[
n∑

i=1

eψT (ai ;̂θ)λ+ψT (ai;θ0)μ

/ n∑
i=1

eψT (ai;θ0)μ

]
.
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Equivalently, the test statistic can be written as

2n̂h(̂θ) = −2nKψ {λ(̂θ); θ̂},
where λ(̂θ) satisfies

n∑
i=1

ψ(ai; θ̂)eψT (ai ;̂θ)λ(̂θ)+ψT (ai;θ0)μ(θ0) = 0.

The statistic 2n̂h(̂θ) constructed above has the desired
second-order property. This means that roughly speaking, when
the sample size n becomes moderate or large, the distribution of
2n̂h(̂θ) is very close to a χ2, hence we can calculate p-value and
proceed with the testing decision based on the χ2 distribution.
We state this asymptotic property in the following theorem.

Theorem 1. Assume regularity conditions (C1), (C2), (C3)
in the Appendix. Then, when n → ∞, the p-value satisfies

p = PH0{2n̂h(̂θ) ≥ 2n̂h(̂θobs)}
= {

1 − Qd(2n̂h(̂θobs))
}{1 + Op(n

−1)},
where Qd is the cdf of the χ2 distribution with d degrees of
freedom.

Let us make a few remarks on the theorem. The proof is de-
ferred to the Appendix.

Remark 1. In Theorem 1, the Op(n−1) term is multiplied by
1 − Qd(·), that is, it is a relative error. Note that in the testing
framework, 1 − Qd(·) is often a fairly small quantity, hence a
relative error is practically more meaningful than an absolute
error. For comparison, the error of the usual first-order test sta-
tistic (such as the Wald test) is absolute and of order Op(n−1/2).

Remark 2. In addition to the important relative error prop-
erty explained in Remark 1, the advantage of the second-order
test statistic is evident also from the contrast in the order of
the error term, which would reduce a typical sample size of n
to that of roughly

√
n in order to exhibit the same asymptotic

behavior. In practical terms this means if we use the proposed
testing procedure on a data with size 100, we can achieve the
same level accuracy had we used a conventional first order test
on a data with size 10,000. In fact, as mentioned in Remark 1,
even after the square root sample size reduction, the second-
order test is still superior to the usual first-order tests, because
of its bounded relative error.

3. COMPOSITE HYPOTHESIS TESTING

Given the same model specification and observations as de-
scribed in Section 2, suppose we now want to perform a test
for only the second subvector of θ . We thus test a composite
hypothesis H0 : θ2 = θ20, where θ = (θT

1 , θT
2 )T , θ1 ∈ Rd1 , θ2 ∈

Rd2 . Note that we can now relax the assumption on ε and U.
Instead of assuming their respective distributions are known,
we assume that the distributions contain additional unknown
parameters, while the model is still identifiable. Considering
that these additional parameters are often not of main inter-
est, we include these additional parameters in θ1, the subvector
on which we do not perform any test. For example, when du-
plicate measurements (Huang and Wang 2001) or instrumental
variables (Buzas and Stefanski 1996) are used to estimate the

variance of U, we can include the unknown variance elements
into θ1, and append the corresponding estimating equation for
these variance elements into ψ . The composite testing proce-
dure we describe in the following is similar to the simple hy-
pothesis in Section 2.

We denote the estimating equation for θ as

n∑
i=1

ψ(ai; θ1, θ2) = 0. (2)

The form of ψ(ai; θ1, θ2) follows the similar construction as in
(1); the details are in the Appendix. Satisfying the consistency
of ψ(Ai; θ1, θ2), we construct the empirical cdf of A1, . . . ,An

under H0 through minimizing the backward Kullback–Leibler
divergence

∑n
i=1 ωi log[ ωi

1/n ] subject to ωi ≥ 0,
∑n

i=1 ωi = 1,

and
∑n

i=1 ωiψ(Ai; θ1, θ20) = 0 for some θ1. Through a sim-
ple Lagrange multiplier and then maximizing once more with
respect to θ1 without constraint, we obtain the estimate

F̂0(a) =
n∑

i=1

eψT (ai;θ1,θ20)μI(ai ≤ a)

/ n∑
i=1

eψT (ai;θ1,θ20)μ,

where μ = μ(θ20) and θ1 = θ1(θ20) satisfy

n∑
i=1

eψT (ai;θ1,θ20)μψ(ai; θ1, θ20) = 0,

n∑
i=1

eψT (ai;θ1,θ20)μ
∂ψT(ai; θ1, θ20)

∂θ1
μ = 0.

Similar to the simple hypothesis testing case, this is a discrete
distribution with point mass at ai with weights eψT (ai;θ1,θ20)μ/∑n

i=1 eψT (ai;θ1,θ20)μ for i = 1, . . . ,n.
Using F̂0 as the distribution of Ai’s under H0, we can then

construct the second-order test statistic 2n̂h(̂θ2) from

2n̂h(̂θ2) = 2n inf
γ

sup
λ

{−Kψ(λ;γ , θ̂2)},

where

Kψ(λ;γ , θ̂2) = log

[
n∑

i=1

eψT (ai;γ ,̂θ2)λ+ψT {ai;θ1(θ20),θ20}μ(θ20)

/ n∑
i=1

eψT {ai;θ1(θ20),θ20}μ(θ20)

]
,

and θ̂2 contains the last d2 components of θ̂ which solves (2).
Simple calculations show that the test statistic can be written as

2n̂h(̂θ2) = −2nKψ {λ(̂θ2);γ (̂θ2), θ̂2},
where λ = λ(̂θ2),γ = γ (̂θ2) satisfies

n∑
i=1

ωie
ψT (ai;γ ,̂θ2)λψ(ai;γ , θ̂2) = 0,

n∑
i=1

ωie
ψT (ai;γ ,̂θ2)λ

∂ψT(ai;γ , θ̂2)

∂γ
λ = 0,

and ωi = eψT {ai;θ1(θ20),θ20}μ(θ20)/
∑n

i=1 eψT {ai;θ1(θ20),θ20}μ(θ20).
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The construction of the test statistic 2n̂h(̂θ2) is based on the
natural extension of the idea used in the simple hypothesis test-
ing, with the obvious adaption to the fact that no properties are
hypothesized about θ1 under H0. The only part that is not auto-
matic is the minimization over the first component, denoted γ ,
in the minimax procedure. The intuition of this operation can be
gained as follows. For any fixed γ , the test statistic would have
been −2n supλ Kψ(λ;γ , θ̂2), which describes the “rarity” of the
observation under the H0 model for that specific γ . However,
since the real null hypothesis does not impose any requirement
on γ , the H0 we have at hand is much less restrictive, hence as
long as we can find a “good” γ that constitutes a “reasonable”
value of the test statistic, we should not reject H0 even if all
other values of γ would yield very “rare” values of the corre-
sponding test statistic. Since the target test statistic is to follow
a χ2 distribution, it is thus natural to select the minimum value
of −2n supλ Kψ(λ;γ , θ̂2) across all γ as the final test statistic.
Thus when and only when the “most favorable” test statistic in-
dicates a “unlikeliness” of the H0, it would indicate a rejection
of H0 no matter what the first component θ1 (or γ ) would be.
The choice of taking the minimization can actually be shown to
be the only right way of generalizing a simple hypothesis test-
ing procedure to a composite one through considering p-values,
see Gatto (2006, p. 286).

The rational of the testing procedure is almost identical
as in the simple hypothesis case. Consider drawing a sample
A∗

1, . . . ,A∗
n from F̂0(a). Conceptually, if F0 were known, we

could construct the ideal test statistic h(̂θ2) from

h(̂θ2) = inf
γ

sup
λ

{−Kψ(λ;γ , θ̂2)},

where

Kψ(λ;γ , θ̂2) = log EF0

{
eψT (Ai;γ ,̂θ2)λ

}
.

This yields the resulting h function as

h(̂θ2) = −Kψ {λ(̂θ2);γ (̂θ2), θ̂2},
where λ(̂θ2),γ (̂θ2) satisfy

EF0

{
eψT (Ai;γ ,̂θ2)λψ(Ai;γ , θ̂2)

} = 0,

EF0

{
eψT (Ai;γ ,̂θ2)λ

∂ψT(Ai;γ , θ̂2)

∂γ
λ

}
= 0.

The following theorem provides the asymptotic distribution
of the test statistic under H0 : θ2 = θ20 in the composite hypoth-
esis case.

Theorem 2. Assume the regularity conditions (C1), (C2),
(C3) in the Appendix. Then, when n → ∞, the p-value satis-
fies

p = PH0{2n̂h(̂θ2) ≥ 2n̂h(̂θ2,obs)}
= {1 − Qd2(2n̂h(̂θ2,obs))}{1 + Op(n

−1)},
where Qd2 is the cdf of the χ2 distribution with d2 degrees of
freedom.

4. SIMULATION STUDY

We perform several simulation studies to demonstrate the
performance of the second-order test in comparison to the tra-
ditional first-order test. To focus on the relative performance of
the tests only, we use the same estimation procedure for both
the first and the second-order tests. For simplicity, we consid-
ered only linear and logistic models with normal additive er-
ror, hence the estimator by Tsiatis and Ma (2004) reduces to
the conditional score estimator by Stefanski and Carroll (1987),
and this is what we implement. The first-order test is carried out
using a Wald test most times. For situations where alternative
testing procedures such as the adjusted test by Fuller (1987,
section 2.5) or the quasi-likelihood based test by Hanfelt and
Liang (1997) are applicable, we also included these for com-
parison.

We first illustrate the case of a simple hypothesis. We gen-
erated datasets from three regression models. The first one
(model 1) is a linear regression model Y = Zβ1 + Xβ2 + ε,
where X is measured with error while Z is without error.
The second one (model 2) has an additional interaction term
Y = Zβ1 + Xβ2 + XZβ3 + ε, and the third one is a logis-
tic model where the logit function of the conditional mean is
logit{E(Y|X)} = Zβ1 + Xβ2. In all the models, Z and X are
generated from various uniform distributions while the mea-
surement error on X is generated from a normal distribution
to achieve various reliability ratios. In the first two models,
the model error ε is generated from a standard normal dis-
tribution. The true parameter value for β is zero, which cor-
responds to no covariate effect, and we test H0 :β = 0. We
performed 100,000 simulations for various sample sizes n =
50,100,150,200,250,300, and we report the most representa-
tive results for n = 50,100. The Monte Carlo standard errors
vary from 0.0001 for the nominal level 0.01 to 0.0004 for the
nominal level 0.2. The results are summarized in Table 1. We
can see that the second-order test performs consistently bet-
ter than the Wald test and the adjusted test, while it is usually
competitive or superior than the quasi-likelihood test, especially
when the sample size is small.

To demonstrate the composite hypothesis testing perfor-
mance, we test β2 = 0 in model 1 (with corresponding coef-
ficient of determination R2 = 1/13) and model 3, and β3 = 0
(with corresponding R2 = 17/29) as well as β2 = β3 = 0 (with
corresponding R2 = 1/13) in model 2. These correspond to
no covariate effect from X, no covariate effect from the inter-
section term and no covariate effect from X and XZ. All the
other unconstrained unknown parameters, including the para-
meters we are not testing and the measurement error variances
are considered as nuisance parameters. Here, measurement er-
ror variances are estimated using repeated measurements. Ta-
ble 2 contains the results of the three sets of composite tests
for various sample sizes and various reliability ratios. Similarly,
the second-order test often has superior performance especially
when the sample size is small and the test level is far in the
tails.

We also experimented with several situations when our
model assumption is violated, including generating nonnormal
measurement errors or model errors in the first two models.
The second-order testing procedure demonstrated a certain ro-
bustness property. This can be understood as a result of the
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Table 1. Level of the simple test

Reliability ratio 0.3 Reliability ratio 0.5 Reliability ratio 0.9

Nominal 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Model 1, n = 50
2nd 0.0167 0.0697 0.1283 0.2356 0.0138 0.0640 0.1217 0.2303 0.0076 0.0410 0.0885 0.1929
Wald 0.0275 0.0862 0.1462 0.2518 0.0278 0.0872 0.1472 0.2524 0.0286 0.0883 0.1493 0.2553
Adj 0.0282 0.0877 0.1478 0.2531 0.0297 0.0897 0.1497 0.2536 0.0326 0.0933 0.1526 0.2551
QL 0.0054 0.0440 0.0882 0.1991 0.0051 0.0440 0.0882 0.2002 0.0059 0.0459 0.0895 0.2023

Model 1, n = 100
2nd 0.0133 0.0598 0.1145 0.2185 0.0122 0.0577 0.1116 0.2164 0.0074 0.0450 0.0954 0.2007
Wald 0.0178 0.0679 0.1227 0.2271 0.0182 0.0683 0.1231 0.2279 0.0185 0.0693 0.1235 0.2293
Adj 0.0181 0.0687 0.1245 0.2284 0.0192 0.0696 0.1251 0.2292 0.0216 0.0730 0.1274 0.2310
QL 0.0146 0.0554 0.0960 0.1915 0.0148 0.0553 0.0954 0.1910 0.0152 0.0553 0.0960 0.1915

Model 2, n = 50
2nd 0.0133 0.0644 0.1269 0.2463 0.0091 0.0491 0.1040 0.2191 0.0071 0.0391 0.0856 0.1911
Wald 0.0530 0.1302 0.1993 0.3135 0.0550 0.1338 0.2038 0.3176 0.0568 0.1385 0.2071 0.3208
QL 0.0050 0.0365 0.0826 0.1638 0.0054 0.0355 0.0817 0.1615 0.0057 0.0351 0.0819 0.1608

Model 2, n = 100
2nd 0.0121 0.0609 0.1205 0.2289 0.0089 0.0525 0.1094 0.2192 0.0070 0.0444 0.0950 0.2026
Wald 0.0276 0.0887 0.1499 0.2587 0.0284 0.0913 0.1527 0.2613 0.0297 0.0911 0.1521 0.2616
QL 0.0057 0.0398 0.0906 0.1800 0.0057 0.0388 0.0907 0.1778 0.0063 0.0393 0.0919 0.1754

Model 3, n = 50
2nd 0.0071 0.0432 0.0927 0.1962 0.0070 0.0428 0.0924 0.1965 0.0059 0.0402 0.0899 0.1930
Wald 0.0052 0.0387 0.0869 0.1906 0.0052 0.0388 0.0872 0.1906 0.0053 0.0387 0.0879 0.1910
QL 0.0065 0.0321 0.0785 0.1698 0.0136 0.0454 0.1054 0.1962 0.0064 0.0321 0.0807 0.1669

Model 3, n = 100
2nd 0.0079 0.0464 0.0962 0.1981 0.0077 0.0461 0.0962 0.1978 0.0072 0.0452 0.0949 0.1970
Wald 0.0069 0.0439 0.0935 0.1951 0.0069 0.0441 0.0933 0.1952 0.0071 0.0444 0.0937 0.1956
QL 0.0066 0.0319 0.0807 0.1707 0.0069 0.0317 0.0806 0.1708 0.0063 0.0322 0.0814 0.1681

robustness of the estimating equation, since the validity of the
second-order test requires only the consistency of the estimat-
ing equation. Finally, we performed an empirical power study
of the second-order test in comparison with the Wald test (Fig-
ure 1). Overall, the two tests are comparable at the practically
useful power numbers (we reported 70% and 90% at level 5%),
with neither test clearly dominating the other.

5. DATA EXAMPLE

To illustrate the method, we consider a farm size dataset,
originally given in Fuller (1987, p. 201). The data contains
information on farm sizes (Y), farmers’ experience (X1) and
education (X2), and the interest is to study the relation of
the farm size to the two covariates. Both experience and ed-
ucation are measured with error, and the error variances are
known to be 0.2013, 0.1808 respectively. In addition, the er-
ror variance on measuring the farm size is also known to be
0.0997. A model considered in Fuller (1987) has a linear form
Y = β0 + β1X1 + β2X2 + ε, and based on the normality as-
sumption of both X1 and X2, it is concluded that farm size is
positively correlated with experience and education.

We relaxed the normality assumption of the unobservable
covariates and performed the analysis on the original dataset
with 176 observations. For this moderate sample size, both first-
order and second-order analysis came to the same conclusion
of not rejecting the zero slope hypotheses. We report the esti-
mates, the standard error and the p-values of the two tests in

Table 3. Note that despite the same conclusion of the two tests,
the p-value about experience from the two tests are quite dif-
ferent, with the p-value of the Wald test much smaller than that
of the second-order test. This raises the suspicion that the small
p-value of the Wald test could be artifactual due to its finite
sample performance under moderate sample sizes.

We thus considered a random subsample of size 50 to reflect
further a small sample scenario. The scatter plot of the data set
is in Figure 2. Using the methods described above, the estimate
of the intercept is 5.26, while the slopes are −0.46 for experi-
ence and 0.27 for education. Using first order asymptotics, the
standard deviation associated with the two slope values are 0.15
and 0.10, indicating significance of both covariates. In fact, us-
ing two separate Wald tests for zero coefficient of each covari-
ate, we find the p-values to be 0.0024 and 0.0102, which would
indicate that farm size is negatively correlated with experience
and positively correlated with education.

However, considering that the measurement error is quite
large in the data, and the sample size is rather small, it is more
appropriate to use a second-order analysis. The result of this
analysis indeed produced different results, with the correspond-
ing p-values to be 0.1905 and 0.5446 respectively. Contrary to
the first-order result, the conclusion here is that both covariates
are not statistically significantly linked to farm size, a sample
size 50 is simply too small to allows us to understand the re-
lation between farm size and the education, experience of the
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Table 2. Level of the composite test

Reliability ratio 0.3 Reliability ratio 0.5 Reliability ratio 0.9

Nominal 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Model 1, n = 50
2nd 0.0143 0.0612 0.1163 0.2215 0.0104 0.0559 0.1116 0.2181 0.0053 0.0408 0.0936 0.2028
Wald 0.0189 0.0685 0.1234 0.2266 0.0196 0.0694 0.1247 0.2280 0.0196 0.0698 0.1248 0.2277
Adj 0.0232 0.0785 0.1366 0.2401 0.0243 0.0788 0.1353 0.2378 0.0254 0.0790 0.1349 0.2366
QL 0.0147 0.0629 0.1181 0.2248 0.0209 0.0774 0.1384 0.2494 0.0171 0.0674 0.1242 0.2317

Model 1, n = 100
2nd 0.0125 0.0565 0.1074 0.2092 0.0110 0.0541 0.1049 0.2082 0.0074 0.0474 0.0992 0.2034
Wald 0.0144 0.0597 0.1107 0.2122 0.0148 0.0604 0.1115 0.2130 0.0146 0.0603 0.1124 0.2137
Adj 0.0189 0.0687 0.1239 0.2287 0.0187 0.0697 0.1232 0.2266 0.0213 0.0742 0.1288 0.2320
QL 0.0138 0.0601 0.1137 0.2179 0.0197 0.0740 0.1344 0.2432 0.0149 0.0635 0.1186 0.2237

Model 2, H0 :β3 = 0, n = 50
2nd 0.0095 0.0595 0.1205 0.2316 0.0080 0.0554 0.1162 0.2292 0.0160 0.0679 0.1284 0.2396
Wald 0.0309 0.0921 0.1512 0.2564 0.0532 0.1280 0.1926 0.2998 0.2802 0.3904 0.4627 0.5583

Model 2, H0 :β3 = 0, n = 100
2nd 0.0117 0.0571 0.1132 0.2187 0.0109 0.0565 0.1116 0.2174 0.0149 0.0638 0.1195 0.2232
Wald 0.0203 0.0720 0.1286 0.2325 0.0347 0.0990 0.1633 0.2707 0.2371 0.3560 0.4320 0.5347

Model 2, H0 :β2 = β3 = 0, n = 50
2nd 0.0093 0.0577 0.1202 0.2387 0.0071 0.0498 0.1092 0.2283 0.0027 0.0262 0.0693 0.1754
Wald 0.0420 0.1114 0.1764 0.2857 0.0444 0.1142 0.1791 0.2890 0.0585 0.1320 0.1980 0.3069

Model 2, H0 :β2 = β3 = 0, n = 100
2nd 0.0116 0.0590 0.1150 0.2244 0.0100 0.0552 0.1107 0.2203 0.0045 0.0380 0.0884 0.1974
Wald 0.0245 0.0802 0.1370 0.2447 0.0252 0.0813 0.1393 0.2456 0.0291 0.0868 0.1462 0.2524

Model 3, n = 50
2nd 0.0085 0.0497 0.1023 0.2038 0.0084 0.0494 0.1021 0.2040 0.0084 0.0493 0.1019 0.2052
Wald 0.0074 0.0471 0.0997 0.2014 0.0074 0.0472 0.0999 0.2019 0.0073 0.0472 0.0996 0.2032
QL 0.0149 0.0603 0.1121 0.2139 0.0155 0.0611 0.1146 0.2161 0.0158 0.0626 0.1156 0.2192

Model 3, n = 100
2nd 0.0099 0.0499 0.1006 0.2020 0.0099 0.0501 0.1006 0.2018 0.0101 0.0501 0.1004 0.2017
Wald 0.0092 0.0486 0.0992 0.2008 0.0092 0.0490 0.0994 0.2006 0.0094 0.0488 0.0992 0.2004
QL 0.0122 0.0544 0.1051 0.2071 0.0127 0.0558 0.1070 0.2098 0.0133 0.0569 0.1087 0.2112

farmers. The subsample analysis results are summarized in Ta-
ble 3.

The above analysis indicates that the conclusion we obtained
through the Wald tests in the subsample analysis is a result of
sampling randomness and it does not reflect the general relation
between the random variables. The advantage of the second-
order analysis is that even when working with a small subsam-
ple, we still will not be misled to false conclusion.

To see the effect of the small sample size and how often it af-
fects the conclusion, we repeated the above subsample analysis
on 100 randomly generated subsamples, and find that 14 of the
100 times, the first-order test would either detect the education
or the experience to be a significant predictor of the farm size,
while the second-order test consistently concludes nonsignifi-
cance for all the 100 subsamples. Extending this observation,
we can understand the large difference between the p-values on
experience of the Wald test and the second order test as a small-
moderate sample size effect.

6. DISCUSSION

We have developed a second-order test under the measure-
ment error model framework that can be used whenever an es-
timating equation is available. In order to provide an explicit

expression for the score function ψ , we have assumed in our
case the error distribution to be normal, but we have found
that the procedure is robust to this assumption. In addition,
the method is applicable in more general situations than the
measurement error models. Consider for instance the situation
where we have observations A1, . . . ,An from a semiparametric
model with probability density function (pdf) f (A; θ , η), where
the parameter θ ∈ R

d and η is an infinite dimensional nuisance
parameter. In measurement error model, η corresponds to the
distribution of the unobservable covariate; in general, it can be
any other nuisance parameter. If in this class of semiparamet-
ric models, there exists an estimating equation ψ(Ai; θ) ∈ R

d

so that E{ψ(Ai; θ)} = 0, then our second-order testing method
is applicable. This implies that the testing procedure can be ap-
plied to restricted moment models, mixture models, generalized
linear latent variable models, etc.

APPENDIX

Description of ψ (ai ; θ ) in (1)

First, we denote the score function ∂ log pY|X(y|x; θ)/∂θ as SF
θ (Xi,

Yi; θ). Specifically,

SF
θ (Xi,Yi; θ) = {Yi − m(Xi; θ)}m′

θ (X; θ)/σ 2.
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Figure 1. Power study of the second-order test (indicated with ∗) and the Wald test (indicated with ◦) for model 1 (first row), model 2 (second
row), and model 3 (last row) at approximately 70% (left) and 90% (right) power for a level 5% test. Each plot contains four groups of curves,
indicating the power of the test if the nominal Type I error is respectively 0.01, 0.05, 0.1, and 0.2.
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Table 3. Estimates (est), standard deviation (sd) and p-values of
the farm size data. The last block is the number of p-values

smaller than 0.05 in the 100 subsample analysis

Intercept Education Experience

Complete data
est 5.8665 0.0607 −0.2551
sd 0.6459 0.1777 0.1495
p-value (Wald) – 0.7326 0.0878
p-value (2nd order) – 0.7463 0.7264

A subsample of size n = 50
est 5.2553 0.2659 −0.4585
sd 0.4727 0.1036 0.1508
p-value (Wald) – 0.0102 0.0024
p-value (2nd order) – 0.5446 0.1905

100 subsamples of size n = 50
Wald – 2 12
2nd order – 0 0

Figure 2. The farm size data. Left: farm size (Y label) and experi-
ence (X label). Right: farm size (Y label) and education (X label). The
online version of this figure is in color.

We now adopt a pdf for X, f ∗
X , and use E∗ to denote expectations cal-

culated using f ∗
X . Note that f ∗

X does not need to be the true distribution
of X. We then solve for α(X), which is a function that satisfies

E
[
E∗{α(X)|W,Y}|X] = E

[
E∗{SF

θ (Xi,Yi; θ)|W,Y}|X]
.

Finally, we form ψ(ai; θ) through

ψ(ai; θ) = E∗{SF
θ (Xi,Yi; θ)|W = wi,Y = yi}

− E∗{α(X)|W = wi,Y = yi}
for i = 1, . . . ,n.

In Tsiatis and Ma (2004), it is shown that the above ψ is guaran-
teed to yield a consistent estimating equation. Under special cases
such as generalized linear model and normal additive errors, simpli-
fication occurs and an explicit form of ψ becomes available (Ma and
Tsiatis 2006). As examples, in model 1 of the simulation, ψ(ai; θ) =
(Zi,�i)

T {Yi − (Ziβ1 + �iβ2)/(1 + β2
2 r)}, where r = σ 2

u σ−2
ε , σ 2

ε and

σ 2
u are respectively the variances of the model error and the mea-

surement error, and �i = Wi + Yiβ2r. In model 2 of the simula-
tion, ψ(ai; θ) = (Zi,�i,Zi�i)

T [Yi − (Ziβ1 + �i(β2 + β3Zi))}/{1 +
(β2 + β3Zi)

2r}], where r = σ 2
u σ−2

ε , σ 2
ε and σ 2

u are respectively
the variances of the model error and the measurement error, and
�i = Wi + Yi(β2 + β3Zi)r. In model 3 of the simulation, ψ(ai; θ) =
{Zi,�i + (di − 1)σ 2

u β2}T (Yi − di), where �i = Wi + Y1β2σ 2
u and

di = (1 + e−β1Zi−β2�i+β2
2 σ 2

u /2)−1. In the data example, ψ(ai; θ) =
(1,�i)

T {Yi − (β0 + β1�i1 + β2�i2)/(1 + β2
1 r1 + β2

2 r2)}, where

�i = (Wi1,Wi2)T +Yi(r1β1, r2β2)T , r1 = σ 2
u1

σ−2
ε , r2 = σ 2

u2
σ−2
ε , and

σ 2
ε , σ 2

u1
and σ 2

u2
are respectively the variances of the model error and

the measurement error on Xi1 and on Xi2.

Parametric Saddlepoint Test

For completeness, we summarize here the basic idea of the saddle-
point test for M-estimators as introduced by Robinson, Ronchetti, and
Young (2003). For simplicity we consider the simple hypothesis sit-
uation as described in Section 2, (1). The saddlepoint test statistic is
defined by

h(θ̂) = sup
λ

{−Kψ(λ; θ̂)}, (A.1)

where θ̂ is the solution of (1) and

Kψ(λ; θ) = log EFθ0

[
eλTψ(Ai;θ)

]
is the cumulant generating function of the score function ψ(Ai; θ).

Under H0, 2nh(θ̂)
D→ χ2

d , with relative error of order n−1.
In the composite hypothesis case, the nuisance parameters are mar-

ginalized by taking the inf over the nuisance parameters in (A.1).
This test statistic can be viewed as the Legendre transform of the

score function ψ and is first-order equivalent to the three classical
tests (Wald, score, and likelihood-ratio) but exhibits better second-
order properties; see Remarks 1 and 2 in Section 2.

The test requires the existence of the cumulant generating function
of the score function ψ(Ai; θ) computed with respect to the distribu-
tion of the observations under the null hypothesis. If ψ is bounded with
respect to Ai, this condition is always satisfied. If ψ is linear, then the
underlying distribution must have exponential tails; cf. the discussion
in Huber and Ronchetti (2009, remark in section 14.3).

Regularity Conditions for Theorems 1 and 2

For completeness we list here the regularity conditions needed in
the theorems as in Field, Robinson, and Ronchetti (2008).

(C1) E{∂ψ(A; θ0)/∂θT } is an invertible matrix.
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This condition is a standard requirement for regular asymptotically
linear estimators and is satisfied in all the problems we consider. It
ensures that there is a compact local neighborhood B where θ0 is an
interior point, as long as E{∂ψ(A; θ)/∂θT } is continuous with respect
to θ , then θ0 is the unique solution to E{ψ(A; θ)} = 0 in B.

(C2) All the components in ψ(a; θ) and their first four derivatives
with respect to θ exist and are bounded and continuous.

The third condition is a technical smoothness condition which is
required to apply an Edgeworth expansion to the random vector Uτ

defined below and it is used in the classical saddlepoint analysis. De-
fine Ujθ to be the concatenation of Ljθ ,Vjθ , and Qjθ , where Ljθ =
ψ(Aj; θ), Vjθ is the vector formed by the elements of ∂ψ(Aj; θ)/∂θT

and ψ(Aj; θ)ψT (Aj; θ), and Qjθ is formed by the the elements of

∂Vjθ /∂θT . The dimension of Lj,θ is d. Denote the dimension of Vjθ
and Qjθ to be p and r. Define

κ(τ ; θ) = log E exp{τTψ(A; θ)},
where E is calculated under the true parameter value θ0. Let τ (θ) be
the solution to

∂κ(τ ; θ)

∂τ
= 0.

Denote the distribution function of Ujθ to be FU . Let Uτ be a random
vector with distribution function

Fτ (l,v,q) =
∫
(l′,v′,q′)≤(l,v,q)

eτ (θ)T l′−κ{τ (θ);θ} dFU(l′,v′,q′).

Denote further 	τ = cov Uτ ,μτ = EUτ . And let φτ (ξ) = EeiξT Uτ
.

(C3) There exist positive constants c, C, and ρ, such that c <

det	1/2
τ < C, and |φτ (ξ)| < 1 − ρ for all c < |ξ | < Cn(d+p+r+1)/2.

Proof of Theorem 1

We use results from the existing literature on bootstrap for second-
order tests. Let A∗

1, . . . ,A∗
n be a sample drawn from F̂0. To make the

notation more precise, assume θ̂ solves
∑n

i=1 ψ(ai; θ̂) = 0, �̂ solves∑n
i=1 ψ(Ai; �̂) = 0, and �̂∗ solves

∑n
i=1 ψ(A∗

i ; �̂∗) = 0. In the
bootstrap world, when the sample space is {A1, . . . ,An}, under H0, the
true distribution is F̂0, and the ideal test statistic in this world is con-
structed exactly through 2n̂h(·), where “·” will be replaced with the
estimated value from the corresponding estimating equations. Then,
under the above conditions (C1), (C2), (C3), using the result in Field,
Robinson, and Ronchetti (2008) there exists a saddlepoint approxima-
tion to the distribution of �̂∗ in the bootstrap case (in which the under-
lying distribution does not have a density). Therefore, equation (1.6)

in Robinson, Ronchetti, and Young (2003) can be applied to get the

p-value p∗{2n̂h(̂θ)} in the bootstrap world for a fixed ĥ(̂θ)

p∗{2n̂h(̂θ)} = P∗
H0

{2n̂h(�̂∗) ≥ 2n̂h(̂θ)}
= {1 − Qd(n̂u2)}{1 + O((1 + n̂u2)/n)

}
,

where û =
√

2̂h(̂θ). Since ĥ(̂θ) = Op(n−1), this leads to

p∗{2n̂h(̂θ)} = {1 − Qd(n̂u2)}{1 + O(n−1)}.
Moreover, from Field, Robinson, and Ronchetti (2008, theorem 3),
the p-value in the original world, p{2n̂h(̂θ)}, is related to p∗{2n̂h(̂θ)}
through

p{2n̂h(̂θ)} = p∗{2n̂h(̂θ)}[1 + Op{√n̂h(̂θ)3 ∨ n−1}]
= p∗{2n̂h(̂θ)}{1 + O(n−1)}

using again that ĥ(̂θ) = Op(n−1). Hence the p-value of the observed
sample is

p{2n̂h(̂θ)} = PH0{2n̂h(�̂) ≥ 2n̂h(̂θ)}
= {

1 − Qd(2n̂h(̂θ))
}{1 + Op(n−1)}

and this proves the theorem.

Description of ψ (ai ; θ1, θ2) in (2)

Assume the first two components of θ1 are the standard deviation
of ε, σε , and that of U, σU . Then the score function has the first two
components [ {Yi − m(Xi; θ)}2/σ 3

ε − 1/σε

(Wi − Xi)
2/σ 3

U − 1/σU

]
.

The remaining components of the score function are of the same form
as the score function used in constructing ψ(a1; θ) in (1).

Using the new score function, following the same procedure as be-
fore, one can construct the ψ(a1; θ1, θ2) in (2).

Proof of Theorem 2

This proof follows the same lines as that of Theorem 1. Assume θ̂2
solves

∑n
i=1 ψ(ai; θ̂2) = 0, �̂2 solves

∑n
i=1 ψ(Ai;V, �̂2) = 0, and

�̂∗
2 solves

∑n
i=1 ψ(A∗

i ;V∗, �̂∗
2) = 0. In the bootstrap world, when the

sample space is {A1, . . . ,An}, under H0, the true distribution is F̂0, and
the ideal test statistic in this world is constructed exactly using ĥ. Then,
by the same arguments as in the proof of Theorem 1 and by noticing
that the additional condition (A2) in Robinson, Ronchetti, and Young
(2003, p. 1160), is clearly satisfied in our case, we obtain

p∗{2n̂h(̂θ2)} = P∗
H0

{2n̂h(�̂∗
2) ≥ 2n̂h(̂θ2)}

= {
1 − Qd2(n̂u2)

}{1 + O(n−1)},

where û =
√

2̂h(̂θ2) and

p{2n̂h(̂θ2)} = p∗{2n̂h(̂θ2)}{1 + O(n−1)}.
This proves the theorem.

[Received January 2010. Revised September 2010.]
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