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ABSTRACT. We consider model-based prediction of a finite population total when a monotone
transformation of the survey variable makes it appropriate to assume additive, homoscedastic
errors. As the transformation to achieve this does not necessarily simultaneously produce an easily
parameterized mean function, we assume only that the mean is a smooth function of the auxiliary
variable and estimate it non-parametrically. The back transformation of predictions obtained on
the transformed scale introduces bias which we remove using smearing. We obtain an asymptotic
expansion for the prediction error which shows that prediction bias is asymptotically negligible
and the prediction mean-squared error (MSE) using a non-parametric model remains in the same
order as when a parametric model is adopted. The expansion also shows the effect of smearing on
the prediction MSE and can be used to compute the asymptotic prediction MSE. We propose a
model-based bootstrap estimate of the prediction MSE. The predictor produces competitive results
in terms of bias and prediction MSE in a simulation study, and performs well on a population
constructed from an Australian farm survey.
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1. Introduction

Consider a finite population of N units in which a survey variable Y has population values
Y1, . . ., YN and an auxiliary variable X has population values X1, . . ., XN . For simplicity, we
assume that X is a real variable; generalizations to vector X are reasonably straightforward.
We assume that the values of X are known for all N population units, but that the values
of Y are known only for a sample s of n ≤ N population units. Furthermore, the process
used to select the population units to include in the sample is assumed to be conditionally
independent of the values of Y given the values of X. Once the sample has been selected, the
values of Yi , i ∈ s are known. The problem is to use Yi , i ∈ s and Xi , i =1, . . ., N to predict
the unknown finite population total T =∑N

i =1 Yi .
In this article, we propose a model-based transformation approach which incorporates

smoothing and smearing to predict T by

T̂ =
∑
i∈s

Yi +n−1
∑
j �∈s

∑
i∈s

g[m̂(Xj)+{g−1(Yi)− m̂(Xi)}], (1)

where g is a known transformation and m̂ is either a parametric or a non-parametric
estimator of the mean of the transformed survey variable g−1(Y ). In the non-parametric case,
m̂(x)=∑k∈s wk(x)g−1(Yk), where wk(x) are weights (such as the Nadaraya–Watson, local
linear or Gasser–Müller weights) constructed from a kernel function K with bandwidth h > 0.
When g is the identity function, there is no need for smearing so the second term in (1)
simplifies to

∑
j �∈s m̂(Xj). In the remainder of this section, we give an intuitive motivation for

our use of (1) to predict T and then discuss its theoretical properties.
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The model-based approach to predicting T (see, e.g. chapter 2 of Valliant et al., 2000) is
based on predictors of the general form

T̂ =
∑
i∈s

Yi +
∑
j �∈s

Ŷ j , (2)

where Ŷ j is an estimator of E(Yj |Yi , i ∈ s, X1, . . ., XN ), j �∈ s. Under the usual assumption that
the pairs (Yi , Xi) are independent, E(Yj |Yi , i ∈ s, X1, . . ., XN )=E(Yj |Xj) and Ŷ j is taken to
be the fitted value from a parametric regression model relating Y and X. The parametric
regression model is commonly taken to be linear but it is convenient for later comparison to
allow the more general formulation.

If the relationship between Y and X does not follow the assumed parametric form, it may
be possible to transform Y so that the assumed parametric form holds on the transformed
scale g−1(Y ). That is,

g−1(Yi)=m(Xi)+�εi , (3)

where m(·)=m(·, �) is the regression function which is known up to the unknown regression
parameter �, � is an unknown scale parameter and {εi} are i.i.d. with mean zero and variance
one. (We also allow transformation of X but this does not introduce any bias so it is not
necessary to make it explicit.) If �̂g is an estimator of � on the transformed scale, then we can
predict g−1(Yj) by m(Xj , �̂g) and, after back transforming, predict Yj by Ŷ j =g{m(Xj , �̂g)}.
This simple predictor is biased for Yj because it estimates g{m(Xj , �)} rather than
E[g{m(Xj , �)+�ε} |Xj ]. Even if the bias for predicting an individual Yj is small when N and
n are large, there are N −n such terms in the predictor (2) so the bias accumulates and can
make T̂ severely biased. If we are prepared to assume an analytic form for the distribution of
ε, we can try to adjust for this bias; for example, Karlberg (2000a,b) gives bias adjustments
based on the log-transformation and the properties of the log-normal distribution. Alterna-
tively, as pointed out by Chambers & Dorfman (2003b), we can use model calibration (Wu
& Sitter, 2001) or smearing (Duan, 1983) to remove the transformation bias. We focus on
smearing which estimates the expectation by an empirical average over the sample residuals,
leading to the predictor Ŷ j =n−1

∑
i∈s g[m(Xj , �̂g)+{g−1(Yi) − m(Xi , �̂g)}]. This kind of

prediction of individual observations is analysed in a very general (infinite population) context
in Welsh & Zhou (2006). We have chosen to use smearing because it is conceptually simple,
flexible enough to apply when m is non-parametric and fits into the model-based framework.
On the contrary, implementing model calibration when m is non-parametric is awkward
and as a model-assisted method which incorporates model information into design-based
procedures, model calibration does not fit naturally into our model-based approach.

Chambers & Dorfman (2003b) point out that, in practice, both model calibration and
smearing assume that the specified model fits the data on the transformed scale and can
perform poorly when it does not. In particular, mis-specification of the regression function,
a high number of zeros in the data and outliers can all lead to poor performance. The incor-
poration of a delta spike for handling zeros and robust estimation for handling outliers are
treated in general in Welsh & Zhou (2006); in the finite population context, Chambers &
Dorfman (2003b) suggested using robust estimates and incorporating robustness weights
into the smearing predictor to deal with outliers. Both these ideas can be incorporated into
the methodology we develop but, for simplicity, in this article, we consider only the less
well-addressed issue of mis-specification. We adopt a non-parametric approach in which we
treat m as a smooth function and estimate it non-parametrically. In (2) we use the smeared
predictor Ŷ j =n−1

∑
i∈s g{m̂(Xj)+g−1(Yi) − m̂(Xi)} to obtain (1). A general treatment of

model-based non-parametric estimation of regression functions in finite population problems

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.



498 Y. Ma and A. H. Welsh Scand J Statist 37

is given by Chambers et al. (2003). Note that model-based non-parametric estimators are
different and have different properties from design-based estimators of a smooth regression
function such as considered by Breidt & Opsomer (2000).

In this article, we develop the prediction mean-squared error (MSE) properties of the para-
metric and non-parametric predictors without transformation and then with transformation
and smearing. The calculations in each case proceed by writing the prediction error of the
predictor T̂ in (2) as

T̂ −T =
∑
i∈s

Yi +
∑
j �∈s

Ŷ j −
N∑

i =1

Yi =P −
∑
j �∈s

{Yj −E(Yj |Xj)}, (4)

where P =∑j �∈s{Ŷ j −E(Yj |Xj)}. Note that the two terms on the right-hand side are indepen-
dent, because the first term involves only Yi for i in sample, the second term involves only
Yi for i not in sample and the observations are independent. This independence between the
two terms implies that the prediction MSE is

E(T̂ −T )2 =V +
∑
j �∈s

var(Yj |Xj), (5)

where V =E(P2 |X )=E([
∑

j �∈s{Ŷ j −E(Yj |Xj)}]2 |X ). The second term on the right-hand side
of (5) does not depend on the method of prediction so the problem is to evaluate V for
different predictors. The calculations are fairly straightforward except in the case of the non-
parametric predictor with transformation and smearing for which they are surprisingly
complicated. Our main contribution is to obtain the leading terms in the expansion of∑

j �∈s{Ŷ j −E(Yj |Xj)} and to show that V in (5) is of order N −n or, equivalently, of order
n as O(N)=O(n). (We will use O(n) hereafter.) This is the same order as the second term in
(5) so the prediction MSE is of order n in the parametric and non-parametric cases and even
when smearing the predictions to remove transformation bias.

A practical issue with using non-parametric methods is that the (asymptotic) prediction
MSE can be difficult to estimate. This is usually because of the bias terms – our result shows
that the bias terms are of lower order than the leading stochastic terms so can be ignored
when we estimate the asymptotic MSE. In this context however, some of the omitted terms
may not be much smaller than the retained terms unless N and n are both very large. To over-
come this difficulty, we propose in section 3 a model-based bootstrap procedure to estimate
the prediction MSE.

The remainder of the article is organized as follows. The main results are presented in
section 2. Estimation of the prediction MSE and inference are discussed in section 3 and the
method is illustrated by a small simulation study in section 4. The article ends with a discus-
sion in section 5, where the main features and findings of the proposed methods are recast
and the potential limitations and possible extensions mentioned. The outline of the proof of
the theory is deferred to an Appendix, and the technical details of the proof to the online
Supporting Information available in connection with the online version of the article.

2. Prediction MSE results

Our main result gives the lowest order terms in the expansion of
∑

j �∈s{Ŷ j − E(Yj |Xj)} for
the non-parametric predictor with smearing. Simultaneously, we present results for the other
predictors we have discussed because they are interesting in their own right, enable us to
present a complete picture (including making comparisons) and provide context for the final
result.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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We assume throughout this section that N →∞ and n →∞ such that 0 < lim n/N < 1 and
that Eε4 <∞. Define a(x, ε)=g{m(x)+�ε}, b(x, ε)=g′{m(x)+�ε} and c(x, ε)=g′′{m(x)+�ε}.
Then, we assume the following functions exist and are continuous functions of x on the
support of X :

�(x)=Ea(x, ε), �(x)=Eb(x, ε), �(x)=Ec(x, ε),

Ea(x, ε)2,

Eb(x, ε)2, Eε2b(x, ε)2,

Ec(x, ε)2, Eε4c(x, ε)2.

These assumption allows us to bound various quantities on the support of X without
requiring the transformation g and its derivatives to be bounded. This is useful because the
common transformations are not bounded. Note that the Cauchy–Scharwz inequality enables
us to bound other versions of these quantities, for example, as Eε2 =1, Eεb(x, ε)≤{Eb(x, ε)2}1/2,
etc.

We present conditions for the two smeared predictors separately. Those listed in condition A
are for the parametric model m(x, �) and those in condition B are for the non-parametric
model m(x). The conditions for the predictors without transformation are a subset of these
conditions.

Condition A

1. The estimator �̂ satisfies �̂−�=Op(n−1/2).
2. The regression function m(x, b) is differentiable in b, m′(x, b) is uniformly continuous in

b and Em′(X , �) <∞.
3. The transformation g is monotone and differentiable and the derivative g′ is uniformly

continuous on any compact set.

Condition (A1) allows for a wide class of estimators, including the widely used weighted least
squares estimator and various robust estimators. Conditions (A2) and (A3) are smoothness
conditions which allow us to expand both the regression function and the transformation
when required.

For the non-parametric predictors, we consider linear estimators m̂(x)=∑k∈s wk(x)g−1(Yk)
of the regression function m(x), where wk(x) are user-specified weights. Let K be a
kernel function and h > 0 be the bandwidth. Then, common choices of weights include the
Nadaraya–Watson weights

wk(x)= K{(x −Xk)/h}∑
i∈s K{(x −Xi)/h} ,

the local-linear weights

wk(x)= K{(x −Xk)/h}{Sn, 2 − (Xi −x)Sn, 1}∑
i∈s K{(x −Xi)/h}{Sn, 2 − (Xi −x)Sn, 1} ,

where Sn, m =∑i∈s K{(x − Xi)/h}(Xi − x)m (see Fan & Gijbels, 1996), or the Gasser–Müller
weights

wk(x)= 1
h

∫ (Xk +Xk +1)/2

(Xk−1 +Xk )/2
K{(x −u)/h}du.

As we make explicit in the following conditions, any linear smoother whose weights satisfy
standard conditions can be used in the predictor.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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Condition B

1. The linear estimator m̂(x) satisfies

m̂(x)−m(x)=h2Cm′′(x)+�
∑
k∈s

wk(x)εk +o(h2)+O(n−1).

2. The weights wk(x) satisfy∑
i∈s

wk(Xi)=Op(1),
∑
j �∈s

wi(Xj)=Op(1),

∑
i∈s

w2
i (X )=Op{(nh)−1},

∑
i∈s

w2
i (Xi)=Op{(nh2)−1},

∑
j �∈s

∑
k∈s

wk(Xj)wk(X )=Op(1),
∑
i∈s

∑
k∈s

wk(Xi)wk(X )=Op(1),

∑
i∈s

wi(X )εi =Op{(nh)−1/2},

where the results hold uniformly with respect to the subindex and to X.
3. The density p of X has compact support (so X is bounded ) and 0 < c1 < p(x) < c2 <∞ on

the support.
4. The regression function m(x) is three times continuously differentiable.
5. The first two derivatives of the transformation g exist and the second derivative g′′ is

uniformly continuous on any compact set.
6. The bandwidth h=O(n−�) with 1/4 < �< 1/2.

Conditions (B1) and (B2) are satisfied by the common choices of the estimator. Condition
(B3) allows us to control the behaviour of the covariates and conditions (B4) and (B5) allow
us to expand both the regression function and the transformation when required. In condi-
tion (B6), the lower bound 1/4 < � has to be strict to have the estimation variance dominate
the bias, whereas the upper bound �< 1/2 can actually be relaxed to �≤1/2 without affecting
the first order; this is discussed in more detail after the statement of the theorem. However,
some terms are of order h−1 =n� which is the same order as the leading terms if �=1/2.
Thus, choosing �< 1/2 ensures that these terms are of smaller order than the leading terms
and hence can be neglected asymptotically; in other words, choosing �=1/2 does not change
the order of the prediction MSE but adds extra terms to it. Note that (B6) excludes the usual
O(n−1/5) bandwidth because we are estimating the total which is an aggregate. The estimation
variance is O(n) which does not depend on h and allows us to select a relatively small band-
width to eliminate the effect of the accumulated bias. Specifically, in calculating the total, the
bias from the non-parametric regression estimator is accumulated to order nh2. To contain
the bias order within n1/2, we have to exclude the usual n−1/5 order from h. However, the
relatively small bandwidth does not cause the variance order to deteriorate because of the
aggregated nature of the total. This is reflected throughout the proof of the theorem.

Theorem
Suppose that either condition A or condition B holds as appropriate for the predictor. Then the
first term P =∑j �∈s{Ŷ j −E(Yj |Xj)} in the expansion (4) for each predictor is:

(i) Parametric prediction without transformation

P1 =
∑
j �∈s

m′(Xj , �)(�̂−�).

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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(ii) Non-parametric prediction without transformation

P2 =�
∑
k∈s

∑
j �∈s

wk(Xj)εk .

(iii) Parametric prediction with transformation and smearing

P3 =
∑
j �∈s

�(Xj){m′(Xj , �)− 1
n

∑
i∈s

m′(Xi , �)}(�̂−�)+ 1
n

∑
j �∈s

∑
i∈s

{a(Xj , εi)−�(Xj)}.

(iv) Non-parametric prediction with transformation and smearing

P4 =�
∑
k∈s

∑
j �∈s

�(Xj){wk(Xj)− 1
n

∑
i∈s

wk(Xi)}εk + 1
n

∑
i∈s

∑
j �∈s

{a(Xj , εi)−�(Xj)}

− 1
n
�
∑
i∈s

∑
j �∈s

wi(Xi)[b(Xj , εi)εi −E{b(Xj , εi)εi |Xj}].

The prediction MSE in each case is of order O(n). That is, E{(T̂ −T )2}=O(n).

The proof is given in the Appendix.
The expression in (i) for the parametric predictor is familiar (see, e.g. Valliant et al., 2000)

and is included to establish a baseline. The expression in (ii) for the non-parametric predictor
is similar to (i) because the bias contribution is of smaller order. As discussed in the ‘Intro-
duction’, this occurs because of aggregation: we are predicting a sum rather than individual
observations. Specifically, from (B1),∑

j �∈s

{Ŷ j −E(Yj |Xj)}=
∑
j �∈s

{m̂(Xj)−m(Xj)}

=h2C
∑
j �∈s

m′′(Xj)+�
∑
k∈s

∑
j �∈s

wk(Xj)εk +op(nh2)+Op(1)

so the leading term in the variance is

V =�2
∑
k∈s

{∑
j �∈s

wk(Xj)
}2

=�2
∑
k∈s

∑
j �∈s

∑
j′ �∈s

wk(Xj)wk(Xj′ ),

which is of order n by condition (B2). When h=O(n−�), the first term is of order n1−2�, so the
prediction bias is of smaller order than P2 provided �> 1/4 and hence the prediction MSE is
of order n. It is also possible to choose �=1/2; this choice adds extra terms in (iv), although
the final order of the prediction MSE remains O(n). The advantage of choosing the boundary
case �=1/2 is that it allows straightforward scaling when choosing bandwidth; this is
described in detail in section 4. The transformation in (iii) affects the contribution of the
parametric estimator through a multiplicative term �(Xj), which comes from g′, and by impos-
ing centring on m′. The second term in (iii) captures the effect of smearing to remove trans-
formation bias. The effect of this term is to increase the variability of the predictor. The
transformation in (iv) has a similar effect to (iii) on the non-parametric estimator by intro-
ducing �(Xj) and centring the weights. The effect of smearing here is to introduce two extra
terms: one of these is the same as the smearing contribution in (iii) and the other combines
the smearing with the estimator. As in (ii) there is no asymptotic bias and, as in (iii), the
cost of smearing to remove bias is to increase variability. When the transformation g is the
identity function, results in (iii) and (iv) reduce to those in (i) and (ii), respectively, in terms
of their leading orders. The verification is straightforward and we omit the details here.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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3. Inference

We can base inferences on the smeared non-parametric predictor by estimating the asymp-
totic prediction MSE and using a Gaussian approximation. However, this approach may not
work very well because the asymptotic prediction MSE contains several terms and some of
the omitted terms are only of slightly smaller order than those retained in the approximation.
This suggests that it may be useful to investigate the use of the bootstrap to estimate the
uncertainty in the predictor and to make inferences about the population total.

As the purpose of bootstrapping is to estimate the model-based prediction error or to set
model-based confidence intervals for T , we construct a bootstrap distribution that is condi-
tional on the sample s actually selected. We consider the approach suggested by Chambers
& Dorfman (2003a), although other ways of bootstrapping may be possible. We treat the
residuals

ri =g−1(Yi)− m̂(Xi)=�εi −h2Cm′′(Xi)−�
∑
k∈s

wk(Xi)εk +o(h2)+O(n−1)

as estimates of the model errors. The residuals have conditional mean of order h2 and ap-
proximate conditional variance �2{1+∑k∈s wk(Xi)2 − 2wi(Xi)}=�2 +O{(nh)−1} so we can
also use the standardized residuals

g−1(Yi)− m̂(Xi)√
1+∑k∈s wk(Xi)2 −2wi(Xi)

, (6)

which have conditional mean of order h2 and approximate conditional variance �2. The
standardization produces a higher-order correction to the residuals and so can be omitted.

If we let r∗
i , i =1, . . ., N denote a simple random sample of residuals sampled with replace-

ment from the sample residuals ri , i ∈ s, then we can construct the bootstrap population

Y ∗
i =g{m̂(Xi)+ r∗

i }, i =1, . . ., N .

Here we assume g is well defined at m̂(Xi)+ r∗
i . For commonly used transformations such as

the log-transformation (so g is the exponential function) or the Box–Cox transformation, this
is indeed the case. For this population, we compute the bootstrap population total T ∗ and
use the same sample units s as before to construct the predictor T̂ ∗ as defined in (2). The
difference T̂ ∗ − T ∗ is the prediction error based on the sample s for this bootstrap popula-
tion and, repeating these calculations, we obtain the bootstrap distribution for the prediction
error T̂ −T . The expected squared error of this bootstrap distribution is an estimate of the
prediction MSE. Following Chambers & Dorfman (2003a), we can also use the quantiles of
the bootstrap distribution (percentile method) to set confidence intervals for T.

The bootstrap described previously is attractively simple because it ignores the possible
effects of bias on the residuals. There is no transformation bias because the residuals are
constructed without any back transformation; this is related to the fact that the bootstrap
population is constructed by predicting individual values Yi rather than their conditional
mean values E(Yi |Xi). [ We do compute the bootstrap population total (an aggregated quan-
tity) but it is more appropriate to treat this as the actual total of the bootstrap population
(hence unsmeared) rather than as an estimate which can be smeared.] The residuals do include
smoothing bias from estimating the regression function m; see Davison & Hinkley (1997,
section 7.6). We can adjust for this bias if we can estimate C and m′′ (and then consider
modifying the approximate variance used in standardization to accommodate their uncer-
tainty) but this introduces complications which we prefer to avoid. As we are estimating
individual errors rather than aggregated errors, we should use a classical (larger) band-

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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width h to construct the residuals than we use to construct the non-parametric predictor
of the population total.

4. Simulation

We illustrate the proposed method in a model-based simulation study. We performed 250
simulations in which samples of size n=400 were generated from populations of size
N =1600 so the non-sample size is N −n=1200. We generated and kept fixed 400 Xis in the
sample and 1200 Xis in the non-sample, but new Yis were generated in each simulation. The
Xis were generated from a uniform distribution U (0, 4), whereas the Yis were generated from
g−1{m(Xi)+ εi} with the εi from a standard normal distribution N(0, 1). We experimented
with three different mean functions, m(x)=50x/{1 + (x + 4)2}, m(x)=2.5x/{1+ (x − 1)2}
and m(x)=0.8(x −2)2, respectively, where the coefficients are selected so that the three func-
tions have similar ranges. Finally, we used the identity transformation (g−1(Y )=Y ) and the
log-transformation (g−1(Y )= log(Y )) as these seem to be the most widely used in practice.

We implemented the proposed method using the standard (Nadaraya–Watson) kernel
estimator (p1) and the local linear estimator (p2) with the Epanechnikov kernel K (x)=
0.75(1 − x2)I (x2 < 1) and with bandwidth h1 =O(n−1/2) on the observed pairs {Xi , g−1(Yi)},
i ∈ s, to estimate the regression function m(x). From condition (B6), h1 =O(n−�) for any
1/4 < �< 1/2 suffices. As we pointed out, using h1 =O(n−1/2) instead of o(n−1/2) changes the
coefficient but not the order of the prediction MSE. In the bootstrap, we do not need to esti-
mate the coefficients so the procedure carries through. The advantage of using the boundary
order bandwidth is that it allows straightforward scaling between samples of different sizes
in the cross-validation procedure described in the next paragraph. We denote the estimates
of m(x) by m̂1(x) to emphasize the use of h1. The predictors of the finite population total
are then calculated through

T̂ =
∑
i∈s

Yi + 1
n

∑
i∈s

∑
j �∈s

g{m̂1(Xj)+ ri}.

To estimate the bias and variability of the proposed methods, we used a bootstrap method.
We first obtained a new estimate of m(x), denoted by m̂2(x), from samples {Xi , g−1(Yi)},
i ∈ s, using bandwidth h2 =O(n−1/5). Note that here h2 has the same order as the usual
optimal bandwidth for non-parametric regression as we use it to obtain individual residuals;
see the discussion in the last paragraph of section 3. We then obtained the residuals
r̃i =g−1(Yi) − m̂2(Xi), i ∈ s, and formed bootstrap samples by constructing (Xk , Y ∗

k ), where
Y ∗

k =g(Xk)+ r̃ ∗
k , k =1, . . . , N and the r̃ ∗

k were randomly selected with replacement from r̃i , i ∈ s.
The bootstrap procedure was repeated 500 times.

In practice we need to be able to select the two bandwidths h1 and h2. As h2 optimizes
the non-parametric fitting of m(x) on the data {Xi , g−1(Yi)}, i ∈ s, it can be selected by the
usual leave-one-out cross-validation. However, the selection of h1 is not so straightforward.
The final goal is to minimize the MSE of the predictor of the total when 1200 out of 1600
responses are missing so, ideally, we should use a leave-3/4-out cross-validation and then
scale h1 back by multiplying by 41/2. Of course, it is not practical to calculate all

(400
100

)
cross-

validation samples, so we select at random 50 sets of cross-validation samples and minimize
the MSE of the predictor of the total over these 50 sets to obtain the optimal h1. Although
increasing 50 to a larger number will yield a closer approximation to the true optimal cross-
validation bandwidth, the computational burden increases very quickly as well. Hence, we
use this relatively small number of samples in the simulation.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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We compared our method with several other methods including predictors based on fitting
(a) a linear model (aX +b) with transformation and smearing; (b) a linear model through the
origin (aX ) without transformation; (c) a linear model without transformation; and (d) the
expansion estimator of the total T̂ =N/n

∑
i∈s Yi . To illustrate the importance of smearing

when we transform, we also implemented ‘no smearing’ versions of the proposed estimators
(p1), (p2) and method (a). The expansion estimator (d) is both a model-based estimator (for
a simple homogeneous model) and a design-based estimator (for simple random sampling
without replacement). We included two further design-based generalized regression (GREG)
estimators of the total to complete the comparison between model- and design-based
methods. We considered (g1) the GREG with constant variance and (g2) the GREG with
variance proportional to Xi which is just the familiar ratio estimator. These estimators differ
from their model-based counterparts (2) in how they treat the in-sample observations.

The simulation results are presented in Table 1 and Fig. 1. Several comments are worth
making. (i) In all the situations, in terms of the sample MSE, (p2) has better performance
than (p1). Hence, comparing the kernel and local linear estimators, the local linear estimator
is usually preferred. Intuitively, this may be explained by the fact that the Nadaraya–Watson
kernel estimator is a local constant estimator, which is generally outperformed by the local
linear estimator in regions with sparse observations and at the boundary (see Fan & Gijbels,
1996, Härdle et al., 2000, chapter 4). (ii) In most cases, the sample MSEs match the average
of the estimated MSE rather well. This demonstrates that the inference derived in section 3
is valid and the asymptotic properties do not require huge sample sizes or bootstrap sizes.
Here, sample MSE is the MSE of the estimators from the 250 simulation replicates compared
with the true value, which is known in simulations, and average of the estimated MSE
is the average of the 250 estimates of the MSE, each one calculated within a simulation
replicated using only the sample information. Note that for the proposed estimators (p1) and
(p2), the MSEs are dominated by the estimation variance. As we are estimating the total,
the variance is N2 times bigger than that of the mean. With N =1600 in the simulations, a
variance of the order 106 is quite usual and does not indicate a problem. (iii) There are occa-
sional situations, for example, for the model log(y)=2.5x/{1 + (x − 1)2}, in which the aver-
age of the estimated MSE does not match the sample MSE very closely. We conjecture that
this may be caused by difficulties in bandwidth selection. In the bootstrap, to save compu-
tation time, we used the values of h1 and h2 chosen for the sample rather than re-estimating
the bandwidths for each bootstrap sample. This may contribute to the observed performance
because in the other experiments we conducted (not reported here) we found that if we
use fixed bandwidths for h1 and h2, the difference between MSE and ̂MSE is rather small.
Intuitively, choosing a bandwidth specific to each bootstrap sample contributes extra vari-
ability and hence will increase the total ̂MSE, a phenomenon verified in a small experiment
that we conducted. However, the estimated MSE is not always an underestimate so increasing
the variability in the bootstrap is not always helpful. (iv) To examine the numerical useful-
ness of the asymptotic results derived in the theorem, we also calculated the estimated MSE
for the estimator (p1) using the leading terms. As we expected, the results are too crude to
be useful. In fact, for m(x)=2.5x/{1 + (x −1)2}, the estimated MSE is about 10 per cent of
the sample MSE, whereas it falls to about 5 per cent for the other two mean functions. This
confirms our intuition that the leading order is only slightly larger than the smaller terms
that are ignored. It also suggests that the main contribution of the theorem is the evaluation
of the rate of convergence.

Although our method is proposed in the model-based framework, out of curiosity, we also
performed a simulation in the design-based framework. We still performed 250 simulations
with the same sample size and non-sample size but the data generation procedure is different.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 37 Transformation and smoothing 505

Table 1. Simulation results. Replications = 250, n=400, N =1600

Bias Vars MSE ̂MSE Bias Vars MSE ̂MSE
m(x)=50x/{1 + (x +4)2}, g−1(y)= log y m(x)=50x/{1 + (x +4)2}, g−1(y)=y

(p1) 2.79e2 4.17e6 4.24e6 5.09e6 −5.12 3.51e3 3.53e3 3.69e3
(p2) 3.88e2 3.84e6 3.99e6 4.01e6 −3.85 3.37e3 3.39e3 3.55e3
(a) 2.33e3 5.39e6 1.08e7 5.78e6 −1.92e1 3.38e3 3.74e3 4.03e3
(b) −6.90e2 5.04e6 5.51e6 3.04e6 −3.03e2 2.77e3 9.43e4 3.85e3
(c) −6.52e1 4.14e6 4.15e6 3.74e6 −1.92e1 3.38e3 3.74e3 4.05e3
(d) −1.55e3 3.51e6 5.92e6 4.20e6 −7.05e1 3.36e3 8.34e3 6.01e3
(g1) 7.35e3 1.07e7 6.47e7 4.17e6 5.29e2 4.85e3 2.85e5 5.58e3
(g2) 1.67e2 4.90e6 4.93e6 4.55e6 2.32e1 3.59e3 4.12e3 6.41e3
(p1n) −2.57e3 8.51e6 1.51e7 1.12e7 −5.87 5.25e3 5.28e3 5.31e3
(p2n) −1.05e4 9.77e5 1.12e8 1.06e8 −4.39e1 4.07e3 6.00e3 5.03e3
(an) −1.02e4 1.06e6 1.05e8 1.48e8 −1.92e1 3.38e3 3.74e3 4.03e3

m(x)=2.5x/{1 + (x −1)2}, g−1(y)= log y m(x)=2.5x/{1 + (x −1)2}, g−1(y)=y

(p1) −3.95e2 1.84e6 2.00e6 1.59e6 −5.45 3.51e3 3.54e3 3.74e3
(p2) −7.36e2 1.24e6 1.78e6 1.56e6 −6.27 3.38e3 3.42e3 3.55e3
(a) 2.70e2 1.83e6 1.90e6 2.15e6 −4.38e1 3.38e3 5.29e3 5.91e3
(b) −4.68e3 7.52e5 2.26e7 1.81e6 −5.36e2 2.77e3 2.90e5 6.58e3
(c) 2.57e2 1.84e6 1.91e6 2.18e6 −4.38e1 3.38e3 5.29e3 5.93e3
(d) 3.25e2 1.88e6 1.99e6 2.19e6 −4.16e1 3.36e3 5.09e3 5.92e3
(g1) −1.06e3 1.15e6 2.28e6 2.43e6 −5.42 4.85e3 4.88e3 9.54e3
(g2) 5.36e2 1.52e6 1.81e6 2.05e6 2.98e1 3.59e3 4.47e3 6.33e3
(p1n) −1.74e3 4.32e6 7.34e6 4.67e6 −6.25 5.23e3 5.27e3 5.31e3
(p2n) −6.47e3 3.53e5 4.22e7 3.78e7 −3.90e1 4.27e3 5.79e3 4.79e3
(an) −8.61e3 1.25e5 7.43e7 7.63e7 −4.38e1 3.38e3 5.29e3 5.91e3

m(x)=0.8(x −2)2, g−1( y)= log y m(x)=0.8(x −2)2, g−1( y)=y

(p1) −2.00e1 7.75e5 7.76e5 8.21e5 −3.20 4.13e3 4.14e3 3.97e3
(p2) −2.23e2 4.88e5 5.38e5 5.42e5 −3.47 3.66e3 3.67e3 3.60e3
(a) 3.91e2 8.11e5 9.64e5 1.16e6 2.95e1 3.71e3 4.59e3 7.17e3
(b) −1.74e3 8.77e5 3.92e6 9.91e5 −2.48e2 2.78e3 6.43e4 5.29e3
(c) 4.02e2 8.19e5 9.80e5 1.19e6 2.95e1 3.71e3 4.59e3 7.15e3
(d) 4.18e2 8.33e5 1.01e6 1.19e6 4.09e1 3.74e3 5.41e3 7.18e3
(g1) 4.20e2 1.50e6 1.68e6 1.26e6 9.96e1 5.06e3 1.50e4 8.03e3
(g2) 6.83e2 8.41e5 1.31e6 1.12e6 −1.43e1 3.42e3 3.63e3 6.58e3
(p1n) −7.40e2 1.85e6 2.40e6 1.40e6 −6.47 5.49e3 5.53e3 5.90e3
(p2n) −3.22e3 1.90e5 1.06e7 1.01e7 2.80e1 3.83e3 4.61e3 4.71e3
(an) −5.33e3 2.63e5 2.85e7 3.30e7 2.95e1 3.71e3 4.59e3 7.17e3

Bias, sample bias; Vars, sample variance; MSE, sample mean-squared error; ̂MSE, average of the esti-
mated mean-squared error; (p1), kernel estimator with transformation and smearing; (p2), local linear
estimator with transformation and smearing; (a), linear estimator with transformation; (b), linear
regression through the origin without transformation; (c), linear regression without transformation;
(d), expansion estimator; (g1), GREG estimator with constant variance; (g2), GREG/ratio estimator;
(p1n), p1 without smearing; (p2n), p2 without smearing; (an), a without smearing.

Specifically, we generated a fixed population of 1600 (Xi , Yi) pairs and then drew 250
independent simple random samples without replacement of 400 pairs from this population.
All other aspects of the simulation design were identical to the model-based case. The
simulation results are given in Table 2. We can see that although the proposed method is
targeted at the model-based situation, its performance in the design-based situation is very
good.

We also applied the proposed methods to samples drawn from the Australian Agricultural
and Grazing Industries Survey (AAGIS) data from Kokic et al. (2000). This data set contains
information on 1652 Australian broadacre farms. The variables we used are the total farm
area in hectares (X ) and the total cash costs of the farm during the survey year in Australian
dollars (Y ). Of the 1652 farms surveyed, 8 farms exhibited unusual data patterns and hence
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Fig. 1. Boxplots of the differences between the total estimates and the true totals for the cases presented
in Table 1. The left column has g−1(y)= log(y) and the right column has g−1(y)=y. The top row
has m(x)=50x/{1 + (x +4)2}, the middle row has m(x)=2.5x/{1 + (x − 1)2} and the bottom has
m(x)=0.8(x −2)2. The estimators are given in the same order as in Table 1.

were excluded from our analysis. The data are plotted in Fig. 2 on the raw scale and the log
scale, respectively. Clearly, a log-transformation reveals the data pattern more clearly; so the
log-transformation was used in our proposed method for the analysis.

We treated the 1644 farms as the population of interest and conducted a simulation study
in which we selected 250 independent samples each of size 411 from the population. To
simplify the computations, we fixed the bandwidth at h=1 for estimator (p1) and h=3 for
estimator (p2). The choice of h is based on a preliminary cross-validation result, where we
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Table 2. Simulation results on design-based data. Replications = 250, n=400, N =1600

Bias Vars MSE ̂MSE Bias Vars MSE ̂MSE
m(x)=50x/{1 + (x +4)2}, g−1(y)= log y m(x)=50x/{1 + (x +4)2}, g−1(y)=y

(p1) −2.54e2 9.20e6 9.27e6 1.01e7 2.74 5.83e3 5.84e3 5.95e3
(p2) −6.48e2 7.78e6 8.20e6 7.11e6 9.72e−1 5.82e3 5.82e3 5.75e3
(a) 1.20e3 8.23e6 9.67e6 8.40e6 1.87 6.24e3 6.25e3 6.26e3
(b) −1.30e3 1.53e7 1.70e7 8.42e6 −3.29e2 5.89e3 1.14e5 6.23e3
(c) −4.03e2 1.02e7 1.04e7 1.01e7 1.87 6.24e3 6.25e3 6.31e3
(d) −4.46e2 1.07e7 1.09e7 1.07e7 1.74 8.17e3 8.18e3 8.77e3
(g1) 8.83e3 2.72e7 1.05e8 9.65e6 5.27e2 8.02e3 2.86e5 5.70e3
(g2) 2.37e2 1.09e7 1.10e7 9.19e6 2.14 8.64e3 8.65e3 6.09e3
(p1n) −1.22e4 5.45e6 1.55e8 1.32e8 −1.13e1 9.28e3 9.41e3 9.01e3
(p2n) −1.23e4 2.31e6 1.54e8 1.34e8 −3.95e1 6.08e3 7.64e3 7.28e3
(an) −1.19e4 2.47e6 1.43e8 1.73e8 1.87 6.24e3 6.25e3 6.26e3

m(x)=2.5x/{1 + (x −1)2}, g−1(y)= log y m(x)=2.5x/{1 + (x −1)2}, g−1(y)=y

(p1) −1.30e2 2.71e6 2.72e6 3.08e6 2.57 5.93e3 5.94e3 6.01e3
(p2) −6.47e2 2.18e6 2.60e6 2.70e6 5.05e−1 5.94e3 5.94e3 5.74e3
(a) −8.31e1 2.85e6 2.86e6 3.00e6 1.82 8.38e3 8.39e3 8.65e3
(b) −5.38e3 1.85e6 3.08e7 2.84e6 −5.74e2 9.47e3 3.39e5 1.01e4
(c) 7.25e1 3.00e6 3.00e6 3.11e6 1.82 8.38e3 8.39e3 8.71e3
(d) 5.16e1 2.99e6 3.00e6 3.13e6 1.76e−1 8.43e3 8.43e3 8.74e3
(g1) −1.68e3 2.71e6 5.52e6 2.65e6 −2.81e1 1.30e4 1.38e4 9.68e3
(g2) −9.93e1 3.56e6 3.57e6 2.16e6 1.89 1.50e4 1.51e4 6.07e3
(p1n) −7.44e3 1.38e6 5.67e7 5.90e7 −1.01 8.09e3 8.09e3 8.18e3
(p2n) −7.78e3 9.11e5 6.15e7 5.79e7 −3.62e1 6.13e3 7.44e3 7.24e3
(an) −9.43e3 6.56e5 8.96e7 8.80e7 1.82 8.38e3 8.39e3 8.65e3

m(x)=0.8(x −2)2, g−1(y)= log y m(x)=0.8(x −2)2, g−1(y)=y

(p1) −1.80e2 1.59e6 1.62e6 1.85e6 2.47 6.18e3 6.18e3 6.14e3
(p2) −1.17e1 1.17e6 1.17e6 1.39e6 1.54 5.90e3 5.90e3 5.86e3
(a) 1.46e2 2.15e6 2.17e6 2.23e6 −1.88 9.91e3 9.92e3 1.03e4
(b) −2.69e3 9.62e5 8.17e6 1.78e6 −2.88e2 6.31e3 8.90e4 9.36e3
(c) 6.36e1 2.04e6 2.05e6 2.05e6 −1.88 9.91e3 9.92e3 1.04e4
(d) 9.88e1 2.02e6 2.03e6 2.06e6 1.40 9.87e3 9.87e3 1.04e4
(g1) −3.26 1.28e6 1.39e6 1.56e6 5.01e1 1.01e4 1.26e4 8.77e3
(g2) −4.45e1 1.91e6 1.91e6 1.34e6 2.03 1.08e4 1.08e4 7.20e3
(p1n) −4.20e3 8.67e5 1.85e7 1.80e7 6.94 8.13e3 8.18e3 8.27e3
(p2n) −3.73e3 5.20e5 1.44e7 1.58e7 7.10e1 6.25e3 1.13e4 1.04e4
(an) −6.44e3 2.71e5 4.17e7 4.39e7 −1.88 9.91e3 9.92e3 1.03e4

Bias, sample bias; Vars, sample variance; MSE, sample mean-squared error; ̂MSE, average of the esti-
mated mean-squared error; (p1), kernel estimator with transformation and smearing; (p2), local lin-
ear estimator with transformation and smearing; (a), linear estimator with transformation; (b), linear
regression through the origin without transformation; (c), linear regression without transformation; (d),
expansion estimator; (g1), GREG estimator with constant variance; (g2), GREG/ratio estimator; (p1n),
p1 without smearing; (p2n), p2 without smearing; (an), a without smearing.

averaged the selected bandwidths and rounded to the nearest integer. The results are
presented in Table 3. Clearly, both proposed methods (p1), (p2) outperformed the other
methods in terms of the MSEs, although the gain in comparison with method (a) is not
substantial. A closer look at the right panel of Fig. 2 indicates that a non-parametric curve
might not provide much better fit to the data than a linear function on the log scale, and this
explains the similar performance of the three estimators. The estimated MSE is quite close
to the sample MSE for both (p1) and (p2).

We performed similar studies on AAGIS data using the (cross-validation) bandwidth. In
these studies, the performance gain of (p1) and (p2) and (a) is very similar, whereas all three
continue to outperform the remaining estimators. The estimation of the MSE turns out to
be less accurate for both (p1) and (p2).
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Fig. 2. Scatter plot of 1644 observations in the Australian Agricultural and Grazing Industries Survey
data set, on the original scale (left panel) and the log scale (right panel), respectively.

Table 3. Results for Australian Agricultural and Grazing Industries Survey data with eight
outliers excluded. Results are based on 250 samples with sample size n=411 and non-sample
size N −n=1233

Bias Vars MSE ̂MSE Bias Vars MSE ̂MSE

(p1) −5.49e3 4.78e8 5.08e8 4.66e8 −4.47e3 5.17e8 5.37e8 4.79e8
(p2) −4.52e3 4.47e8 4.67e8 4.59e8 −5.18e3 5.22e8 5.49e8 7.85e8
(a) 6.32e3 4.41e8 4.81e8 4.19e8 – – – –
(b) 3.99e4 1.05e9 2.64e9 7.65e8 – – – –
(c) 1.76e3 5.56e8 5.59e8 7.25e8 – – – –
(d) 3.86e3 6.14e8 6.29e8 9.03e8 – – – –
(g1) 1.48e5 2.37e9 2.43e10 7.02e8 – – – –
(g2) 1.70e3 7.49e8 7.52e8 6.25e8 – – – –
(p1n) −6.62e4 3.32e8 4.71e9 5.83e9 −6.82e4 4.46e8 5.10e9 3.63e8
(p2n) −7.54e4 2.70e8 5.95e9 3.89e9 −7.63e4 3.83e8 6.20e9 4.36e9
(an) −6.46e4 2.66e8 4.44e9 4.82e9 – – – –

Bias, sample bias; Vars, sample variance; MSE, sample mean-squared error; ̂MSE, aver-
age of the estimated mean-squared error; (p1), kernel estimator; (p2), local linear estimator;
(a), linear estimator with transformation; (b), linear regression through the origin without
transformation; (c), linear regression without transformation; (d), expansion estimator; (g1),
GREG estimator with constant variance; (g2), GREG/ratio estimator; (p1n), p1 without
smearing; (p2n), p2 without smearing; (an), a without smearing.

5. Discussion

In this article, we propose to estimate finite population totals using a transformation and
smoothing approach with smearing to remove the bias caused by back transformation. The
purpose of the transformation is to achieve additive homoscedastic error; in exchange, we
may lose having an explicit parametric model for the mean. We have proved that even under
a weak non-parametric model assumption, the prediction MSE can achieve the same order
as under a parametric model. Moreover, the same result holds (so there is no further loss)
under transformation with smearing. Hence, a non-parametric model does not cause any
performance loss in terms of the order of the asymptotic error. The computation of the
prediction MSE is nonetheless more challenging (as is always the case for non-parametric
models), and we propose to use a bootstrap to obtain the estimated prediction MSE.

The result that non-parametric smoothing methods can achieve the same rate of
convergence as parametric methods for predicting a finite population total is interesting and
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important. It is a consequence of the fact that we are predicting a sum or aggregate, which
is like an integrated or expected regression function so parametric rates of convergence are
achievable. In contrast, the familiar non-parametric rates are obtained when predicting a
single observation. We can intuitively relate predicting aggregates versus predicting single
observations to distribution function estimation versus density estimation. The distribution
function is obtained by integration which, like summation, is a form of smoothing through
aggregation. Non-parametric estimation of density functions is difficult and the best possible
rates of convergence are the famous non-parametric ones. Non-parametric estimation of
distribution functions is relatively easy and can be done at parametric rates. The reason is that
the integration or aggregation has made the problem smoother and hence easier. In the survey
context, predicting an individual observation is a difficult problem like the density estimation
problem whereas predicting the total (an aggregate) is much easier, like the distribution func-
tion estimation problem. The possibility of achieving parametric rates of convergence from
non-parametric predictors has been considered in the design-based case by Breidt & Opsomer
(2000) but does not seem to have been discussed in the model-based sample survey literature.
Hence, we give the result both with and without transformation for completeness.

Under transformation, smearing removes bias in the predictor but adds to its variability –
an effect similar to that of the bias-adjustment approach discussed by Karlberg (2000a,b).
However, as pointed out earlier, aggregating even small bias contributions can have a
deleterious effect so it is important to remove the bias. Two sources of bias in our problem,
namely smoothing and transformation, are reduced by aggregation and smearing, respec-
tively. A third potential source of bias, model mis-specification, is reduced by our use of non-
parametric smoothing. Nonetheless, although our model assumptions are much weaker than
in parametric models, there are still assumptions and hence the potential for mis-
specification effects. We assume throughout that the model is correct and do not consider
bias caused by model mis-specification. Our results are practically important because they
give a better understanding of the properties of non-parametric predictors in finite population
problems and demonstrate a flexible method of prediction. In particular, our results show that
non-parametric prediction is competitive with parametric prediction of a finite population
total in terms of efficiency, convenience and is superior in terms of consistency and flexibility.

As the non-parametric approach should work for any smooth regression function, why not
simply smooth the raw data and avoid transformation altogether? Hastie & Tibshirani (1990,
section 7.1) provided a partial answer to this question. Although non-parametric smoothing
weakens the assumptions on the model, it does not eliminate all of them and transformation
may be employed to ensure that these assumptions are satisfied. When transformation induces
homoscedastic errors, we can simplify the analysis because we do not need to also model a
variance function. Transformation is also useful in practice for restricting predictions to an
allowable range. Transformation can sometimes contribute to improving prediction perfor-
mance, as we observe in our simulation study. Finally, when we have multiple covariates, an
additive model is often used. In this case, transformation is often needed to achieve additivity.
The analysis in the additive model inevitably builds on the simpler univariate case that we
consider here. Our study of how the smoothing bias and transformation bias affect each other
in the present simpler context, provides baseline results and a useful approach that can be
extended in the future. In summary, the application of a nonlinear transformation g−1 to
Y (often the logarithmic transformation) can be a useful way of achieving additive, homo-
scedastic errors. The purpose of making a transformation in a non-parametric model is
different from that in parametric models (we change the error structure rather than the
regression function) but the consequences in terms of prediction bias after back-transforma-
tion are the same and we need to extend the smearing technique to remove the bias.
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It is worth pointing out that in practice, finding a suitable transformation g may not be
easy. We can try to estimate the transformation within a parametric family of transformations g,
such as the Box–Cox transformation, or a family of smooth transformations. However,
estimating transformations and the non-parametric regression together gives rise to identi-
fiability problems, so additional information, possibly in the form of instrumental variables
will be needed; see, for example, Linton et al. (1997). For simplicity and focus, in this article,
we assumed that a suitable transformation g is known.

In practice, the assumption that a transformation g can be found to achieve additive, homo-
scedastic errors should be checked using the sample observations. When such a g does not
exist or is too hard to find, the method proposed here is not applicable. In such situations,
we would recommend not performing any transformation. Instead, standard parametric or
non-parametric regression should be performed on the sample data and the corresponding
non-sample values should be predicted from these estimates. Straightforward summation of
the non-samples should then be performed to estimate the total. Of course, inferences should
then be modified to incorporate the actual error structure.

Finally, we have developed the method as a model-based approach but a design-based
version can be constructed by incorporating sample inclusion probabilities appropriately. In
our numerical experiment, we found that under simple random sampling without replacement
(for which the sample inclusion probabilities are constant), the (model-based) procedure
performed well as a design-based procedure. We caution that the theory and its derivation
will be very different in the design-based framework, and a systematic study is needed before
definite conclusions can be drawn.
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Appendix: Proof of the theorem

We outline the proof of the theorem for case (iv) and then (iii). The full proof is available in
the online Supporting Information which may be found in the online version of this article.

First note that the {εi} are identically distributed so that

�(Xj)=n−1
∑
i∈s

E[g{m(Xj)+�εi} |Xj ]=E[g{m(Xj)+�εj} |Xj ]=E(Yj |Xj).

Non-parametric case with transformation and smearing

Write

P =
∑
j �∈s

{Ŷ j −E(Yj |Xj)}=
∑
j �∈s

{Ŷ j −E(Ŷ j |X )}+
∑
j �∈s

{E(Ŷ j |X )−E(Yj |Xj)}.

We develop an expansion for
∑

j �∈s Ŷ j which will also lead to an expansion for
∑

j �∈s E(Ŷ j |X ).

First, we make a (quadratic) Taylor series approximation to g in Ŷ j in powers of
m̂(Xj)− m̂(Xi)−m(Xj)+m(Xi) to obtain∑

j �∈s

Ŷ j =S1 +S2 +S3 +S4,

where S4 is the remainder term. Then, using the standard first-order bias plus stochastic term
approximation to the estimator m̂, we can write

m̂(Xj)− m̂(Xi)−m(Xj)+m(Xi)=h2C{m′′(Xj)−m′′(Xi)}
+�
∑
k∈s

{wk(Xj)−wk(Xi)}εk +o(h2)+O(n−1). (7)
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We substitute (7) into the remainder S4, multiply out the quadratic terms and show that
S4 =op(n1/2). Similarly, we also substitute (7) into S2 and S3 to obtain

S2 =S21 +S22 and S3 =S31 +S32 +S33.

Direct arguments lead to∑
j �∈s

Ŷ j =S1 +S22 +S33 +op(n1/2)

and hence∑
j �∈s

{E(Ŷ j |X )−E(Yj |Xj)}=E(S22 |X )+E(S33 |X )+o(n1/2),

where

S1 =n−1
∑
j �∈s

∑
i∈s

a(Xj , εi),

S22 =n−1�
∑
j �∈s

∑
i∈s

b(Xj , εi)
∑
k∈s

{wk(Xj)−wk(Xi)}εk ,

S33 = 1
2

n−1�2
∑
j �∈s

∑
i∈s

c(Xj , εi)

[∑
k∈s

{wk(Xj)−wk(Xi)}εk

]2

.

In fact, the first term in the bias, E(S22 |X )=O(nh2)=o(n1/2), so we can include the bias in
the remainder and write

P =
∑
j �∈s

{Ŷ j −E(Yj |Xj)}=S1 −ES1 +S22 −ES22 +S33 −ES33 +op(n1/2).

Now, rather straightforwardly, S1 −ES1 =Op(n1/2) but S22 −ES22 and S33 −ES33 involve three
and four sums (so their variances involve six and eight sums), respectively, and are much
more difficult to handle. We show that S33 −ES33 =op(n1/2) but S22 −ES22 can be written as
a sum of two terms which are of order Op(n1/2) and other terms which are actually op(n1/2).
The leading terms given in (iv) in the theorem consist of S1 −ES1 and the two Op(n1/2) terms
from S22 −ES22 which are

n−1�
∑
j �∈s

[∑
i∈s

{b(Xj , εi)−�(Xj)}
]∑

k∈s

{wk(Xj)εk}

and

−n−1�
∑
j �∈s

∑
i∈s

wi(Xi)[b(Xj , εi)εi −E{b(Xj , εi)εi |Xj}],

respectively.

Parametric case with transformation and smearing

The proof in the parametric case follows the same essential steps as in the non-parametric
case but is simpler because there are no bias terms to control. Provided the transformation
produces both the specified parametric form for the mean and additive, homoscedastic errors,
direct Taylor expansion of g and m leads to∑

j �∈s

{Ŷ j −E(Yj |Xj)}=S1 +S21 +S22 +R,
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where

S1 =n−1
∑
j �∈s

∑
i∈s

{a(Xj , εi)−�(Xj)},

S21 =n−1
∑
j �∈s

∑
i∈s

{b(Xj , εi)−�(Xj)}{m′(Xj , �)−m′(Xi , �)}(�̂−�),

S22 =
∑
j �∈s

�(Xj){m′(Xj , �)−n−1
∑
i∈s

m′(Xi , �)}(�̂−�)

and, with |�̃−�|≤ |�̂−�|,

R =
∣∣∣n−1

∑
j �∈s

∑
i∈s

[g′{m(Xj , �)+�εi +m(Xj , �̃)−m(Xj , �)−m(Xi , �̃)+m(Xi , �)}

×{m′(Xj , �̃)−m′(Xi , �̃)}−b(Xj , εi){m′(Xj , �)−m′(Xi , �)}](�̂−�)
∣∣∣

≤Op(n1/2) sup |g′{m(Xj , �)+�εi +m(Xj , �̃)−m(Xj , �)−m(Xi , �̃)+m(Xi , �)}
×{m′(Xj , �̃)−m′(Xi , �̃)}−b(Xj , εi){m′(Xj , �)−m′(Xi , �)}|

=op(n1/2).

Also,

var

(
n−1
∑
j �∈s

∑
i∈s

{b(Xj , εi)−�(Xj)}m′(Xi , �) |X

)

=n−2
∑
i∈s

m′(Xi , �)2 var

(∑
j �∈s

{b(Xj , εi)−�(Xj)} |X

)

=n−2
∑
i∈s

m′(Xi , �)2
∑
j �∈s

∑
j′ �∈s

[E{b(Xj , εi)b(Xj′ , εi) |X}−�(Xj)�(Xj′ )]

=O(n).

So S21 =Op(1) and the terms given in (iii) in the theorem consist of S1 and S22, which are
both Op(n1/2).
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