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Summary. We consider non-parametric estimation of disease onset distribution functions in
multiple populations by using censored data with unknown population identifiers. The problem
is motivated from studies aiming at estimating the age-specific disease risk distribution in dele-
terious mutation carriers for genetic counselling and design of therapeutic intervention trials
to modify disease progression (i.e. to slow down the development of symptoms and to delay
the onset of disease). In some of these studies, the distribution of disease risk in participants
assumes a mixture form. Although the population identifiers are missing, study design and sci-
entific knowledge allow calculation of the probability of a subject belonging to each population.
We propose a general family of weighted least squares estimators and show that existing con-
sistent non-parametric methods belong to this family. We identify a computationally effortless
estimator in the family, study its asymptotic properties and show its significant gain in efficiency
compared with the existing estimators in the literature. The application to a large genetic epi-
demiological study of Huntington’s disease reveals information on the age-at-onset distribution
of Huntington’s disease which sheds light on some clinical hypotheses.

Keywords: Huntington’s disease; Mixture observations; Penetrance function; Risk prediction;
Unknown population label

1. Introduction

In some scientific studies, it is of interest to estimate the distribution function of an outcome by
using data arising from a mixture of multiple populations with unknown population identifiers.
For example, in Huntington’s disease (HD) research, one of the major goals is to estimate the
distribution of the age at onset of HD (subject to censoring) in HD gene mutation carriers.
Accurate estimation of the distribution function in carriers is important for genetic counselling,
which is a process of informing patients or relatives at risk of an inherited disorder on the
consequences and nature of the disorder, the probability of developing it and advising on care
management and family planning. It is also useful in designing clinical trials of therapeutics
modifying disease progression, and it provides estimation of positive and negative predictive
values of a genetic test (Heagerty and Zheng, 2005). In some studies such as the ‘Cooperative
Huntington’s observational research trial’ (COHORT) (Dorsey et al., 2012), initial participants
(probands) underwent a clinical evaluation and were genotyped for HD mutation. Through a
systematic family history interview, they also reported ages at onset of disease of their rela-
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tives. However, most of the relatives are not genotyped and their mutation status is unknown.
Thus, relatives are a sample of a mixture of carrier and non-carrier populations with unknown
population identifiers, and the probability that a subject belongs to a population is calculated on
the basis of Mendelian inheritance. Such a design where probands are genotyped and provide
disease onset times (subject to censoring) of their relatives through a family history interview
is commonly applied to study the distribution of a disease in mutation carriers (Marder et al.,
2003; Wang et al., 2007, 2008; Dorsey et al., 2012). Note that, here and throughout the text,
we refer to the collection of all subjects with a particular genetic variant (such as carrying the
mutation or carrying the wild type) as a population.

Another example of studies collecting data with similar structure is quantitative trait locus
studies. Quantitative trait loci (QTL) are hypothesized specific chromosomal regions containing
genes that make significant contributions to the expression of a complex trait. QTL are generally
identified by comparing the linkage (degree of covariation) of polymorphic molecular markers
and phenotypic trait measurements. These polymorphic molecular markers are called flanking
markers. In a QTL study, subjects are genotyped at known locations along their genome, and the
goals are to determine the location of the gene influencing manifestation of a quantitative trait.
The genotypes at the typed markers are known for a subject, but they are missing for locations in
between markers. Under a standard interval mapping framework (Lander and Botstein, 1989;
Wu et al., 2007), a subject’s phenotype trait distribution is a mixture of QTL genotype-specific
distributions, where the mixing proportions are obtained from the design of experiment, location
and genotypes at the flanking markers and genetic distance between the markers and the QTL
(see, for example, Wu et al. (2007)). In many cases, the quantitative outcome of interest, such
as the time to flowering of a plant (Ferreira et al., 1995; Lin and Wu, 2006), is subject to right
censoring.

The research goal of both types of study can be formulated as estimating distribution func-
tions for censored outcomes arising from multiple populations although for some subjects
it is unknown from which population they are drawn. The probability that an observation
belongs to each population can be calculated through taking into account the scientific knowl-
edge and the experiment design. Modelling the distribution in each population parametri-
cally, e.g. through a Gaussian mixture model (McLachlan and Peel, 2000), and proceeding
with the usual maximum likelihood estimation is one choice. To be more flexible and to leave
the distribution in each population completely model free, Wacholder et al. (1998) investi-
gated a non-parametric model and proposed a non-parametric maximum likelihood estima-
tor (NPMLE). Two other non-parametric estimators were developed. One aimed at overcom-
ing some limitations of the original NPMLE such as ensuring monotonicity (Chatterjee and
Wacholder, 2001), and the other aimed at improving estimation efficiency (Fine et al., 2004).
Since the proposal in Chatterjee and Wacholder (2001) is also an NPMLE, to distinguish it
from the original estimator in Wacholder et al. (1998), the original proposal is named NPMLEI
and the modified version NPMLE2 here. The estimator in Fine ez al (2004) exploits the
independence assumption between the censoring times and event times, and hence is named
IND.

When using these methods to analyse the COHORT data, we observe that the existing non-
parametric methods are inadequate. For example, when using IND and NPMLEI to estimate
the cumulative risk of HD of the HD mutation carriers, a cumulative risk greater than 1 was
obtained at ages 65 years and older by using IND, whereas NPMLEI1 provided an estimation
of a risk less than 0.4 at all ages (Figs 1(b) and 1(c)). These results do not agree with the clinical
literature on HD (e.g. Langbehn et al. (2004)). This observation, together with the established
result that both IND and NPMLE] are consistent estimators (Fine ez al. 2004; Wacholder et al.,
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Fig. 1. COHORT study: cumulative risk of onset of HD based on (a) weighted least squares, (b) IND and

(c) NPMLE1 ( , risk of the carrier population; ------ , risk of the non-carrier population)

1998), motivated this work to examine variability and efficiency of NPMLEI and IND. In fact,
our analysis in Section 3 reveals the inefficiency of these methods, in the sense that the estimation
variability can be further reduced and, using an improved estimator, results that are consistent
with clinical knowledge can be obtained (see Fig. 1(a)). In addition, IND requires each subject
to have a positive probability of being observed to have an event at all time points of interest,
which is not satisfied in the COHORT study and many other chronic disease studies. In the
COHORT study, not every family member will eventually develop HD before death; therefore
the probability of being censored is 1 for these subjects. Finally, NPMLE?2 is not a consistent
estimator (Ma and Wang, 2012; Wang et al., 2012).
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To provide valid estimation and to improve stability and efficiency, we propose a general
family of weighted least squares (WLS) type estimators. We derive the asymptotically optimal
member of this family and identify a computationally efficient estimator that has competitive
performance compared with the optimal member. We demonstrate the relationship of the WLS
family with the existing methods and with a class of imputation-based methods that have not
been proposed for this type of problems in the literature.

The rest of this paper is organized as follows. In Section 2, we describe the motivating exam-
ple (the COHORT study) in detail and examine some initial analysis results comparing IND,
NPMLEI and WLS. In Section 3, we propose the WLS family, identify the recommended estima-
tor within this family and derive its asymptotic properties for inference. We study its relationship
to the existing estimators and provide insights on the limitations of the existing estimators. In
Section 4, we carry out simulation studies to demonstrate the finite sample properties to illus-
trate our theoretical findings. In Section 5, we provide further analyses with COHORT data
to estimate the age-at-onset distribution for HD gene mutation carriers from family members
who may not be genotyped. We examine the connection between the estimated risk function
and positive predictive value of the HD mutation test. Lastly, we conclude this work with some
discussions in Section 6.

2. Description and initial analysis of the data

Before we introduce the methods proposed, we first describe the motivating study. HD is an
autosomal dominant neurodegenerative disease that is caused by an unstable expansion of
trinucleotide repeat ‘C-A-G’ (CAG repeat) at the ITIS gene on chromosome 4 which codes for a
protein named huntingtin (Huntingtons Disease Collaborative Research Group, 1993). Subjects
with a CAG repeat length of 36 or more are considered to be HD mutation positive (i.e. CAG
expanded) and the majority of them will develop HD in the life course if not censored by death,
whereas subjects with a CAG repeat length less than 36 do not develop HD (Rubinsztein et al.,
1996; Nance et al., 1998). The COHORT study is an observational study that was designed
to collect clinical and genetic data from a sample of symptomatic and presymptomatic HD
mutation carriers and their family members. Details of the study design are discussed in Dorsey
et al. (2012).

In the COHORT study, the initial participants (probands) were followed for 5 years and
provided information on whether their family members had experienced HD in past years or
developed HD during the follow-up years. The age at onset was recorded if a relative had
experienced the disease and age at death recorded if a relative had died. 4735 relatives from 786
families were included in the analysis. The total number of relatives who had experienced HD
is 1184. Most of the relatives were not genotyped. However, since each relative is genetically
related to the probands, the relationship information and the proband’s mutation status are
used to obtain m = 6 distinct values of the probabilities of carrying the HD mutation under the
Mendelian transmission assumption. These six probability values for a relative to be a carrier are
0,0.25,0.5,0.75,0.97 and 1, with 1329 (relatives of non-carrier probands), 141 (grandparents of
carrier probands with one CAG expanded allele), 2010 (parents or siblings of carrier probands
with one CAG expanded allele), two (siblings of carrier probands with two CAG expanded
alleles), 1183 (relatives of carrier probands with one CAG expanded allele and developed HD)
and 70 (relatives with a confirmed CAG expanded allele) observations in the corresponding
group. These relatives’ current ages are distributed between 10 and 100 years. We are interested
in estimating the distribution of age at onset of HD for HD mutation carriers (CAG lengths 36
or longer) using exclusively the relative data.
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We now first show the results of analysing the COHORT data by the existing consistent
estimators IND and NPMLEI, and compare them with the WLS method that will be pro-
posed in Section 3. From Fig. 1, we see that IND provides highly non-smooth estimates for
the carrier group at several ages (30 and 90 years) and has an estimate that is much larger than
one at older ages. It also provided some positive estimates for the non-carrier group, which
is inconsistent with clinical knowledge, since subjects without HD mutation do not develop
HD (Rubinsztein et al., 1996; Nance et al., 1998). The performance problems for IND are
encountered because, in some of the m subgroups, the estimation is not valid because of the
smaller censoring process support than the event process support, and subsequently the estim-
ates in such groups adversely influence the overall estimates when they are combined to form
IND. NPMLEI provides an estimated cumulative risk of below 40% at age 80 years, which
may be too low compared with the existing clinical literature (e.g. Langbehn et al (2004)).
The unsatisfactory performance of NPMLEI can be related to the small sample sizes in some
groups. Although the Kaplan—Meier estimator is not accurate in these groups, the correspond-
ing result is not downweighted in NPMLEI. Further investigation of these methods shows
that they are consistent estimators, which suggests that estimation variability related to inef-
ficiency may have given rise to unexpected estimates in practice. The theoretical examination
in the next section presents some explanations of the limitation of both methods in terms of
efficiency. Finally, we show that the proposed WLS estimates of the cumulative risk of HD
are 33.9% (95% confidence interval [32.0%, 35.8%]) by age 40 years and 74.5% (95% confi-
dence interval [73.9%, 76.0%)]) by age 80 years for carriers. These results are within the same
range as the weighted averages of estimates provided in Langbehn et al. (2004) for the pop-
ulation with CAG lengths between 36 and 41 and the population with CAG lengths greater
than 41.

3. A family of weighted least squares estimators

We now introduce methods to address the research goal of estimating distribution functions
in studies such as the COHORT study. Suppose that there are p populations (p =2 in the
COHORT study, the carrier and non-carrier populations) and, in the jth population, the time
to event of interest (such as onset of HD in the COHORT study) has differentiable cumulative
distribution functions F;(#), j=1,..., p. The corresponding probability density functions are
AD, ..., f@). Let FO) = (F1(D),..., F,(0)T and £(1) = (f1 (1), ..., f»())T. Assume that the ith
(i=1,...,n) subject is randomly sampled from these p populations, where the probability that
this observation belongs to the kth population is g for k=1,..., p. Thus, we can write the
ith observation as (q;, S;), where q; = (¢;1, - - .,q,-,,)T, and S; is a random event time. Further
assume that the n observations are independent of each other; hence the event times within each
population are independent. Note that E,f:lqik =1, and in most applications, including both
QTL analysis and proband—family studies, the q;s are known quantities computed on the basis
of knowledge in a study design (e.g. QTL experiment design or the relationship of a relative to
the proband).

In all studies of interest here, q; takes only m < oo different vector values which we denote
by uy,...,u,, and we assume that there are r; observations corresponding to each of the ujs
for j=1,...,m, so that Z;": y7j=n. For example, in the COHORT data that were described
in Section 2, m =6 and the u; and r;s were specified. Assume further that the ith observation
is censored at C;, and the censoring times are independent of the survival times. Note that we
also allow the situation that the censoring distribution has smaller support than the support of
the event times. In summary, an observation subject to censoring can be written as (q;, ¥;, 6;),
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where Y; =min(C;, S;) and 6; = I(S; < C;). The observations are assumed to be ordered so that
Y| <Y,...<Y,_1 <Y, Ourinterest lies in estimating the p distribution functions Fy(¥), ..., F,(?)
and making inference.

To illustrate these notations by using the studies that we introduced in Section 1 and 2, note
that S; can be the age at onset of an event (e.g. the time to onset of HD). For the HD study, g is
the probability that the ith relative carries the kth genotype at the HD gene given the proband’s
genotype status, and Fy(¢) is the distribution function of S;s within the subjects with the kth
genotype. An autosomal dominant disease yields p =2, and an additive genetic model yields
p=23. Each of the p components of F(7) thus captures the probability of developing a disease by a
certain age for subjects with a certain mutation status. For p = 3 the first and second components
of F(t) are referred to as the penetrance function for homozygous or heterozygous mutation
respectively in the genetics literature. In the QTL studies, g;; is the probability that a subject
carries the kth genotype at the QTL given genotypes at the flanking markers. The dimension p
depends on the experimental design; for example, p =2 for a back-cross experiment and p =3
for an intercross experiment. To see this, assume that the parental generation has alleles MM
and mm; then the first generation (F1) has genotype Mm. The F1-generation is then crossed with
the parental generation and each back-cross individual has probability 0.5 of having genotype
Mm and probability 0.5 of having genotype mm (i.e. p=2). Intercross individuals result from
crossing Fl-individuals and therefore have genotypes MM, Mm or mm (i.e. p=23). In either
situation, since genotypes may not be observed, the distribution of §; is a mixture of Fi, ..., Fp,
ie q'F.

Taking advantage of the finiteness of m, we propose first to estimate the distribution of
the outcomes in each of the m fixed mixture groups, and then we use a familiar WLS estim-
ate to retrieve the distribution F. Specifically, denote H;(r) _uTF(t) for j=1,...,m, and let
H(t)=(H{(D), ..., H,(H)T. Obviously, H(1) is a valid cumulatwe distribution functlon and can

be estimated by using all observations w1th q;=u;fori=1,...,n. For convenience, the collection
of observations with q; =u; ] is denoted (Yj;, 0j) fori=1,...,r;, and we also assume that they
are ordered so that Yji <Yp <Y1 <Y, for all j= 1 ,m. Denote an estimated distri-
bution function as H 6) and let H(t) =H®),....,H, ()T Denote the matrix U= (uy, ..., uy,).

From H(z) _UTF(t) we easily obtain a WLS famlly of estimators,
F()=UWUT)'UWH(), (1)

where W is an m x m weight matrix.

3.1. The proposed estimator and its inference

Within the WLS family, we propose to use a diagonal matrix, which is denoted R, withry, ..., 7y
as diagonal elements, as the weight matrix and use a classical Kaplan—Meier estimator in the
Jjth group to obtain H;(#) for j=1,...,m. The resulting estimator has a simple form:

F()=(URUTD)"TURH()

m -1y .
:(E rjujujT») Z riu;H;i(p). )
j=1 j=1

Because the Kaplan—Meier estimator is known to be root n consistent (Kaplan and Meier, 1958),
we can easily obtain that the estimator F(¢) is root n consistent. The asymptotic covariance of
F () can be estimated as
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-1

R m -1 m m
cov{F()} = (Z rjuju]T-> { > r? 6§(t)uju]T-} ( > rjuju]T) ,
j=1 j=1 Jj=1
where

3 ={1-H;0}Y 3 §i/{tj—drj—i+D}.
i <t
This result provides an easy way to perform hypothesis testing. For example, to test Hy:
al F(r)=c versus Hy:a' F(1)#c or Hi:a' F(f) <c or Hy:al F(r) > ¢ for any length p vector a
and any constant ¢, the Wald-type test statistic is

T={a'F(1)—c}/[a’ cov{F(r)}a]'/>.

The statistic 7 has a standard normal distribution under hypothesis Hy. When a = (1, —1,
0,...,0)T and ¢ =0, this corresponds to testing whether the subjects from the first and second
population have the same distribution at #, which is a research question that is often encountered
in practice.

It is also possible to perform the test simultaneously at several different #-values. For example,
let t=(r1,...,4)" and assume that r; <...<f. Let F() be a p x [ matrix with jth column
corresponding to time ¢; : F(t) = (F(#1),...,F(%))). Let ¢ be a length / vector. Suppose that we
wish to test Hy:aT F(t) =cT versus H; :aT F(t) #c!. Denote the Kaplan—Meier estimator l:Ij(t) =
(I-?j ), ..., ﬁ] (1)) and its variance—covariance matrix as V ;(t). Using the asymptotic properties
of tl}e Kaplan—Meier estimator (Kaplan and Meier, 1958), we know that V ;(t) can be estimated
by V (t), where the (a, b)th entry is

Viap={1—Ht)H1=H)} X 8i/{rj—irj—i+1} forany 1 <a<b<l.

in\ta

Thus, we can form the test statistic

-1
A m A A
T={a"Ft)—c'}| Y {aT(URUT)"'URe;}?V;| {aTF(t)—c"}T,
j=1
where e; is a length m vector with 1 on the jth entry and 0 elsewhere. Under hypothesis Hy, T
has a y>-distribution with degrees of freedom /. The motivation of this statistic is to standardize

al F'(t). A direct calculation yields
alFty=a {F()),...,F@)}=a"{(URUD)"'URH()),..., (URU)"'URH(®)}

=al(URUD)TUR{H(1)),....H®)} = i al(URUT)"'URe,; Hi(t).

J=1

Because the m different groups do not overlap, this yields the variance

m
> {aT(URUT)"'URe;}?V;.
j=1
A useful case in practice is when a= (1, — 1,0, ...,0)T and ¢=0. This corresponds to testing
whether the first and second populations have the same distribution simultaneously at all values
in the vector t.

Testing Hy:a' F(r) =c(7) at all r-values is also possible, where c(7) is an arbitrary deterministic
function of ¢. From Breslow and Crowley (1974), rjl/ 2{I:Ij(t) — Hj(1)} converges weakly to a

Gaussian process for j=1,...,m with mean 0 and an explicit covariance function. Thus R(¢) =



8 Y. Ma and Y. Wang

al F(r) — c(1) as a linear combination of the A ;(#)s also has the similar property of converging
weakly to a Gaussian process. One can form a test statistic such as a Kolmogorov—Smirnov-type
statistic supyeo, - R() (Fleming et al., 1980) or fOT R(#)dr (Pepe and Fleming, 1989) and derive
their asymptotic null distributions.

However, the asymptotic distributions might not always be suitable to use in practice. One
reason is that the approximation at the large value of ¢ can be quite imprecise. The second
reason is that the above asymptotic results are valid only in the region H;(#) < 1. In practice,
some of the populations might have a smaller support than others. Hence, depending on the
u;-values, for the same ¢-value, some H(r) might be smaller than 1 whereas others might be 1.
This creates complications in practice, especially because it is often not known which H;(#) has
what support. The third reason is that only when r; is large will the asymptotic expression be
a close approximation. However, in practice, some of the r;-values can be quite small. Because
of these reasons, we propose to use an alternative permutation approach when the asymptotic
results are not suitable.

When p =2, a test of interest is whether there is a difference between distributions of mutation
carriers and non-carriers, i.e. Hy: F1(f) = F>(?), either at a finite set of z-values or for the entire
range. A permutation strategy can be used (Churchill and Doerge, 1994) in this case. Specifi-
cally, we permute the (Y;, 6;) pairs and couple them with qq, ..., q,-values to create a permuted
sample, and we use estimator (2) to obtain a new estimate of F(¢) and a permuted test statistic
Fi() — Fa2(0). Repeat this process a sufficiently large number of times to obtain the empirical
distribution of () — F(¢) under hypothesis Hy.

In what follows, we further explore the WLS family of estimators (1) and provide a justification
for our recommendation (2). We also show that the two existing methods NPMLEI1 and IND
are non-ideal members of the WLS family.

3.2. Choice of group estimation

We first study the competing methods in estimating A (@) for j=1,...,min family (1). It is easy
to see that H;(?) is the distribution function of §;s for the collection of observations that satisfy
q; =u;. Thus, estimation within the uj-group is a classical problem of estimating distribution
functions with randomly censored data. The familiar Kaplan—-Meier estimator is known to be
the maximum likelihood estimator in this setting (Kaplan and Meier, 1958; Wellner, 1982) and
hence provides the most efficient estimate for each H;(7). Thus this is the optimal choice. An
additional advantage is that, other than the independent censoring assumption, no additional
requirement needs to be imposed on the relationship between the censoring process and the
event process for the Kaplan—Meier estimator to be valid.

NPMLEI in Wacholder et al. (1998) proceeds by performing non-parametric maximum
likelihood in each of the m groups, and recovering F(¢) via F() = (UUD)~1U A(#). Hence it is
a member of the WLS family. It makes the choice of using Kaplan—Meier estimation in estim-
ating A ().

IND proposed in Fine et al. (2004) makes a different choice in estimating H;(#) and then
recovers F(7) via F(f) = (URUT)"TURH(7). Hence it is also a member of the WLS family. To
estimate H(z), IND exploits the independence of the event process and the censoring process,
and uses the relationship Pr(Y; > #) =Pr(S; > 1) Pr(C; > ). The IND estimates H;(#) through

i Iqi=upi(Y; =0 \,

Hi(n=1- ;
> I(gi=u;) =!
i=1

G
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where G (¢) is a Kaplan—Meier estimate of the survival function, G (1) =Pr(C; > 1), of the censor-
ing process. This method originates from Ying et al. (1995). However, it has several limitations
compared with a direct Kaplan—-Meier estimator of H;(#). First, the method can only be used in
the region where G (7) > 0. Therefore in the situations where the censoring process has a smaller
support than the event process, and if ¢ is larger than the upper limit of the possible censoring
time, the method ceases to be valid. This is so with the HD study data and in our second simu-
lation. Second, it is less efficient than maximum likelihood estimation, which is reflected in our
simulation results. Third, it is not easy to obtain a variance estimate of IND. Finally, although
a Kaplan—Meier estimation is avoided in the estimation related to the event process, it is still
used in the estimation of the censoring process. Hence it does not provide a computational
advantage.

3.3. Choice of weights

Although the Kaplan-Meier estimator in each group (i.e. H;(r)) is asymptotically efficient (Well-
ner, 1982), it does not necessarily guarantee that F(z) is asymptotically efficient. A good choice
of weights improves efﬁc1ency Since, for different j-values, the H (1)s are estimated by using dis-

tinct observations, H;(¢), . .., H,(¢) are mutually independent. Thus the optimal weight matrix
W should be diagonal. Let the diagonal elements of W be wy, ..., w,,. The estimation variance
of the WLS family (1) is

n m -1 m m -1
cov{F(H}= ( > wjuju]T-> { > W? a?(t)ujuJT-} ( Yowj uju]T-> ,
j=1 j=1 j=1

where a? (7) is the variance of the estimator I:Ij(t). Thus, theoretically, by letting w; =1/ a? 0,
we would obtain the optimal weights in terms of estimation efficiency within the WLS family.

Although thisis the optimal weighting strategy in theory, in practice, we observe that it is often
suboptimal. We provide several explanations. First, af (1) isnot known and can only be estimated
in practice. Although asymptotically this estimate itself does not cause a loss of efficiency for
any WLS estimator, it creates numerical instability in finite samples. This instability can be
especially harmful when some groups contain very few observations, because the estimation of
o? (1) can be noisy. Second, occasionally, it may happen that in one of the groups, say the jyth
group, the last observation is not censored and its observed event time Sriy is smaller than ¢,
which is the time at which we are interested in estimating H]0 (¢). In this case, the Kaplan—Meier
estimator yields H. o (0 =1, and the estimated variance 62 W (0=0. Although this can be handled
numerically either by assigning an upper limit on the weight wj, or by solving a constrained
least squares problem instead of directly implementing WLS, the numerical instability that is
caused by this phenomenon still persists. Intrinsically, this is caused by the fact that we cannot
assess o 0(z‘) sufficiently well at the upper limit of the data. For example, & (t) =0 might be a
suitable estimate of the variability of H; o (1) if the event process indeed has the support to the
left of ¢, and it might not be by chance that all the observations are to the left of z.

Since Ma and Wang (2012) observed that, in the absence of censoring, equally weighting each
observation and weighting each observation by its inverse variance exhibited very little difference
in terms of estimation efficiency, we propose simply to assign equal weights to each observation
in the same uj-group. This results in the weight choice of w;=r; in equation (2), which is a
direct result from the fact that, if each observation has a weight of 1, then the group with r;
observations receives a weight of r;. This weighting strategy is simple and extremely stable in
computation. In the simulations in Section 4, we did not find any better weighting scheme other
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than this simple choice, even including the theoretically optimal weights calculated by using the
true H;(t) functions.

Inspecting the weighting choice of IND, we find that it is the same as our proposal of w;=r;.
NPMLEI in contrast makes the choice of assigning w;=1for j=1,...,m. This choice unneces-
sarily downweights the observations belonging to the larger groups and consequently diminishes
the advantage of the more accurately estimated H;(f)s. In practice, we find that this choice leads
to a substantial loss of efficiency. In addition, it can also be vulnerable to some degenerated
groups. For example, when a group contains only one observation, the Kaplan—Meier estimate
in this group is certainly not reliable, yet this estimate is allowed to enter the final estimator
of F(#) with the same importance as the other estimates that can greatly influence the final
result.

4. Simulation study

We performed two simulation studies to illustrate the finite sample performance of several
estimation and inference procedures discussed above. In the first study, we generated a total of
1000 repetitions, each with the sample size n = 1000. The data were generated from a mixture
of p=2 different populations, with m =3 different mixing probability vectors. The first two
mixing groups contain approximately 40% and 5% of the observations, and the remaining
55% observations are in the third mixing group. The true population distributions are both
truncated exponential, with support [0, 10] and [0, 5]. We generated censoring times from a
uniform distribution between 0 and 3.9. This results in an approximately 50% censoring rate.
We performed both estimation and testing under this simulation design. When investigating

Table 1. First simulation study: estimation bias and empirical standard
errors in estimating distribution functions F(¢) at three different ¢-values
by using five different estimators¥

Method bias(Fy) SD(F;) bias(Fy) SD(F,)

t=0.9750,F(t)=(0.2357, 0.4203)T

Oracle —0.0010 0.0229 —0.0009 0.0229
WLS 0.0004 0.0229 0.0004 0.0229
IND —0.0000 0.0289 0.0009 0.0289
NPMLEI 0.0002 0.0310 0.0002 0.0310
NPMLE2 —0.0222 0.0200 0.0136 0.0200
+=1.9500, F(t) = (0.4203, 0.6785)T

Oracle —0.0034 0.0297 —0.0008 0.0297
WLS —0.0014 0.0298 0.0005 0.0298
IND —0.0013 0.0387 0.0004 0.0387
NPMLEI —0.0018 0.0383 0.0001 0.0383
NPMLE2 —0.0418 0.0268 0.0251 0.0268
1=2.9250, F(t)=(0.5651, 0.8371)T

Oracle —0.0048 0.0349 —0.0019 0.0349
WLS —0.0007 0.0347 —0.0001 0.0347
IND 0.0003 0.0479 —0.0012 0.0479
NPMLEI ~0.0016 0.0444 —0.0010 0.0444
NPMLE2 —0.0551 0.0324 0.0337 0.0324

TThe results are based on 1000 simulations with sample size n = 1000.
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Table 2. First simulation study: estimation bias, empirical standard
error, average estimated standard error and coverage of 95% con-
fidence intervals for estimating F(f) by using WLS+

t F(t) bias(F) sd(F) sd(F) 95% confidence
interval
Under Hy : F1(t)=F>(t)
0.9750  0.4203 —0.0010 0.0264 0.0262 0.9360
0.4203 0.0004  0.0300 0.0291 0.9400
1.9500 0.6785 —0.0002 0.0287  0.0280 0.9440
0.6785 0.0003  0.0308 0.0310 0.9470
2.9250 0.8371 —0.0002 0.0276 0.0276 0.9520
0.8371  —0.0010  0.0308  0.0306 0.9410
Under Hy : F(t)+# Fy(t)
0.9750  0.2357 0.0004  0.0229  0.0225 0.9500
0.4203 0.0004  0.0288  0.0284 0.9460
1.9500 0.4203 —0.0014 0.0298  0.0290 0.9380
0.6785 0.0005 0.0327  0.0320 0.9490
29250 0.5651 —0.0007 0.0347 0.0348 0.9500
0.8371  —0.0001 0.0336 0.0338 0.9480

+The empirical standard error is the sample standard deviation of 1000
estimates from 1000 simulations; the estimated standard errors are cal-
culated from the asymptotic variance formula of the general WLS es-
timators.

the type I error rate under hypothesis Hp, we set both distributions to be the same truncated
exponential with support [0, 5], while keeping everything else unchanged. This results in a
censoring rate of about 40%.

We implemented our proposed WLS method, as well as the existing methods including IND,
NPMLE!I and NPMLE2, where NPMLE2 is obtained through maximizing

n
Zl log{qiT f(Y,')}‘S" log{l — ql-TF(Y,-)}l_(S"
i=
with respect to F(Y;)s by treating F(¢) as a piecewise constant monotonically increasing func-
tion. For illustration, we also provided the oracle WLS method, where the optimal weights
w;=1/var{ H;()} are used, with H;(t) being the Kaplan-Meier estimator in the jth group, and
the variance is calculated by plugging in the true distribution functions H;(#) in the variance
formula. The estimation results at three representative time points are provided in Table 1,
where they are at the beginning, middle and end of the range of the observed time points. The
estimation results for the entire curves are depicted in Fig. 2.

NPMLE2 shows a very large bias in comparison with all the other methods, whereas both IND
and NPMLE]1 have larger estimation variability in comparison with the proposed WLS method.
For example, at t =1.95, the bias of NPMLE?2 is about 25-30 times larger than the other three
consistent estimators (WLS, IND and NPMLE1), and the empirical standard errors of IND
and NPLMEI are 30% and 29% larger than that of WLS respectively. The gain in efficiency
is more notable towards the higher end of the r-values. When ¢ =2.92, the improvement in
empirical standard errors of the proposed WLS estimator over IND and NPMLEI is 38% and
30% respectively. The WLS estimator has very small biases, and its estimation variance is about
the same as the oracle WLS (the difference is 2% or less).
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Table 3. First simulation study: empirical rejection rates for
single, multiple and curve testing at various nominal levels
by using WLST

t-value Results for the following nominal levels:

0.01 0.05 0.1 0.2

Under Hy : F1(t)=F>(t)

0.9750 0.0120 0.0470 0.1050 0.2060
1.9500 0.0130 0.0610 0.0970 0.1830
2.9250 0.0080 0.0510 0.0970 0.2050
Multiple ¢ 0.0090 0.0540 0.1070 0.2080
Curve 0.0150 0.0620 0.1070 0.2090
Under Hy : F1(t)# F(t)

0.9750 0.9790 0.9950 0.9980 0.9980
1.9500 0.9950 0.9990 1.0000 1.0000
2.9250 0.9920 0.9970 0.9990 1.0000
Multiple ¢ 0.9990 1.0000 1.0000 1.0000
Curve 0.9780 0.9970 0.9990 0.9990

+tMultiple # is the result of testing F (f) = F» (¢) at the three listed
t-values simultaneously. Curve is the result of testing Fi(f) =
F>(r) at all 7. Results are based on 1000 simulations with sample
size n =1000.

We also examined several tests based on the proposed WLS estimator. We report estimation
and the single-point, multiple-point and curve testing results in Table 2 and Table 3. Table 2
shows the finite sample bias of the estimated cumulative distribution functions, their empirical
standard errors, average estimated standard errors and 95% confidence interval coverage at the
three representative time points under the null and the alternative hypotheses. It is seen that
the estimation biases are small, the estimation standard errors are well estimated and the 95%
confidence interval coverages are close to their nominal level. For the single- and multiple-time-
point testing, we used the test statistics that were proposed in Section 3.1 and their asymptotic
null distributions to compute p-values. For testing the entire difference between two distribution
functions, we used the test statistic sup, |Fi (1) — F2(f)| and performed 1000 permutations to
compute its p-value. It is seen from Table 3 that the type I error rates of all three tests adhere to
their nominal levels. In addition, the power of the three tests is comparable.

To gain a more comprehensive understanding of the power performance of these tests, we
further adjusted the first component of F(7) to be a truncated exponential on [0, 5d] and let d
gradually change from 1 to 2. We plotted the power of the tests as a function of d in Fig. 3. As
expected, the power increases when d increases. In other words, the power increases when the
two components in F(7) separate from each other.

We perform a second set of simulation studies to illustrate the finite sample performance of
the estimators in the situation that resembles the COHORT data. In this study, we generated
5000 observations from p =2 populations, with m =6 distinct q-values exactly the same as in
the COHORT data. We set the different group values to be 1500, 2000, 1200, 200, 98 and 2,
and set the censoring process to have smaller support than the event process, with censoring
rate 75%. These are all designed to be similar to the COHORT data. The results of the five
estimators of F(7) are in Fig. 4. Once again, it is clear that NPMLE?2 is severely biased, whereas
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Fig.5. COHORT study: cumulative risk of onset of HD based on (a) WLS, (b) IND and (c) NPMLE1 stratified
by gender: , females;.----- , males

the proposed WLS estimator has desirable performance in that it shows very small bias and has
the narrowest confidence band. IND breaks down towards the end of the study range, which is
a consequence of the censoring process being supported on a subset of the event process. The
performance of NPMLEI is greatly hampered by the small sample size in one group. This is
reflected in the large variability. Interestingly, the oracle estimator is also not well behaved. This
is because the oracle estimator uses the asymptotic variance of the Kaplan—Meier estimator.
However, for groups with small or moderate sample sizes, the finite sample performance of the
Kaplan—Meier estimator is more relevant and it may be very different from the inference based
on the asymptotic variance.
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5. Additional analyses of the study data

In Section 2, we provided some initial analyses of the COHORT data by using IND, NPMLE1
and WLS. Here we provide more detailed analyses using WLS. First, we estimate the disease
distribution functions stratified by gender. Fig. 5 presents the estimated cumulative distribution
of age at onset of HD for males and females. We present the same three estimators as in the
overall analysis and similar conclusions for these estimators can be drawn comparing WLS,
NPMLEI and IND. The proposed WLS estimator suggests that females might have a slightly
elevated risk than males across a wide range of ages. We performed a permutation test of the
difference between the entire distribution curves of female and male carriers as introduced in
Section 3.1 and obtained a p-value of 0.083.

Furthermore, we estimate the distribution functions stratified by both gender and whether a
subject reported an affected father or affected mother at the time of the family history interview
(Fig. 6). We observe that female carriers with an affected father had a slightly higher risk than
female carriers with an affected mother across a wide range of ages. In contrast, male carriers
with an affected father had a similar risk compared with male carriers with an affected mother
until age 60 years, and after age 60 years the risk in the former is slightly higher. The test
comparing the difference between female carriers with an affected father with female carriers
with an affected mother had a p-value of 0.096. These results are consistent with a potential
anticipation effect: it is observed that a male could transmit an expanded CAG repeats sequence
to his offspring, which may increase the likelihood of an earlier age at onset in the offspring
(Ranen et al., 1995; Wexler et al., 2004). Our analysis suggests that the anticipation effect
might manifest in female offspring across a wide range of ages, whereas for male offspring
the anticipation effect might not manifest until about age 60 years. Further analysis on an
independent sample is needed to corroborate these observations. Finally, a test comparing
female or male carriers who reported an affected parent (either mother or father) with female
or male carriers who did not report any affected parent at the time of interview is significant
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Fig. 6. COHORT study—cumulative risk of onset of HD stratified by gender and the status of reporting
affected father ( ), affected mother (------ ) or none (------ ) at the time of family history interview,
based on WLS (the lighter curves represent the 90% pointwise confidence band): (a) males; (b) females
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Fig. 7. COHORT study: cumulative risk of onset of HD based on (a) WLS, (b) IND and (c) NPMLE1 stratified
by the status of reported affected father ( ), affected mother (------ ) or neither of the parents (------ )
at the time of family history interview

with a p-value less than 0.001 calculated on the basis of 1000 permuted samples. We further
combined the male and female individuals and performed a similar analysis of the risk of HD
onset based solely on parental status. The corresponding cumulative risks are given in Fig. 7.
The estimated cumulative risk curve can also be used as measures of the time-dependent
positive or negative predictive values (see, for example, Heagerty and Zheng (2005)) of the
HD mutation test. To see this, note that the first component of F(7) is the cumulative risk
for carriers, i.e. F|(f) =pr(T <t|CAG > ¢) with ¢ =36, since here CAG > 36 defines a positive
mutation test and CAG < ¢ defines a negative mutation test. Thus the quantity Fj(¢) is also
referred to as the time-dependent positive predictive value in the diagnostic testing literature
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(Heagerty and Zheng, 2005) and is used to summarize the performance of a test for time-to-
event outcomes collected in non-standard designs (Liu et al., 2012). These measures provide a
numerical summary of cumulative risk by certain age associated with a positive mutation test.
In addition, the estimated curves can also be used to predict a subject’s risk of HD given his
or her mutation test results and other demographic information. For example, from Fig. 6, a
female subject who has a positive HD mutation and reports an affected father has a chance
of about 65% of developing HD by age 50 years. Lastly, these measures are useful to predict
the conditional probabilities of developing HD in the next few years given the current age of a
subject. For example, one can estimate the conditional probability of developing HD in the next
5 years for a mutation carrier free of disease at age 50 years, i.e. pr(7< 55|T > 50, CAG > 36).

6. Discussion

We have provided a general WLS family to estimate the distribution functions of several popu-
lations when the observations are from a mixture of these populations and are subject to right
censoring. Existing consistent non-parametric estimators in these problems are NPMLE1 and
IND, and they are shown to be non-ideal members of this family. We have further proposed
a practically optimal member of the WLS family. It is easy to see that, when there is no cen-
soring, the proposed WLS estimator is identical to IND. However, when there is censoring we
demonstrate that the estimator proposed has superior performance and computational stability
compared with both IND and NPMLE]. In addition, the estimator proposed is extremely easy
to implement and its asymptotic properties are also easily established. We illustrate the meth-
ods and their applications to perform risk prediction through an application to the COHORT
study. Here we estimate the cumulative distribution function of onset of HD in HD mutation
carriers (CAG lengths 36 or longer) instead of in each CAG repeat length group. The estimates
are useful in genetic counselling settings when a subject knows only the CAG expansion status
(expanded versus not expanded) in a family member but does not necessarily know the actual
CAG repeat length. These distribution functions quantify the effect of having a family member
with a positive HD mutation test on one’s own risk of developing HD.

An alternative method of treating censoring is imputation, related to the self-consistent
estimator (Efron, 1967). In our context, we show in Appendix A.1 that the imputation estimator
is also a member of the WLS family. In addition to the WLS family, yet another estimator is
a maximum likelihood estimator (MLE) through imputation (see Appendix A.2 for details).
Like the imputation method, the MLE has not been reported in the literature before; hence
it provides another new estimator. However, when examining it in the simulations, we find no
gain in efficiency over the proposed WLS estimator. In addition, since the MLE cannot be
solved explicitly, its computation requires an iteration procedure such as the Newton—-Raphson
method. In some occasions, the iterative computation may cause numerical instability, and the
algorithm may even fail to converge. In light of these numerical performances, we suggest that
the proposed WLS method in equation (2) is used.

All the estimators that we have studied are developed under the situation that the different
number of mixing probability vectors, m, is fixed. When m increases with the sample size n, a
completely different treatment is required and valid estimators have been developed in Ma et al.
(2011). It is also interesting to note that all the consistent estimators in the literature, including
those which we have newly developed, carry out the analysis within each of the m mixing groups
and then recover the estimate on F. The only exceptions to this approach are NPMLE?2 and the
MLE. NPMLE2 turns out to be not valid, whereas the practical performance of the MLE is
not ideal as we discussed before. Although we have found that different choices of weights and
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group-specific estimators lead to differences in efficiency, it may be interesting to investigate
further whether there can be more estimators that directly perform the estimation on F without
performing the individual analysis within each mixing group.

Lastly, we have constructed estimators of cumulative distribution functions from the proband-—
relative pairs which are similar to that of Chatterjee et al. (2006). Using the full pedigree infor-
mation may increase efficiency in computing the joint probability of the mutation status of all
relatives in the family given the proband’s genotypes. Such a joint approach is worth investigating
in a future work.
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Appendix A

A.1. lllustration on imputation estimators as a member of the weighted least squares
family
Suppose that, with full data, we have a consistent estimating equation

0= G{I(S <1).q.. F1)}. 3)
i=1

Under censoring, if S; is observed, then we can use the ith observation as it is in equation (3). If S; is
censored by C;, then two situations can occur. If C; > ¢, then it is certain that S; >t as well. Hence we
can safely replace I(S; <) by 0 in the ith observation in equation (3). If C; <¢, then S; can be in (C;,{]
or in (t, 00). Given that S is censored, the probability of S; € (C;, 1] is {q F(t) —qf F(C)}/{1 —qT F(C))},
whereas the probability of S; € (¢, 00) is {1 — ] F(n}/{1 — ¢/ F(C;)}. Thus we can replace the ith term in
equation (3) by the two terms

q/ F( —q/ F(C)

1-q/F()

W¢{O» q.,.F()}.

Of course, qf F(-) is unknown, but it is H;(-) for ¢; =u; and can be estimated by using any of the previously
mentioned estimators. In summary, the final estimating equation is

0= 6,618 <1,q, FO}+5°(1—6) I(C: > {0, q, F()}
i=1 i=1

1—q'F
— ¢{1,qf,F(t)}+qN;(I)MO,qf,F(t)}}
1—q/F(C) 1—q/F(C)

x T F0) —ql F(C,
+z<1_5,.),(q<,){w
i=l1

where we write I:Ij(C,-) :(ﬁ(c,) and I:I,-(t) :(ﬁ(z) ifg;=u;.
In fact, the only known class of consistent estimating equations of the form (3) is ¢{I(S; <1, q;, F() } =
wiq; I(S; <t) —wiqiq] F(r) (Ma and Wang, 2012). This yields the estimating equation

n

Z{(siwiqi IS;<H+(1=6) I(C; D)

i=1

i — wiCIiQiT F@® } =0,
1—-¢q/ F(C)
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which can be explicitly solved to obtain

n

n -1
F()= (2 w,q,-q?> > {&mm IS, <+ (1 =86)I(C; <)
i=1

i=

4" F() - F(C) }
———Wwiq;
1-q/F(C)

F@(z)—iljw,-)}

m n =1 m n
= |:ZU_,'UJT~ {Zwil(qi =llj)} :| >ou; Yy I =“_j)wi{51 IS, <+ (1 —=6) I(C; <)
j=1 i=1 j= i=

1=l I_I:Ij(ci)
Denote
=y W= 6,-1(5,-<z>+<1—6,->1<c,-<z)w}
=S wil(gi =) 1= H(C)
i=1
_y wla=w) [y I(S,-ét)—f—(l—6;)I(Ci<t)7H]i(t) ;ch’)}+R.
=S wiI(gi =) ~H(©
i=1
Then
R=y o f=w) (1_5-)1(c.<z){ﬁ"(”ig"(c") - H’(’)_H"(C")}
SSwngeey U IH© THE

i=1

has the property that n'/2R has a normal distribution with mean 0 when n — oo as long as the I:Ij(t)s are
consistent estimates of H;(f) and are asymptotically normal. Simple calculation shows that, in the jth
group,

H;(1)— H;(Cy)
ELSIS<H+ (=6 I(C; <" L =H,().
{ (<0 +(1=8) G <D= (1)
Hence, I-Alj(t) is a root-n-consistent estimator of H;(f), and the imputation estimator has the equivalent
form of

m n =1 n N
() = [z} uju! {21 e =u.f>}] S {z i 1(a, =u.,~>} A0,
= i= = i=1

i=

Viewing ¥, w; I(q; =u;) as w;, the imputation estimator is within the WLS family (1).

A.2. Maximum likelihood estimator
When no censoring is present, treating F(7) as a parameter, its log-likelihood function is

n
i=1

105, <D log{q"FO} + 3 15, > ) log{1 —q" F()}.
i=1

Maximizing this function with respect to F(¢) will yield an estimating equation

n n IS <) —q] F()
I1(5i<0),q, F() } =D ——— ] i=0.
2 US04 FO} =2 g — TRy ¥

We can then use the same imputation procedure as in Appendix A.1 to obtain a new MLE for F(¢). This
estimator is not within the WLS family.
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