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Nonparametric modeling and analysis
of association between Huntington’s
disease onset and CAG repeats
Yanyuan Maa and Yuanjia Wangb*†

Huntington’s disease (HD) is a neurodegenerative disorder with a dominant genetic mode of inheritance caused
by an expansion of CAG repeats on chromosome 4. Typically, a longer sequence of CAG repeat length is associ-
ated with increased risk of experiencing earlier onset of HD. Previous studies of the association between HD onset
age and CAG length have favored a logistic model, where the CAG repeat length enters the mean and variance
components of the logistic model in a complex exponential-linear form. To relax the parametric assumption of
the exponential-linear association to the true HD onset distribution, we propose to leave both mean and variance
functions of the CAG repeat length unspecified and perform semiparametric estimation in this context through
a local kernel and backfitting procedure. Motivated by including family history of HD information available in
the family members of participants in the Cooperative Huntington’s Observational Research Trial (COHORT),
we develop the methodology in the context of mixture data, where some subjects have a positive probability
of being risk free. We also allow censoring on the age at onset of disease and accommodate covariates other
than the CAG length. We study the theoretical properties of the proposed estimator and derive its asymptotic
distribution. Finally, we apply the proposed methods to the COHORT data to estimate the HD onset distribu-
tion using a group of study participants and the disease family history information available on their family
members. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Motivating study and the existing model

1.1. Huntington’s disease study

Huntington’s disease (HD) is a severe hereditary neurodegenerative disorder caused by an expansion of
CAG repeats at a gene on chromosome 4 that codes the protein named huntingtin (Huntington’s Study
Investigators [1]). Typically, neurological and physical symptoms express around 30–50 years of age
in affected individuals, although sometimes the symptoms can develop much earlier (pre-teen) or much
later in life (in the 1980s; see, e.g., [2]). Patients eventually die from complications such as pneumonia,
heart failure, or other complications, usually 15–20 years after the disease onset although the duration
of the disease also varies depending on the onset age [3]. Clinical studies suggest that an individual with
a CAG repeat length (denoted as X) smaller than 36 is risk free of HD (no risk of developing HD at
any given age; [2, 4]). Otherwise, for an individual with CAG repeat length greater than or equal to 36,
the CAG length is an important factor that is inversely correlated with the age at onset (AAO) of HD
(denoted as T ), where subjects with longer stretches of CAG repeat length tend to have earlier onset.

To further study the association between the CAG length and the onset time of HD, various large
epidemiological studies on HD were conducted worldwide. One particular study is the Cooperative
Huntington’s Observational Research Trial (COHORT), an observational study organized by 42
Huntington Study Group research centers in North America and Australia. In COHORT, the initial par-
ticipants (probands) undergo a clinical evaluation where blood samples are sequenced for CAG repeat
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length [5]. Since 2005, the study has expanded to collect family members’ morbidity and mortality infor-
mation (e.g., AAO of HD) through systematic family history interviews administered to the probands
[5, 6]. However, because of the high cost of conducting in-person interviews of family members, the
blood samples of the family members were not collected. This kind of studies is referred as kin–cohort
study in [7]. The COHORT study with family history data can be classified as a kin–cohort design. A
complexity arising from COHORT is that whether a relative shares the same CAG expansion status with
a proband (e.g., whether a child has inherited the mutation allele with CAG expansion from a parent)
is not available. Instead, we can obtain a relative’s probability of carrying a mutation allele, which is
calculated through Mendelian law using the relative’s relationship with the proband and the proband’s
mutation status (e.g., Section 8.4 in [8]; and [9,10]). This calculation yields a probability p (0 6 p 6 1),
indicating the probability that the relative shares the same mutation allele as his or her proband so that
the relative’s CAG repeat length is the same as the proband, and he or she is at risk of HD. For exam-
ple, parents, children, and siblings of an at-risk proband have at-risk probabilities of p D 0:5 under the
Mendelian law. Thus, the relative has a probability of 1 � p D 0:5 to share the normal allele with his or
her proband, in which case the relative will have a CAG length value < 36 and will not be at risk of HD.
We assume that the CAG repeat length does not change in the gamete transmission process; that is, a
child will inherit an expanded allele with the same repeat length from a parent. This assumption is used
in the literature [6], and we discuss the implications of this assumption in Section 5.

Another complexity arising from the COHORT study is that HD onset time is not observed for all
study subjects, and some study subjects are censored because of loss to follow-up or death due to other
causes before developing HD.

1.2. Existing model

The functional form of the association between the onset time T and the CAG repeat length X has been
debated in the clinical literature, and multiple parametric models have been proposed [11,12]. Currently,
the accepted model captures the relation between the AAO of HD and the CAG length through a logistic
link and assumes that the CAG length affects both the mean and the variance components of AAO
through an exponential-linear form in [11]. Specifically, the model specifies the conditional distribution

F.t; x/
defD pr.T < t jX D x/ as

F.t; x/ D 1

1 C e�ft��.x/g=s.x/
; (1)

where

�.x/ D �1 C exp.�2 � �3x/; s.x/ D p
�1 C exp.�2 � �3x/;

and �1; �2; �3; �1; �2; �3 are six unspecified parameters to offer model flexibility and will be estimated
from data.

Although (1) is the accepted model in the current clinical literature for describing the association
between CAG length and HD onset, it does impose some rather strong assumptions. For example, the
specific functional forms of both the mean and the variance are pre-specified to be exponential linear,
which can not only be an advantage if they happen to reflect the true biological relationship between
CAG length and onset time but can also be misleading otherwise. In addition, this global parametric
model may not fit well for certain ranges of the CAG lengths and ages (e.g., for smaller CAG length
values; [11]). At the values of �i and �i (i D 1; 2; 3) fitted using data from [11], the corresponding
additive and multiplicative coefficient functions for t has the form

F.t; x/ D 1

1 C e�˛2.x/t�˛1.x/
(2)

where, using the relation ˛1.x/ D ��.x/=s.x/, ˛2.x/ D 1=s.x/, we obtain

˛1.x/ D ��=
p

3f21:54 C exp.9:56 � 0:146x/gf35:55 C exp.17:72 � 0:327x/g�1=2;

˛2.x/ D �=
p

3f35:55 C exp.17:72 � 0:327x/g�1=2:

Thus, ˛1.x/ is not a monotonically increasing function of x (see Figure 1, upper-left plot). As a result,
for some t values, such as t 6 22, F.t; x/ is not an increasing function of x (see Figure 1, lower-left plot).
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Figure 1. Plots of the true (solid) and estimated (dashed) curves of the intercept ˛1.x/ (left) and slope ˛2.x/
(right) in simulation 1 (upper) and simulation 2 (lower). The dashed curves contain the median, 5% quantile and

95% quantile of the 1000 estimated curves.

This may not agree with the clinical conjecture that greater CAG expansion length increases the risk of
HD at a given age; that is, F.t; x/ is an increasing function of x at a fixed time point t . While it is still
unclear whether the clinical impression is fully supported by data, the assumption that an exponential-
linear functional form in both the mean and the variance captures the true CAG length effect on HD
onset globally in the entire range of x and t can be strong. It may be desirable to relax this parametric
model assumption, by using a more flexible nonparametric or semiparametric model that is capable of
fitting local changes in certain ranges of x. In addition, no covariates other than CAG length are modeled
in (1).

2. Proposed model and its estimation procedure

Because of restrictions of a parametric model, we propose to relax the specification of CAG length effect
to nonparametric functions by leaving both ˛1.x/ and ˛2.x/ in (2) unspecified. Because F.t; x/ is a
cumulative conditional distribution function, it is required to be an increasing function of t at any value of
x. To satisfy this assumption, the slope ˛2.x/ should be positive. This can be taken into account through
a reparameterization such as writing exp

˚
˛�

2 .x/
�

instead of ˛2.x/ with the aim of estimating ˛�
2 .x/.

However, in our numerical experiments reported in Sections 3 and 4, such reparameterization does not
seem necessary because ˛2.x/ is estimated to be positive without any constraints. Thus, throughout this
article, we simply consider ˛2.x/ directly. In addition, if the clinical consensus that higher CAG length
values are associated with earlier onset times is to be enforced, ˛1.x/ C ˛2.x/t should be an increasing
function of x for any possible HD onset time t . However, we estimate ˛1.x/ and ˛2.x/ without forcing
the monotonicity constraint. Thus, the resulting fitted functions under the more flexible model can serve
as empirical evidence on whether or not the clinical consensus holds.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1369–1382
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To express model (2) on the logit scale, note that

logitfF.t; x/g D ˛1.x/ C ˛2.x/t;

which is a logistic model with varying coefficients. Thus, although our problem is motivated by relaxing
the parametric model in [11], it is very general and is applicable to modeling distribution of other disease
onset as well. Under this varying-coefficient logistic model, other patient-specific covariates such as
gender or baseline symptom severity measures can be easily introduced. Because these covariates are
not of primary interest and misspecification of their functional form is less of a concern, we can simply
use several linear terms to capture their effects. Collecting these additional covariates into a vector Z ,
we can extend model (2) to a partially linear varying-coefficient logistic model

F ft; x; ´; ˇ; ˛.x/g D 1

1 C e�f´Tˇ2C˛2.x/gt�f´Tˇ1C˛1.x/g ; (3)

where ˇ D �
ˇT

1; ˇT
2

�T
and ˛.x/ D f˛1.x/; ˛2.x/gT are unknown parameters and functions to be

estimated from data.

2.1. Likelihood and estimation

To introduce the likelihood, we start by defining some notation. We use C to denote the censoring
time and use fC .c; x; ´/ and FC .c; x; ´/ to denote the censoring PDF and CDF conditional on the
covariates .X; Z /. We assume the censoring to be conditionally independent of HD onset time given
a set of covariates. Let � D I.T 6 C/ and Y D min.T; C /. We denote the i th observation as
.pi ; Xi ; Z i ; Yi ; �i /. Here, pi is the probability of the i th subject having an expanded CAG calculated
from the relation between the proband–relative relation and is known. We use pi D 1 or pi D 0 if the i th
subject’s CAG expansion status is certain. Taking into consideration the uncertainty in a relative’s CAG
expansion status and censoring, the likelihood is

Lfˇ; ˛.�/g D
nY

iD1

Œpi f fYi ; Xi ; Z i ; ˇ; ˛.Xi /g��i Œ1 � piF fYi ; Xi ; Z i ; ˇ; ˛.Xi /g�1��i

f1 � FC .Yi ; Xi ; Z i /g�i fC .Yi ; Xi ; Z i /
1��i fX;Z ;p.Xi ; Z i ; pi /

/
nY

iD1

f fYi ; Xi ; Z i ; ˇ; ˛.Xi /g�i Œ1 � pi F fYi ; Xi ; Z i ; ˇ; ˛.Xi /g�1��i ;

where F fy; x; ´; ˇ; ˛.x/g is given in (3) and

f ft; x; ´; ˇ; ˛.x/g D @F ft; x; ´; ˇ; ˛.x/g
@t

D e�f´Tˇ2C˛2.x/gt�f´Tˇ1C˛1.x/gf´Tˇ2 C ˛2.x/g
Œ1 C e�f´Tˇ2C˛2.x/gt�f´Tˇ1C˛1.x/g�2

:

Because of the inclusion of unspecified nonparametric functions ˛.x/, directly maximizing the afore-
mentioned likelihood is difficult. Thus, instead of using the maximum likelihood estimator (MLE) or
nonparametric MLE, we propose the following backfitting procedure based on local kernel smoothing
estimator of ˛.x/. Let the score function with respect to ˇ be

S ˇ fYi ; Xi ; Z i ; ˇ; ˛.Xi /g D �i

@f fYi ; Xi ; Z i ; ˇ; ˛.Xi /g=@ˇ

f fYi ; Xi ; Z i ; ˇ; ˛.Xi /g

� .1 � �i /
pi @F fYi ; Xi ; Z i ; ˇ; ˛.Xi /g=@ˇ

1 � piF fYi ; Xi ; Z i ; ˇ; ˛.Xi /g :

Replace ˛.X/ with a D .a1; a2/T locally at X D x0, and let the score function with respect to a be

S a.Yi ; Xi ; Z i ; ˇ; a/ D �i

@f .Yi ; Xi ; Z i ; ˇ; a/=@a

f .Yi ; Xi ; Z i ; ˇ; a/
� .1 � �i /

pi@F.Yi ; Xi ; Z i ; ˇ; a/=@a

f1 � pi F.Yi ; Xi ; Z i ; ˇ; a/g :
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The backfitting procedure consists of iterating between the following two steps.

(1) Obtain ě at a fixed ę.�/ through solving

0 D
nX

iD1

S ˇ fYi ; Xi ; Z i ; ˇ;ę.Xi /g:

(2) Obtain ę.x0/ at x0 D x1; : : : ; xn at a fixed ě through solving

0 D
nX

iD1

Kh.Xi � x0/S a

�
Yi ; Xi ; Z i ; ě; a

�
:

Here, K.�/ is a symmetric kernel function, h is a bandwidth, and Kh.x/ D K.x=h/=h for any
bandwidth h.

The aforementioned two steps can use the MLEs as starting values by treating ˛.x/ as constants and
is iteratively performed until convergence is reached. This type of backfitting method adopts the local
constant idea for the nonparametric estimation of ˛1.�/ and ˛2.�/. When desirable, we can also use more
sophisticated methods such as local polynomial. Note that in the second step, we repeatedly perform the
maximization for n different x0 values; thus, the computation can be quite involved.

2.2. Asymptotic properties

To study the asymptotic properties of the backfitting estimator, we first define some notation. Let
S ˇˇ be the partial derivative of S ˇ with respect to ˇ, S ˇ˛ be the partial derivative of S ˇ with
respect to ˛, S ˛˛ be the partial derivative of S ˛ with respect to ˛, and S ˛ˇ be the partial deriva-
tive of S ˛ with respect to ˇ. Also define �.X/ D E ŒS ˛˛fY; X; Z; ˇ; ˛.X/gjX�, ˛ˇ .X/ D
��.X/�1EŒS ˛ˇ fY; X; Z; ˇ; ˛.X/gjX�, and U .X/ D EŒS ˇ˛fY; X; Z; ˇ; ˛.X/gjX��.X/�1. Further-
more, define

F D E
�
S ˇˇ fY; X; Z ; ˇ; ˛.X/g C S ˇ˛fY; X; Z ; ˇ; ˛.X/g˛ˇ .X/

�
:

Then, we have the following results.

Theorem 1
Assume that the bandwidth h satisfies nh4 ! 0 and nh2 ! 1. Then, the backfitting estimator Ǒ has
the asymptotic expansion

�Fn1=2
� Ǒ � ˇ

�
D n�1=2

nX
iD1

�
S ˇ fYi ; Xi ; Z i ; ˇ; ˛.Xi /g � U .Xi /S ˛fYi ; Xi ; Z i ; ˇ; ˛.Xi /g

�Cop.1/:

(4)

Hence, n1=2
� Ǒ � ˇ

�
is asymptotically normally distributed with mean zero and covariance matrix

F�1†F0�T, where † D cov
�
S ˇ fY; X; Z ; ˇ; ˛.X/g � U .X/S ˛fY; X; Z ; ˇ; ˛.X/g�. A sketch of

proof of Theorem 1 is given in the Appendix.

Remark 1
In Theorem 1, the requirement that nh4 ! 0 is the undersmoothing condition typically required for
backfitting, and a direct consequence of the bias of the local constant estimator. The undersmoothing
requirement does not lead to difficulty in practice because we can easily rescale a selected optimal band-
width hopt to obtain the undersmoothed bandwidth h D h

3=5
opt . In addition, the estimation of ˇ is often

insensitive to the bandwidth choice. There are various methods proposed in the literature to avoid under-
smoothing as well, including using a projection augmentation on S ˇ or profiling; see Van Keilegom and
Carroll [13] for details.

Remark 2
There are various possibilities to perform inference about ˇ in our context. Note that Chen et al.
[14] describe conditions under which the bootstrap will be asymptotically valid for backfitting
estimators. Alternatively, one can use the asymptotic results given in Theorem 1. This entails

approximating the terms inF and † by their sample versions. Specifically, OF D n�1
Pn

iD1

h
S ˇˇ

n
Yi ; Xi ;

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1369–1382
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Z i ; Ǒ ; Ǫ .Xi /
o
CS ˇ˛

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ .Xi /

o
Ǫˇ .Xi /

i
and O† D n�1

Pn
iD1

h
S ˇ

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ .X/

o
�

OU .X/S ˛

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ .X/

oi˝2

. Here and throughout the text, a˝2 stands for aaT for any vector

or matrix a. In these calculations, Ǫ ˇ .X/ D � O�.X/�1 OE �
S ˛ˇ fY; X; Z; ˇ; Ǫ .X/gjX�

, OU .X/ D
OE

h
S ˇ˛

n
Y; X; Z; b̌;b̨.X/

o
jX

i b�.X/�1 and O�.X/ D OE
h
S ˛˛

n
Y; X; Z; b̌;b̨.X/

o
jX

i
, where all the

conditional expectations are estimated nonparametrically.
Because our main interest is in estimating ˛.�/, after obtaining the root-n consistent estimator Ǒ , we

need to perform an additional nonparametric estimation step using the usual bandwidth to obtain the final
estimates for ˛.X/. Because Theorem 1 guarantees the root-n rate for Ǒ , which is faster than the non-
parametric rate, hence, the final Ǫ .X/ has the same classic bias and variance properties of the standard
nonparametric estimator under a known ˇ. We state the asymptotic property of Ǫ .�/ in Theorem 2.

Theorem 2
Assume that the bandwidth used in the last local linear estimation step is h, and h D O.n�1=5/. Then,

Ǫ
�
x; Ǒ �

satisfy

Ǫ
�
x; Ǒ �

� ˛.x/ D �h2EfS aa.Y; X; Z ; ˇ; a/ j xg�1 d2ŒEfS a.Y; X; Z ; ˇ; a/ j xgfX.x/�

2fX.x/dx2

Z
t2K.t/dt

� EfS aa.Y; X; Z ; ˇ; a/ j xg�1 1

nfX.x/

nX
iD1

Kh.Xi � x/S afYi ; Xi ; Z i ; ˇ; ˛.Xi /g

C o.h2/ C op

n
.nh/�1=2

o
:

Thus, it has bias

biasf Ǫ .x/g D �h2�.x/�1 d2 fEŒS ˛fY; X; Z ; ˇ; ˛.X/g j X D x�fX.x/g
2fX.x/dx2

Z
t2K.t/dt C o.h2/

and variance

varf Ǫ .x/g D �
R

K2.t /dt

nhfX .x/
�.x/ C o

˚
.nh/�1

�
:

Remark 3
Once the estimation of Ǒ and Ǫ is obtained, we can plug these estimates in (3) to obtain the estimation of
the distribution of the onset time, F ft; x; ´; Ǒ ; Ǫ .x/g. Using the delta method and considering that Ǫ .x/

converges at a slower nonparametric rate than Ǒ , we can easily obtain that F ft; x; ´; Ǒ ; Ǫ .x/g estimates
the true distribution function F ft; x; ´; ˇ; ˛.x/g with leading order bias

@F ft; x; ´; ˇ; ˛.x/g
@˛.x/T

biasf Ǫ .x/g

and leading order variance

@F ft; x; ´; ˇ; ˛.x/g
@˛.x/T

varf Ǫ .x/g@F ft; x; ´; ˇ; ˛.x/g
@˛.x/

;

where biasf Ǫ .x/g and varf Ǫ .x/g are given in Theorem 2. Thus, we also estimate the distribution function
at the classical nonparametric rate as if ˇ were known.

3. Simulation study

We conducted simulation studies to investigate the finite sample performance of the proposed estima-
tors. We conducted two simulations with sample size n D 4000 and repeated them 1000 times. Here,
n D 4000 is the approximate sample size in the COHORT study. We generated the standardized CAG
length values X from a uniform distribution between 0 and 1. In many clinical studies of HD, additional
information such as gender, inheritance of CAG expansion through mother or father, verbal fluency
score, presence of psychiatric symptoms, and type of relatives (e.g., parents, siblings, and children) is
also recorded [15]. Thus, in the simulations, we generated four additional covariates to form Z , where
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Table I. Simulation results on ˇ.

ˇ11 ˇ12 ˇ13 ˇ14 ˇ21 ˇ22 ˇ23 ˇ24

Simulation 1
Truth �0.5 0.5 �1 1 0.02 �0.02 0.04 �0.04
Mean �0.4842 0.4999 �0.9161 1.0636 0.0197 �0.0199 0.0372 �0.0420
Median �0.4693 0.4999 �0.9212 1.0634 0.0193 �0.0199 0.0371 �0.0420
Std 0.3787 0.1921 0.2279 0.2304 0.0098 0.0050 0.0058 0.0060
Mad1 0.3794 0.1939 0.2273 0.2308 0.0098 0.0051 0.0058 0.0060
Mad2 0.3823 0.1980 0.2296 0.2306 0.0104 0.0054 0.0059 0.0061

Simulation 2
Truth �0.5 0.5 �1 1 0.1 �0.1 0.2 �0.2
Mean �0.4977 0.5024 �0.9928 1.0195 0.1008 �0.1009 0.1964 �0.2069
Median �0.4972 0.5034 �0.9915 1.0181 0.1013 �0.1007 0.1964 �0.2071
Std 0.2221 0.1136 0.1363 0.1384 0.0278 0.0147 0.0180 0.0188
Mad1 0.2205 0.1139 0.1365 0.1371 0.0276 0.0147 0.0179 0.0187
Mad2 0.2123 0.1114 0.1386 0.1383 0.0277 0.0143 0.0179 0.0183

We report mean, median, standard deviation (Std), mean absolute deviations (Mad1), and median
absolute deviation (Mad2).

two are continuous and two are discrete. Specifically, we generated Z1 from a uniform distribution
between Œ�0:5; 0:5�, Z2 from a uniform distribution between Œ�1; 1�, Z3 from a Bernoulli distribution
with probability 0.5 to be one, and Z4 from a Bernoulli distribution with probability 0.4 to be one. We
generated our at-risk probability p from a Bernoulli type distribution, where p D 1 with probability 0.3
and p D 0:5 with probability 0.7. This is approximately the distribution of the at-risk indicators in the
COHORT data. We generated the HD onset time following two different models. The first model is the
model in [11] presented in (2), while the second one has the true ˛ functions being

˛1.x/ D 5 logf.1 C x/g; ˛2.x/ D expfsin.�x � �=2/ C 0:1g:
Note that the second model thus has monotonically increasing ˛.x/ functions. We further generated the
censoring times from uniform distributions for both models, so that the censoring rate is approximately
65%, again reflecting the scenario of the COHORT study data structure.

Table I and Figure 1 provide the simulation results for ˇ and ˛, respectively, where the bandwidth is
chosen via cross-validation, that is, maximizing

nX
iD1

�
�i log

h
f

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ �i .Xi ; h/

oi
C .1 � �i / log

h
1 � pi F

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ �i .Xi ; h/

oi�

as a function of h. Here, Ǫ �i .Xi ; h/ means that we estimate ˛.x/ at x D Xi using bandwidth h and all
the data except the i th observation. From the results, we can see that in both models, the nonparametric
modeling allows us to retrieve the shape of the ˛ functions reasonably well, and the estimation of ˇ

has small bias. It is interesting to note that the estimation procedure in the second simulation model
seems to perform better than in the first model, in the sense that the biases are much smaller across all
parameters in ˇ in model 2. In addition, the estimation variance is smaller in absolute value in model
2 for all ˇ components that appear in the intercept term, and it is also smaller in relative value for all
ˇ components that appear in the slope term. Furthermore, the biases and confidence bands for ˛ are
also narrower in simulation model 2. The similarity between the mean and the median of the estimates
for ˇ, as well as between the standard deviation, the mean absolute deviation, and the median absolute
deviation, indicates that the computation in both models is quite stable.

4. Application to Cooperative Huntington’s Observational Research Trial data

We now analyze the COHORT data that motivated this work. As introduced in Section 1, COHORT is
an observational study collecting genetic (e.g., CAG repeat length) and clinical data on symptomatic and
pre-manifest HD patients (probands) and clinical data on their family members and care givers. In the
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COHORT study, ascertainment of probands does not depend on family history [5]. The probands include
subjects clinically diagnosed with HD or subjects who pursued genetic testing prior to baseline, carry
an CAG expanded allele, but did not have clinically diagnosed HD. It is known that HD is a dominant
genetic disease (e.g., having one expanded allele is sufficient to cause HD) [16]. Subjects with a CAG
repeat length >36 are considered to be HD mutation positive and have highly elevated risk of developing
the disease, while subjects with CAG repeat length <36 do not develop HD [2, 17, 18]. In this analysis,
each proband participant has his or her CAG repeat value between 41 and 56 (hence at risk of HD with
the at-risk probability p D 1).

For family members of the proband, as discussed in Section 1, no blood sample was collected. Thus,
for those who have not experienced HD, it is unknown whether they share the same mutation allele with
the proband. Family members’ HD onset information was collected through a family history interview
administered to the probands. All the first-degree relatives with available family history information are
included in the analysis. These relatives are not selected based on their HD status or possible mutation
carrier status, so there is little obvious ascertainment issue for including relative data. There are 34%
parents, 38% siblings, and 28% children. The distribution of the at-risk probabilities in the whole sam-
ple is 1196 individuals having p D 1 and 2768 having p D 0:5. This yields 3964 observations. Here, we
assume that inclusion of a family member in the study is independent of the family member’s risk status.
Note that among the 1196 individuals, some are relatives who developed HD; hence, we can obtain their
CAG status under the assumption of no interference, and thus, they share the same repeat length as their
probands. The onset times in the COHORT data range from 11 to 82, with a censoring rate about 19%
in probands and 62% overall. Some of the relatives are censored if they have not experienced HD at the
time of family history interview. The censoring rate in family members depends on the relative type.
Because children are younger, they are more likely to have not experienced HD especially children of
probands with shorter CAG repeats. We account for the covariate gender by including it in Z.

We analyzed the COHORT data using model (3) and the method described in Section 2.2, with the
bandwidth 1.33, selected through a cross-validation procedure. Figure 2 provide the estimated ˛.x/ and

42 44 46 48 50 52 54 56
−20

−15

−10

−5

x: CAG length

α 1
(x

)

COHORT study: intercept

42 44 46 48 50 52 54 56
0.1

0.2

0.3

0.4

0.5

0.6

0.7

x: CAG length

α 2
(x

)

COHORT study: slope

Figure 2. Plots of the estimated (solid) curves of the intercept ˛1.x/ (upper left) and slope ˛2.x/ (upper right)
and ˛1.x/C˛2.x/t for t D 15; 20; 25; : : : ; 80 (lower) in Cooperative Huntington’s Observational Research Trial
(COHORT) data. The dashed curves contain the median, 5% quantile and 95% quantile of the 1000 bootstrap

estimation results.
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their confidence intervals. We can see that the estimation of ˛.x/ is much more reliable for CAG length
value x < 48 than for CAG length value x > 48. This is because the majority of the COHORT obser-
vations contain relatively small (< 48) CAG length values. Although the slope function (i.e., ˛2.x/)
exhibits an increasing trend, it is not sufficient to confirm that it is indeed monotone especially in the
large CAG length region, where the estimation variability is very high. At the onset time ranging from
t D 15 to t D 80, the intercept and slope functions translate to a set of functions ˛1.x/ C ˛2.x/t , which
appear to show an increasing relation with x for x between 41 and 50, while they then slightly deviate
from this trend for a CAG length value beyond 50. This suggests that in general the cumulative risk of
HD onset by age t increases with longer sequence of CAG repeat length across different values of t .

Comparing the estimated intercept and slope functions with the plots in Figure 1 with parameters fitted
in [11] suggests that the intercept and slope components can be different from what are estimated from
the nonparametric method here. To better compare the parametric model of [11] and our nonparametric
model, while eliminating the effect of using different data, we re-fit the exponential linear model (1) with
the COHORT data stratified by gender. The fitted parametric functions are

�.x/ D 16:92 C exp.7:90 � 0:103x/; s.x/ D p
44:49 C exp.13:64 � 0:225x/

for women and

�.x/ D 19:08 C exp.8:73 � 0:125x/; s.x/ D p
12:40 C exp.13:63 � 0:213x/

for men. In the left panel of Figure 3, we plot the estimated CDF, OF .t; x/, as a function of t at different
values of CAG repeats x using both the parametric and the nonparametric methods in women. The
figures for men show similar trend and are therefore omitted. Comparing results obtained under a non-
parametric model with that of a parametric model, we see that at a given CAG repeat length, the shapes
of the estimated CDFs are similar, which is expected because at each value of x, model (1) belongs to
the class of nonparametric/semiparametric models used here. However, we do not assume a parametric
relationship of F.t; x/ across different values of x, and therefore, our model is less restrictive. The fitted
values of the CDFs differ, especially for higher CAG length values (left curves). The largest difference
appears to be when the CAG repeat length is 54, where the cumulative risk is estimated to be slightly
higher with the nonparametric method than the parametric method.

The right panel of Figure 3 shows OF .t; x/ as a function of CAG repeats x at different values of
age t . It is clearly seen from the figure that the CAG length has a larger influence on cumulative risk for
the middle age range (e.g., between 25 and 65). By age 75 years, almost all subjects with a CAG length
greater than 40 will develop disease regardless of their actual CAG repeats (cumulative risk approxi-
mates 100%). By age 65 years, subjects with a CAG length greater than 45 will develop disease. At
the ages plotted in Figure 3, the parametric model imposes a constraint of F.t; x/ being an increasing
function of x. Although there is such an increasing trend in general, it is not necessarily supported by the

Figure 3. Plots of the OF .t; x/ from Cooperative Huntington’s Observational Research Trial (COHORT) data
analysis as a function of t at x D 42; 44; 46; � � � ; 54 (left) and as a function of x at t D 15; 25; 35; : : : ; 75 (right)
in women. Plots of men are similar and therefore omitted. We estimate the solid curves and the dashed curves

from the nonparametric model and the parametric model, respectively.
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data at certain local ranges, especially for younger ages such 15, 25, and 35 years (lower three curves) as
shown from fitting a more flexible semiparametric model; for certain ranges of CAG repeat values, the
cumulative disease risk F.t; x/ may be a constant and does not necessarily increase with x. Therefore,
the impression that a longer sequence of CAG repeats increases risk of disease at any given age does not
necessarily hold and needs to be investigated further in future studies especially in the population with
more extreme lengths of CAG repeats.

In the right panel of Figure 3, there seems to be a plateau effect for large t . This is due to the nature of
cumulative risk function F.t; x/ for HD subjects with expanded CAG repeats. It is suggested that most
subjects at risk of HD will develop the disease by a certain age regardless of the CAG repeats length.
Therefore, when t is large, say t D 75, F.t; x/ approaches one quickly for any fixed x and creates a
visual plateau effect.

Regarding the gender effect, our analysis shows an estimate of Ǒ
1 D 0:3387 and Ǒ

2 D �0:0055, with
the standard errors 0.3517 and 0.0078, respectively. This indicates that gender is not a significant risk
factor for HD onset, which agrees with the current clinical literature.

5. Discussion

We have developed a flexible partially linear varying-coefficient model under the logit link function to
model the onset of Huntington’s disease. Existing parametric models are parsimonious and efficient if
the functional form is correctly specified. However, in practice, there is usually not sufficient biological
information to suggest a particular parametric model to be correct. For example, the logistic–exponential
model with six parameters [6] may be somewhat arbitrary. In contrast, the nonparametric approach pro-
posed here is more flexible and not subject to model misspecification. It is also useful for revealing the
underlying functional relation and constructing goodness-of-fit test for parametric models. The proposed
methods here are sufficiently general to be applied to other known link functions through a similar back-
fitting maximization procedure. The methods account for random censoring and take advantage of the
family history of disease information reported by the study participants without requiring the mutation
status of the family members to be known.

Here, we assumed Mendelian transmission of CAG repeat length without interference so that the
CAG length does not change from parents to offspring. In reality, CAG lengths can vary somewhat
among family members, and those with paternal inheritance have, on average, a slightly longer stretch
of CAG repeats than their fathers. A possible explanation may be that there are many more biological
opportunities for the CAG repeat length to change in a paternal process of sperm formation than in a
maternal process of egg formation [6]. Although these processes have been studied extensively [19],
there are no validated population genetics models for such processes. Assuming the CAG length does
not change from father to offspring may lead to a slightly lower estimated risk for affected fathers of
probands. The transmission from mother to offspring is thought to be more stable [19].

Our methodology relies on the assumption of no ascertainment bias in recruiting probands. We
develop all the estimation and inference under this assumption. The issue of ascertainment bias is best
treated in the sampling design stage (e.g., selecting a random sample of probands from the population),
and adjusting for potential ascertainment bias in the estimation stage needs to be treated separately. The
COHORT study did not recruit probands through a positive family history, which avoided one of the
major sources of ascertainment bias.

There are several reasons the estimated CDFs obtained here are different from [11] other than that we
do not assume an exponential-linear form of logitfF.t; x/g. The AAO for probands in COHORT is age
at diagnosis of HD, while in [11], it was earliest age at which a clinician observed an irreversible objec-
tive sign of the illness. This may occur earlier than the point at which an actual diagnosis of manifest
HD is given. Thus, the two versions of AAO may be slightly different. Furthermore, here, we included
family history information in the relatives in the analysis, whereas Langbehn et al. [11] focus only on
proband participants. Also, the AAO for the family members in COHORT study is the AAO of the first
symptom of HD, potentially reported by a subject, not necessarily by the clinician. Although including
family members’ AAO data increases the sample size, a practical limitation is that relative data may be
less reliable than the data directly collected from the probands. Thus, if additional information can be
obtained to ascertain the potential uncertainty involved in a relative’s AAO information, then we can
pursue further analysis incorporating such randomness.

Lastly, we present some final remarks about the COHORT data analysis. One reason that prevents us
from concluding that a larger CAG length value is associated with an increased risk of earlier HD onset
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across all ages is the absence of other covariates. There can be other risk factors that affect the age-
specific risk of HD onset. Because data on these factors are unavailable (especially in family members),
we cannot incorporate them into the model, and this could distort the estimation of a.x/, especially if
these factors are correlated with CAG repeat length as well. Because in practice, it is often difficult to
obtain these covariates especially for relatives, modeling and studying the potential association of these
covariates and the CAG length values are of importance. Such knowledge will allow us to treat the rel-
atives’ risk factors as missing covariates, and develop appropriate methods to make use of the covariate
information on the proband and handle such problems in the missing covariate framework.

Although the work is motivated from COHORT study, we can use the nonparametric/semiparametric
methodology developed based on the likelihood here in other studies with a similar kin–cohort design,
for example, the studies reviewed in [20] on estimating risk of LRRK2 mutation on Parkinson’s disease.

Appendix

Proof of Theorem 1

We provide only a sketch of the proof. Claeskens and Van Keilegom [21] and Chen et al. [14] have
given precise conditions that justify our calculations and the general backfitting algorithm.

We assume that X has compact support and that its density function is positive on the support. We
also assume that Ǫ .x; ˇ/ has the usual properties uniformly in x in neighborhoods of fˇ; ˛.�/g, and in
particular that Ǫ .x; ˇ/ D ˛.x/ C op.n�1=4/ uniformly in x, this follows because nh4 ! 0.

Usual expansion around ˇ yields

0 D n�1=2

nX
iD1

S ˇ

n
Yi ; Xi ; Z i ; Ǒ ; Ǫ

�
Xi ; Ǒ �o

D n�1

nX
iD1

	
S ˇˇfYi ; Xi ; Z i ; ˇ; Ǫ .Xi ; ˇ/g C S ˇ˛fYi ; Xi ; Z i ; ˇ; Ǫ .Xi ; ˇ/g @ Ǫ .Xi ; ˇ/

@ˇT




p
n. Ǒ � ˇ/ C n�1=2

nX
iD1

S ˇfYi ; Xi ; Z i ; ˇ; Ǫ .Xi ; ˇ/g C op.1/

D n�1

nX
iD1

	
S ˇˇfYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g C S ˇ˛fYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g @˛.Xi ; ˇ/

@ˇT




p
n

� Ǒ � ˇ
�

C n�1=2

nX
iD1

S ˇfYi ; Xi ; Z i ; ˇ; Ǫ .Xi ; ˇ/g C op.1/:

(A.1)

Note that for all ˇ�, EŒS ˛fY; X; Z ; ˇ�; ˛.X; ˇ�/g j X� D 0, hence taking derivative with respect to ˇ�,
we have

0 D EŒS ˛ˇ fY; X; Z ; ˇ�; ˛.X; ˇ�/g j X� C EŒS ˛˛fY; X; Z ; ˇ�; ˛.X; ˇ�/g j X�
@˛.X; ˇ�/

@ˇ�T :

Letting ˇ� D ˇ, we have

@˛.X; ˇ/

@ˇT D �EŒS ˛˛fY; X; Z ; ˇ; ˛.X; ˇ/g j X��1EŒS ˛ˇ fY; X; Z ; ˇ; ˛.X; ˇ/g j X� D ˛ˇ .X/:

Inserting this relation in (A.1), we have

0 D n�1

nX
iD1

�
S ˇˇfYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g C S ˇ˛fYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g˛ˇ.Xi /

�
p

n
� Ǒ � ˇ

�
C n�1=2

nX
iD1

S ˇ fYi ; Xi ; Z i ; ˇ; Ǫ .Xi ; ˇ/g C op.1/

D Fn1=2. Ǒ � ˇ/ C n�1=2

nX
iD1

S ˇfYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g

C n�1=2

nX
iD1
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Thus, we obtain the expansion

�Fn1=2
� Ǒ � ˇ

�
D n�1=2

nX
iD1

�
S ˇ fYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g

C S ˇ˛fYi ; Xi ; Z i ; ˇ; ˛.Xi ; ˇ/g f Ǫ .Xi ; ˇ/ � ˛.Xi /g
� C op.1/:

(A.2)

Performing standard expansion with local constant estimation, taking into account that nh4 ! 0 and
nh2 ! 1, we have
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(A.3)

Note that

EŒKh.X � x0/S afY; X; Z ; ˇ; ˛.X/g� D E.Kh.X � x0/EŒS afY; X; Z ; ˇ; ˛.X/g j X�/ D 0;

and

EfKh.X � x0/S a.Y; X; Z ; ˇ; a/g D
Z
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(A.4)
In the last equality, we used the fact that S a.Y; X; Z ; ˇ; a/ D S afY; X; Z ; ˇ; ˛.X/g at X D x0 and
E f S ˛fY; X; Z ; ˇ; ˛.X/g j X � D 0.

In addition, we have
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Here, in the last equality, we used S a.Y; X; Z ; ˇ; a/ D S a.Y; X; Z ; ˇ; ˛.X/g at X D x0 andR
tK2.t /dt D 0. Thus,

n�1

nX
iD1

Kh.Xi � x0/ŒS a.Yi ; Xi ; Z i ; ˇ; a/ � S afYi ; Xi ; Z i ; ˇ; ˛.Xi /g�

D O.h2/ C Opf.h=n/1=2g D op.n�1=2/

when nh4 ! 0. Thus, we have obtained

Ǫ .x; ˇ/ � ˛.x/

D � 1
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C op.n�1=2/: (A.5)

Substituting the right-hand side of (A.5) into (A.2), we have

�Fn1=2
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This completes the proof of Theorem 1. �

Proof of Theorem 2

Because Ǒ has a root-n convergence rate, we replace Ǒ by ˇ inside Ǫ . Working through the same
derivation following (A.3), while maintaining the bias term in (A.4), we can obtain a refined version of
(A.5), which is exactly the expansion in Theorem 2.

Because S afY; X; Z ; ˇ; ˛.X/g is a score function, we have

EŒS afY; X; Z ; ˇ; ˛.X/gS T
afY; X; Z ; ˇ; ˛.X/g j x� D �EŒS aafY; X; Z ; ˇ; ˛.X/g j x�:

This yields the variance to beR
K2.t /dt

nhfX .x/
EŒS afY; X; Z ; ˇ; ˛.X/gS T

afY; X; Z ; ˇ; ˛.X/g j x��1 C Of.nh/�1g

D �
R

K2.t /dt

nhfX .x/
�.x/ C o

˚
.nh/�1

�
:

This completes the proof of Theorem 2. �

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1369–1382

1381



Y. MA AND Y. WANG

Acknowledgements

A grant from National Institute of Neurological Disorders and Stroke (R01NS073671-01) and grants from the
National Science Foundation (DMS-1000354, DMS-1206693) supported this work. We thank the Huntington
Study Group for performing the COHORT study and making the data available and Cure Huntington’s Disease
Initiative for sponsoring COHORT.

References
1. The Huntington’s Study Group Investigators. A novel gene containing a trinucleotide repeat that is expanded and unstable

on Huntington’s disease chromosomes. Cell 1993; 72:971–983.
2. Walker FO. Huntington’s disease. Lancet 2007; 369:218–228.
3. Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. Journal

of Neurology, Neurosurgery & Psychiatry 1999; 66:52–56.
4. Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayán J,

Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella
J, Cha JH, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE,
De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham
J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K,
Thompson LM, Young A, Dure L, O’Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS Jr,
Landwehrmeyer B, U.S.-Venezuela Collaborative Research Project. Venezuelan kindreds reveal that genetic and envi-
ronmental factors modulate Huntington’s disease age of onset. Proceedings of the National Academy of Sciences 2004;
101:3498–3503.

5. Dorsey ER, Investigators HSGC. Characterization of a large group of individuals with Huntington disease and their
relatives enrolled in the COHORT study. PLoS ONE 2012; 7(2). Article ID e29522.

6. Chen T, Wang Y, Ma Y, Marder K, Langbehn DR. Predicting disease onset from mutation status using proband and family
data with applications to Huntington’s disease. Journal of Probability and Statistics 2012; 2012:Article ID 375935.

7. Wacholder S, Hartge P, Struewing JP, Pee D, McAdams M, Brody L, Tucker M. The kin-cohort study for estimating
penetrance. American Journal of Epidemiology 1998; 148:623–630.

8. Khoury M, Beaty H, Cohen B. Fundamentals of Genetic Epidemiology. Oxford University Press: New York, 1993.
9. Wang Y, Clark LN, Marder K, Rabinowitz D. Non-parametric estimation of genotype-specific age-at-onset distributions

from censored kin-cohort data. Biometrika 2007; 94:403–414.
10. Wang Y, Clark LN, Louis ED, Mejia-Santana H, Harris J, Cote LJ, Waters C, Andrews D, Ford B, Frucht S, Fahn S,

Ottman R, Rabinowitz D, Marder K. Risk of Parkinson’s disease in carriers of Parkin mutations: estimation using the
kin-cohort method. Archives of Neurology 2008; 65(4):467–474.

11. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and
penetrance for Huntington’s disease based on CAG length. Clinical Genetics 2004; 65:267–277.

12. Langbehn DR, Hayden MR, Paulsen JS, the PREDICT-HD Investigators of the Huntington Study Group. CAG-repeat
length and the age of onset in Huntington’s disease (HD): a review and validation study of statistical approaches. American
Journal of Medical Genetics 2009; 153:397–408.

13. Van Keilegom I, Carroll RJ. Backfitting versus profiling in general criterion functions. Statistica Sinica 2007; 17:797–816.
14. Chen X, Linton O, Van Keilegom I. Estimation of semiparametric models when the criterion function is not smooth.

Econometrica 2003; 71:1591–08.
15. Langbehn DR, Paulsen JS, the Huntington Study Group. Predictors of diagnosis in Huntington disease. Neurology 2007;

68:1710–1717.
16. Lee J-M, Ramos EM, Lee J-H, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross

CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ,
McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente
D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, PREDICT-HD study of the Huntington
Study Group (HSG), Landwehrmeyer GB, REGISTRY study of the European Huntington’s Disease Network, Myers RH;
HD-MAPS Study Group, MacDonald ME, Gusella JF, COHORT study of the HSG. CAG repeat expansion in Huntington
disease determines age at onset in a fully dominant fashion. Neurology 2012; 78(10):6990–695.

17. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A,
Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML,
Graham CA, Harper PS, Hedreen JC, Hayden MR. Phenotypic characterization of individuals with 30-40 CAG repeats in
the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39
repeats. American Journal of Human Genetics 1996; 59(1):16–22.

18. Nance MA, Seltzer W, Ashizawa T, Bennett R, McIntosh N, Myers RH, Potter NT, Shea D. ACMG/ASHG statement
laboratory guidelines for Huntington’s disease genetic testing. American Journal of Human Genetics 1998; 62:1243–1247.

19. McMurray C. Mechanisms of trinucleotide repeat instability during human development. Nature Reviews Genetics 2010;
11:786–799.

20. Goldwurm S, Tunesi S, Tesei S, Zini M, Sironi F, Primignani P, Magnani C, Pezzoli G. LRRK2-G2019S penetrance in
Parkinson’s disease. Movement Disorders 2011; 26:2144–2145.

21. Claeskens G, Van Keilegom I. Bootstrap confidence bands for regression functions and their derivatives. Annals of
Statistics 2003; 31:1852–1884.1382

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1369–1382


