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Abstract: We propose a general class of quantile residual life models, where a spe-

cific quantile of the residual life time, conditional on an individual has survived

up to time t, is a function of certain covariates with their coefficients varying over

time. The varying coefficients are assumed to be smooth unspecified functions of

t. We propose to estimate the coefficient functions using spline approximation.

Incorporating the spline representation directly into a set of unbiased estimating

equations, we obtain a one-step estimation procedure, and we show that this leads

to a uniformly consistent estimator. To obtain further computational simplification,

we propose a two-step estimation approach in which we estimate the coefficients

on a series of time points first, and follow this with spline smoothing. We compare

the two methods in terms of their asymptotic efficiency and computational com-

plexity. We further develop inference tools to test the significance of the covariate

effect on residual life. The finite sample performance of the estimation and testing

procedures are further illustrated through numerical experiments. We also apply

the methods to a data set from a neurological study.

Key words and phrases: Censored data, nonparametric regression, quantile regres-

sion, residual life, spline.

1. Introduction

Residual life is defined as the remaining time to event given the fact that the
survival time T of a patient is at least t, i.e., T − t|T ≥ t. In many clinical stud-
ies, especially when the associated diseases are chronic or/and incurable, knowing
residual life is the major concern to patients. Modeling and estimating the mean
of residual life has generated a large literature, for example, Oakes and Dasu
(1990, 2003), Chen and Cheng (2005, 2006), Chen, Jewell and Cheng (2005),
Müller and Zhang (2005), and Chen (2007). Compared with mean residual life
models, quantile residual life models provide more complete and informative in-
terpretation, especially when the distribution of the residual life is non-symmetric
or skewed. Researches in this area are fairly recent, and include Jeong,
Jung, and Costantino (2008), Jung, Jeong, and Bandos (2009), and Ma and
Yin (2010). The quantile residual life models considered in the current literature
focus on modeling and estimation at a single fixed t. Our interest here is in
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investigating the covariate effects along a range of times t. We take the covariate
effects to be time variant, smooth functions of t in a varying coefficient quantile
residual life model.

Our research is initially motivated by a clinical study on MELAS (mitochon-
drial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), which
is a rare genetically-inherited neuroglial disease. Once the disease starts, MELAS
patients suffer from progressive encephalopathy and stroke-like episodes that lead
to disability and early death. There is as yet no effective treatment for this dev-
astating condition, hence at each patient’s hospital visit, both the patient and
the clinician are mainly interested in how much longer the patient can survive.
When a patient is known to be a carrier of such genotype as yet without the
disease, the time to disease onset becomes of central interest. Quantile analysis
is more informative comparing to the classical mean approach. For example, the
patients might be more interested in knowing how long their remaining time is
with a 90% probability, rather than in knowing the average residual time. Our
proposed method answers such questions, taking into consideration the patient’s
characteristics.

We first represent the coefficient functions in the quantile residual life models
by normalized B-splines, and estimate the spline coefficients using the residual
life model jointly at different time points. This is what we refer to as one-step
estimation. A second approach is a modification, in which we estimate the time
varying coefficient function values at a set of different time points first, and
then use a spline representation to approximate the coefficient functions based
on estimated function values. This is what we refer to as two-step estimation.
A similar two-step estimation is also used in a longitudinal data setting in Fan
and Zhang (2000). We show a close link between the two estimation procedures,
and point out computational advantage of the two-step procedure. We also
study the large sample properties of the estimation procedures. To the best of
our knowledge, this is the first time the residual life model has been considered
simultaneously over a range of times.

The remainder of the paper is organized as follows. In Section 2, we present
the quantile residual life model in its general form and show that the model is
well-defined. We introduce two estimation procedures in Section 3. The one-step
estimation procedure is discussed in Section 3.1, where we establish its root-n
consistency and asymptotic normality. We further develop a simplified two-step
estimation procedure in Section 3.2, and point out how the two estimation proce-
dures are related in Section 3.3. Testing procedures are subsequently developed
in Section 4, and we perform numerical analysis through simulation studies and
a data analysis on the MELAS study in Section 5. We finish the paper with
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some discussion in Section 6, and collect the technical details and proofs in a
web Appendix.

2. Censored Quantile Residual Life Model

Let (Xi, Ti, Ci), i = 1, . . . , n, be identical and independently distributed
(i.i.d.), where Xi is a covariate vector, Ti is the event (death) time, and Ci is a
competing censoring time. Assume the censoring time Ci to be independent of
the event time Ti and the covariate Xi. Let Yi = min(Ti, Ci) and Di = I(Ti ≤ Ci),
the binary index of censoring. As a typical situation in survival data analysis,
we take the actual observations to be (Xi, Yi, Di) for i = 1, . . . , n. For nota-
tional convenience, we assume the observations are sorted in increasing order,
0 < Y1 ≤ · · · ≤ Yn. The quantile residual life model we consider has the general
form

Qτ (Ti − t|Xi, Ti ≥ t) = m{Xi, β(t)}, t ≥ 0, (2.1)

where Qτ (T |A) denotes the τth conditional quantile function of a random variable
T conditional on an event A, τ is a quantile level ranging between 0 and 1, and
t is the time at which the residual life is considered. Here, m(·) is a parametric
function of covariate X, while the parameter β(t) = {β1(t), β2(t), . . . , βp(t)}T

consists of p unknown smooth functions of t. Model (2.1) basically assumes that,
given the covariate Xi, and the fact that Ti > t, the τth conditional quantile
of the residual life Ti − t can be characterized by a parametric function m with
its coefficient β(t) varying with time t. Our main interest is in estimating β(t),
as well as testing the effect of certain components in the covariate vector X. A
special case of the model is the familiar linear varying-coefficient model,

Qτ (Ti − t|Xi, Ti ≥ t) = XT
i β(t), t ≥ 0.

Here we let the first component of Xi be 1, hence the model includes a time-
dependent intercept term. By taking into consideration that β(t) is a smooth
function of t, we can obtain a unified presentation of the residual life over a
period of time, which is of interest in many applications. Moreover, compared
to estimating the residual life at given times separately, we can achieve a more
efficient estimator by estimating β(t) globally.

Before proceeding to the estimation of β(t), we first establish that there
indeed exists a survival model that satisfies the quantile restriction in (2.1),
simultaneously for all t ≥ 0. Note that if the model is only required to hold at
an arbitrary fixed t, identifiability is not an issue. If S(t|X) = Pr(T ≥ t|X) is
the survival function of T given the covariate X, then (2.1) can be written as

S[t + m{X, β(t)}|X] = (1 − τ)S(t|X)
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for any t ≥ 0. This functional equation can be recognized as a special case
of a Schröder’s equation, and a solution for S exists as long as for all t ≥ 0,
m{X, β(t)} is positive and continuous with respect to t, and t + m{X, β(t)} is
strictly increasing as a function of t (Gupta and Langford (1984)). These are
moderate conditions and are easily satisfied for a large class of m functions.
Hence the model in (2.1) is well defined and self-coherent. In the next section,
we proceed to describe the estimation algorithm for β(t).

Here and throughout the text, the op or Op notation is component-wise in
the case of vectors; ‖ · ‖ refers to the L2 or l2 norm according to the content.

3. Estimation

3.1. One-step estimation of β(t)

In this section, we propose one-step estimation equations for β(t) based
on normalized B-spline approximation. Specifically, we take b(t) = [π1(t), . . .,
πkn(t)]T as kn B-spline basis functions given a set of internal knots and the order
of spline, and then approximate β(t) by β(t) ≈ αb(t), where α is a p × kn

matrix of unspecified parameters. Although many other nonparametric methods
exist in the literature, we use B-spline approximation due to its convenience in
implementation. In this notation, (2.1) can be approximated by

Qτ (Ti − t|Xi, Ti ≥ t) = m{Xi, αb(t)}, t ≥ 0.

For a fixed basis b(t), this can be treated as a parametric model. At any fixed
t = t0 and for a general m function, a slight modification of the estimator in
Jung, Jeong, and Bandos (2009) yields the estimating equation

n∑
i=1

∂m{Xi, αb(t0)}
∂α

(
I [Yi ≥ t0 + m{Xi, αb(t0)}]

G [t0 + m{Xi, αb(t0)}]
−(1−τ)

I(Yi≥ t0)
G(t0)

)
=0. (3.1)

Here α is a length pkn vector formed by concatenating all the rows of α, G is the
censoring process survival function, G(t) = Pr(C ≥ t). In practice, G is typically
estimated by a Kaplan-Meier estimator.

A careful inspection of ∂m{Xi, αb(t0)}/∂α reveals that it equals ∂m{Xi,
αb(t0)}/∂{αb(t0)} ⊗ b(t0), where ⊗ denotes a Kronecker product. Hence (3.1)
includes only p independent estimating equations, hence does not suffice to es-
timate all the pkn elements in α. However, since (2.1) holds for all t > 0,
one can estimate α by assembling a collection of equations of type (3.1) at
(tj : j = 1, . . . , J), a set of distinctive values of the observed Yi’s. Specifically, we
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propose to obtain α through minimizing

s(α) =
J∑

j=1

{ n∑
i=1

∂m{Xi,αb(tj)}
∂{αb(tj)}

(I [Yi ≥ tj + m{Xi,αb(tj)}]
Ĝ [tj + m{Xi, αb(tj)}]

−(1 − τ)
I(Yi ≥ tj)

Ĝ(tj)

)}⊗2
, (3.2)

where v⊗2 denotes vTv for any vector v. Using α̂ to denote the estimate obtained
from minimizing (3.2), the estimator of β(t) is β̂(t) = α̂b(t). Obviously, several
tuning parameters need to be decided in this procedure. First, to select the num-
ber of basis functions kn, we could use some standard selection criterion such as
BIC. Specifically, we estimate α̂(kn) for a fixed candidate kn, and form s{α(kn)}.
We then select the optimal kn through minimizing s{α(kn)} + log(n)kn. In the
following, we discuss the selection of the other tuning parameters J and the tj ’s
that are more specific to the residual life model.

The choice of tj’s. One can choose an arbitrary set of times t1, . . . , tJ in (3.2)
as long as at least kn of the J corresponding equations of the form (3.1) are lin-
early independent, for then the estimator given in (3.2) is uniquely defined. Note
that this requires that J ≥ kn, so the number of distinctive event/censor times is
larger than the number of B-spline basis functions. Our subsequent theoretical
development further requires that there exist ε > 0 so that J = o(n1/2−ε). A
natural choice is to let t1 = 0 and tj+1 = Yj , the jth event or censoring time, for
j = 1, . . . , J −1. Since the distribution of the Yi is usually continuous over [0, T ],
this choice generally satisfies the requirement. Computationally, when tj in-
creases, fewer observations contribute to the corresponding estimating equation.
In addition, the estimated Ĝ also becomes less reliable. Hence, we recommend
in practice to stop the summation over j in (3.2) at a value between kn and one
third of the total number of distinct Yi values. The same rule is also applied to
the two-step estimation approach introduced later in Section 3.2.

Asymptotic properties
In this section, we give the convergence rate and asymptotic distribution of

β̂(t) and α̂ obtained from minimizing (3.2). Let t = (t1, . . . , tJ) and

si{t,β(t), G}

=
∂m{Xi,β(t)}

∂β(t)

(
I [Yi ≥ t + m{Xi,β(t)}]

G [t + m{Xi, β(t)}]
− (1 − τ)

I(Yi ≥ t)
G(t)

)
,

fi{αb(t), G}

=

(
∂E

[
sT
i {t1, αb(t1), G}

]
∂α

, . . . ,
∂E

[
sT
i {tJ , αb(tJ), G}

]
∂α

)  si{t1, αb(t1), G}
...

si{tJ , αb(tJ), G}

 .
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It is easy to see that the estimator in (3.2) satisfies an estimating equation of the
form

n−1/2
n∑

i=1

fi{α̂b(t), Ĝ} = op(Jnε),

for any ε > 0. In what follows, we outline conditions under which we derive the
asymptotic properties of α̂.
A1 : The true time-varying coefficient vector β0(t) consists of p smooth functions
defined on a closed interval [0, T ], and each of them has a bounded rth derivative
with r ≥ 2.

Under Condition A1, there exists a B-spline approximation α0b(t) and a
constant C1 such that supt∈[0,T ] |β0(t) − α0b(t)| < C1k

−r
n (Schumaker (1981)).

A2 : The quantile function m(x,β) has a bounded second derivative with respect
to β.

Let

Sn{β(t)} =
n∑

i=1

si{t, β(t), G}

=
n∑

i=1

∂m{Xi, β(t)}
∂β(t)

(
I [Yi ≥ t + m{Xi, β(t)}]

G [t + m{Xi, β(t)}]
− (1 − τ)

I(Yi ≥ t)
G(t)

)
,

be the functional estimation equations for β(t) (without B-spline approxima-
tions).
A3 : The functional estimating equation ESn{β(t)} = 0 has a unique solution
β0(t). In addition, there exist a compact set Ω ∈ Rp+1 such that the p curves
contained in β0(t) form an interior point of Ω. Note that this implies each curve
in β0(t) is uniformly bounded.
A4 : The censoring survival function G(t) and the event survival function S(t)
are differentiable; g(t) = G′(t), and s(t) = S′(t) are bounded away from zero and
infinity and are bounded for all t ∈ [0, T ].
A5 : maxi supt E‖si{t,β(t), G}‖2 = O(1).
A6 : The first derivative of each component of fi{β(t), G} with respect to G is
uniformly bounded. That is, there exists a constant C > 0 such that |∂fi{β(t),
G}/∂G| < C for all β(t), G and i = 1, . . . , n.

With those conditions, we summarize the asymptotic properties of α̂ in two
theorems. The proofs are deferred to a web Appendix.

Theorem 1. Under A1−A6, if the number of B-spline basis function, kn, sat-
isfies n1/4r << kn << n1/4 for r ≥ 2, then

‖α̂ − α0‖2 = Op

(kn

n

)
. (3.3)
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It follows from the Theorem 1 thatβ̂(t) is uniformly consistent for t ∈ [0, T ] ,
i.e. supt∈[0,T ] ‖β̂(t) − β(t)‖2 = Op(kn/n). We now define the following notations
relate to the asymptotic distribution of α̂. Let

M =

(
∂E

[
sT
i {t1, α0b(t1), G}

]
∂α

, . . . ,
∂E

[
sT
i {tJ , α0b(tJ), G}

]
∂α

)
,

D = cov
[{

νT
i (t1, β1, G), . . . , νT

i (tJ , βJ , G)
}T

]
,

where

νi(tj , βj , G)

= si(tj , βj , G) − q2(βj , tj)
∫ tj

−∞
h−1(s) {dI(Yi ≤ s,Di = 0) − I(Yi ≥ s)dΛG(s)}

+
∫ ∞

−∞
G−1(s)

∫ s

−∞
h−1(v) {dI(Yi ≤ v,Di = 0) − I(Yi ≥ v)dΛG(v)} dq1(βj , s).

Here h(s) = E(Y1 ≥ s), ΛG is the cumulative hazard function of the censoring
process, and

q1(βj , s) = E

[
∂m (Xi, βj)

∂βj
I {tj + m (Xi, βj) ≤ min(s, Yi)}

]
,

q2(βj , tj) = (1 − τ)G(tj)−1E

{
I(Yi ≥ tj)

∂m (Xi, βj)
∂βj

}
.

The difference of si and νi is a consequence of the Kaplan-Meier estimation of
G(t). With this notation, the following theorem summarizes the asymptotic
distribution of α̂.

Theorem 2. Under A1−A6, for any η ∈ Rpkn and ‖η‖ = 1, n1/2ηT(α̂ −
α0)/σ → N(0, 1) in distribution when n → ∞, where σ2 = ηTVη, and V =
BDBT

, B = (MMT)−1M .

From Theorem 2, we can see that estimating the censoring process survival
function G(t) does not bring additional bias while it has an impact on the esti-
mation variance. With β̂(t) = α̂b(t) = α̂

T{Ip ⊗ b(t)}, it follows from Theorem
2 that, for any given time t, β̂(t) is asymptotically normal with mean β(t) and
variance-covariance matrix {Ip ⊗ b(t)}TV{Ip ⊗ b(t)}/n.

The one-step estimation procedure introduced here requires intensive com-
putation, since the dimension of the unknown parameter α in (3.2) is pkn. In
Section 3.2, we propose a two-step approach to reduce the computational burden.
A discussion comparing the two approaches is provided in Section 3.3.
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3.2. An alternative two-step estimation approach

It is worth noting that the nonparametric function estimation for β(t) differs
from the conventional one in an important aspect. In a classical regression, β(t)
contributes to a relation as a function of all t’s in a valid range; in the residual
life model, β(t) contributes to a relation only as a function value at a fixed t. At
different tj , β(tj) is subject to a different requirement. Other than β(t) being
sufficiently smooth, β(tj) at different tj values are not inherently related via these
requirements. Thus, intuitively, one can estimate β(t) at a large set of t values
to obtain {tj , β̌(tj)}, j = 1, . . . , J , and then use these as pseudo observations to
perform a nonparametric fitting using, say, splines.

To be precise, select tj , j = 1, . . . , J , as in Section 3.1. At each tj , obtain
β̌(tj) from

n∑
i=1

si{tj ,β(tj), Ĝ}

=
n∑

i=1

∂m{Xi, β(tj)}
∂β(tj)

(
I [Yi ≥ tj + m{Xi,β(tj)}]

Ĝ [tj + m{Xi, β(tj)}]
−(1−τ)

I(Yi ≥ tj)

Ĝ(tj)

)
= 0, (3.4)

then obtain an estimator of α from minimizing
∑J

j=1

{
αb(tj) − β̌(tj)

}⊗2
. The

minimizer α̃ has the explicit form

α̃ =

{
J∑

j=1

β̌(tj)bT(tj)

}{
J∑

j=1

b(tj)bT(tj)

}−1

.

As before, we construct the two-step estimator of β(t) using β̃(t) = α̃b(t).
Note that the estimator α̃ can be written as

α̃ =
J∑

j=1

Ip⊗

[{
J∑

j=1

b(tj)bT(tj)

}−1

b(tj)

]
β̌(tj) = C(β̌(t1)T, . . . , β̌(tJ)T)T, (3.5)

where

C ≡

(
Ip⊗

[{
J∑

j=1

b(tj)bT(tj)

}−1

b(t1)

]
, . . . , Ip⊗

[{
J∑

j=1

b(tj)bT(tj)

}−1

b(tJ)

])
,

and Ip stands for p-dimensional identity matrix. Since β̌(tj) → β(tj) for any
1 ≤ j ≤ J , as long as the B-spline basis is adequate, α̃b(t) is a consistent estimate
of the true coefficient function β(t). Let M = diag(∂E [si{t1, β(t1), G}]/∂β(t1)T,
. . ., ∂E [si{tJ , β(tJ), G}]/∂β(tJ)T),,
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Theorem 3. Under the regularity conditions of Theorem 1, for any η ∈ Rkn

and ‖η‖ = 1, we have n1/2ηT(α̃−α0)/σ → N(0, 1) in distribution when n → ∞,
where σ2 = ηTWη, where W = CM−1D(M−1)TCT.

Theorem 3 can be proved similarly as Theorem 2 by grouping J estimating
equations in (3.4) together and using the relation (3.5). We omit the proof.

As before, it follows from Theorem 3 that, for any given time t, β̃(t) is
asymptotically normal with mean β(t) and variance-covariance matrix {Ip ⊗
b(t)}TW{Ip ⊗ b(t)}.

3.3. Relation between one-step and two-step approaches

The two estimation approaches are essentially two ways of linking point-wise
curve estimation and the spline curve representation. Specifically, the one-step
estimation imposes the spline representation before forming an estimate, with α̂

obtained through a one-step optimization. In contrast, the two-step approach
forms an estimate at various time points first, then links the results to the spline
representation. In terms of computational cost, the one-step estimation is more
expensive, since it means solving a pkn-dimensional estimation equation, while
the two-step approach solves J separate p-dimensional estimating equations, fol-
lowed by a simple matrix-vector multiplication. Both estimators are consistent
and enjoy asymptotically normality. We now investigate in detail the estimation
efficiency of the two approaches.

Recall that V and W are limiting variance-covariance matrices for the one-
step estimator α̂ and two-step estimator α̃, respectively. The two matrices share
the same pivotal component D. To understand theit differences, we first establish
the association between M and M.

Let (MT)jl be the (j, l)th size p×kn block of MT, Mjj the (j, j)th size p×p

block of M, Cjl the (j, l)th size kn × p block of C, el the length p vector with ith
entry 1 and all others 0. Then

(MT)jl =
∂E{si(tj ,αb(tj), G)}

∂αT
l

= MjjelbT(tj),

Clj′ = eT
l ⊗

[{
J∑

j=1

b(tj)bT(tj)

}−1

b(tj′)

]
,

(MTC)jj′ = Mjj

p∑
l=1

elbT(tj)

(
eT
l ⊗

[{
J∑

j=1

b(tj)bT(tj)

}−1

b(tj′)

])

= bT(tj)

{
J∑

j=1

b(tj)bT(tj)

}−1

b(tj′)Mjj .
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Assembling the blocks of MTC, and defining a hat matrix

H = {b(t1), . . . ,b(tJ)}T

{
J∑

j=1

b(tj)bT(tj)

}−1

{b(t1), . . . ,b(tJ)},

we obtain the relationship between M and M that MTC = M(H⊗Ip). Therefore,

A(W−V)AT=M{MTCM−1D(M−1)TCTM −D}MT

=M{M(H⊗Ip)M−1D(M−1)T(H⊗Ip)TMT −D}MT

=MM{(H⊗Ip)M−1D(M−1)T(H⊗Ip)−M−1D(M−1)T}MTMT.

Consequently,W can be written as

W = {A−1MM(H ⊗ Ip)M−1}D{A−1MM(H ⊗ Ip)M−1}T,

while the component H ⊗ Ip is simply replaced by the identity matrix in the
expression for V. We conclude the following,

1. If J = kn, then W = V, and the two estimators are equivalent. For, in this
case, H = Ikn .

2. If J > kn, then W −V can have zero, positive, and negative eigenvalues, and
hence there is no definitive winner between the two estimators in terms of
efficiency.

In practice, a relative small kn is often sufficient to approximate the smooth
components in β(t). However, to fully utilize the model structure in (2.1), as
long as computational stability is retained, one would choose a large J . Thus,
J = kn almost never happens in reality. The two-step estimator has appealing
computational advantages over the one-step estimator and, at the same time,
is not inferior in terms of estimation efficiency. We hence recommend using
the two-step procedure in practice. In fact, both the one-step and the two-step
procedures can be improved through better weighting, as we now discuss.

Equivalence between optimized α̂ and α̃. We could view the one-step estima-
tor α̂ and the two-step estimator α̃ as special cases of two families of estimations.
First, instead of forming the sum of squares of the estimating equation terms,
we could form the sum of weighted squares using the Generalized Method of
Moments (GMM). We define a family of GMM estimator by

α̂W1 =arg min
α

 n∑
i=1

 si{t1, αb(t1), Ĝ}
. . .

si{tJ , αb(tJ), Ĝ}

T

W1

 n∑
i=1

 si{t1, αb(t1), Ĝ}
. . .

si{tJ , αb(tJ), Ĝ}

, (3.6)
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where W1 is a pJ × pJ-dimensional weight matrix. It is easy to see that, when
W1 = IpJ is the identity matrix, the GMM estimating equations at (3.6) reduce
those at (3.2), and consequently α̂ is a special case of a GMM estimator. Second,
we define a family of Weighted Least Squares (WLS) estimators by

α̃W2 = arg min
α


αb(t1) − β̌(t1)

. . .

αb(tJ) − β̌(tJ)


T

W2


αb(t1) − β̌(t1)

. . .

αb(tJ) − β̌(tJ)

 ,

where W2 is a pJ × pJ-dimensional weight matrix. Similarly, the two-step esti-
mator α̃ is a special case of an WLS estimator when W2 = IpJ is the identity
matrix.

It is well-known that the most efficient WLS estimator is reached when the
weight matrix W2 is the inverse of the variance-covariance matrix of β̌. i.e.
W2 = {M−1D(M−1)T}−1. The same results in Theorem 3 holds for the optimal
WLS estimator with limiting matrix W replaced by W̃ = (FMTD−1MFT)−1,
where F = {Ip ⊗ b(t1), . . . , Ip ⊗ b(tJ)}. On the other hand, the most effi-
cient GMM estimator is the one with W1 = D−1, the inverse of the variance-
covariance matrix of the estimating equations that invokes (3.1) at t1, . . . , tJ .
The resulting optimal GMM estimator has a limiting variance-covariance matrix
Ṽ = ((MD−1MT)−1 to the first order. It is not difficult to verify that M = FMT

to the first order, hence the estimation variance of the optimal one-step GMM
estimator is the same to the first order as the optimal two-step WLS estimator,
that is, they are effectively equivalent.

Although ideally a weighted approach should be used, it is not recommended
in practice, because the optimal weights involve density estimation in the quan-
tile regression framework. This is known to be unreliable. One could use the
bootstrap to generate the variance estimation, but it is computationally unde-
sirable. For these reasons we focus our discussion on the unweighed estimations
β̂(t) and β̃(t).

We summarize the differences between the two estimations as follows. First,
their constructions are different. The one-step estimation incorporates the spline
representations first to reduce the problem into a parameter estimation problem,
it then constructs different estimating equations at various times. Because the
number of parameters is likely smaller than the number of the resulting estimat-
ing equations, it falls in the category of GMM estimation. The two-step approach
estimates the function values at various individual time points, then links the re-
sults to the spline representation. Because the number of spline coefficients is
likely smaller than the function values obtained, this falls to the linear regression
category and calls for a LS criterion. Computational complexities are also differ-
ent. The two-step approach reduces a pkn-dimensional estimation equation to J
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p-dimensional estimations. Hence it is computationally less challenging and more
efficient. Finally, in terms of estimation variance, the two approaches are equally
efficient when the respective optimal weights are used. The proposed α̂ and α̃ use
equal weights, which leads to different efficiency losses. The efficiency loss of α̂

is the type of loss seen in the regression context with heteroscedastic error when
the error variance is treated as a constant. Hence the amount of loss in practice
depends on the error variance structure. The efficiency loss of α̃ is the type of
loss seen under the GMM framework when the performance difference of avail-
able estimation equations and their correlations are ignored. Hence the amount
of loss in practice depends on how different and how correlated these estimating
equations are. Neither of α̂ and α̃ is uniformly better than the other. When
we reduce the dimension of the estimation equations to the parsimonious case
of J = kn, the two estimators are again equivalent. Accordingly, we recommend
the two-step approach in practice.

4. Inference Tools

Once we obtain the estimate of β(t), the next step is to test the covari-
ate effect on the τth quantile of residual life. To this end, we write β(t) =
{βT

1 (t),βT
2 (t)}T, where β1(t) and β2(t) are p1- and p2-dimensional sub-vectors

of β(t), (p1 ≤ p, p2 ≤ p). We assume that, through proper parameterization, in-
terest is in testing whether β2(t) is a zero function. Thus, the null and alternative
hypotheses are respectively

H0 : β2(t) = 0 ∀t

and H1 : β2(t) 6= 0 for at least one t ∈ [0, T ]. (4.1)

Under the same spline representation for β(t), testing (4.1) is equivalent to
testing

H0 : α2 = 0, vs H1 : α2 6= 0.

Here, α = (αT
1 , αT

2 )T, where α1 and α2 are sub-matrixes of α with dimensions
p1×kn and p2×kn, respectively, the spline coefficients associated with β1(t) and
β2(t). Under Theorems 2 and 3, we could construct Wald-type statistics

Tn,1 = nα̂T
2 V−1

22 α̂2 and Tn,2 = nα̃T
2 W−1

22 α̃2,

where V22 and W22 are, respectively, p2kn × p2kn lower-right sub-matrixes of
V and W associated with α2. Under the null hypothesis, Tn,1 and Tn,2 are
asymptotically chi-square distributed with degrees of freedom p2kn.

Both V22 and W22 involve unknown components that need to be estimated
empirically. Two estimation approaches exist. In large sample situations, we
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can use asymptotic results. To estimate M in V. we use the sample average
to replace the expectation, i.e., E[sT

i {t, α0b(t), G}] ≈ n−1
∑n

i=1s
T
i {t, α̂b(t), Ĝ},

and use a numerical difference for the derivative. Following the same line, we can
estimate M in W. In the web Appendix we show that D can be approximated
by

D̂ = n−1
n∑

i=1

{ν̂i(t1, β̂(t1), Ĝ)T, . . . , ν̂i(tJ , β̂(tJ), Ĝ)T}T{ν̂i(t1, β̂(t1), Ĝ)T, . . . ,

ν̂i(tJ , β̂(tJ), Ĝ)T},

where

ν̂T
i (tj , β̂(tj), Ĝ)

= si{tj , β̂(tj), Ĝ}

+n−1
n∑

l=1

∂m
{

Xl, β̂(tj)
}

∂β̂(tj)
Ĝ−1

[
tj + m

{
Xl, β̂(tj)

}]
I

[
tj + m

{
Xl, β̂(tj)

}
≤ Yl

]
×

{
ĥ−1(Yi)(1 − Di)I

[
Yi ≤ tj + m

{
Xl, β̂(tj)

}]
−n−1

n∑
k=1

ĥ−2(Yk)(1 − Dk)I
(
Yk ≤ min

[
Yi, tj + m

{
Xl, β̂(tj)

}])}
−q̂2(β̂(tj), tj)

[
ĥ−1(Yi)(1 − Di)I (Yi ≤ tj)

−n−1
n∑

k=1

ĥ−2(Yk)(1 − Dk)I {Yk ≤ min (Yi, tj)}

]
, (4.2)

ĥ(s) = n−1
∑n

i=1 I(Yi ≥ s), and

q̂2{b̂(tj), tj} = (1 − τ)Ĝ(tj)−1n−1
n∑

i=1

[
I(Yi ≥ tj)

∂m
{

Xi, β̂(tj)
}

∂β̂(tj)

]
.

We then assemble empirical estimates of V22 and W22, and substitute for the true
ones in Tn,1 and Tn,2.

A more precise and stable approach is to use the bootstrap method to esti-
mate V22 and W22, especially when sample size is not large. The cost of bootstrap
is in computation intensity. This is the standard bootstrap used in quantile re-
gression, so we omit implementation details. We also do not propose the score
test for the quantile residual life model because, in the model we consider, the
score test loses its typical advantage over Wald test. Since the residual life model
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holds for all t, we also need E{fT |X(t|X)X2X
T
1 } = 0 for all t to enjoy the advan-

tage of the score test. Such condition cannot be satisfied without violating the
original model assumptions. For this reason, the score test is not recommended
in our context.

5. Numerical Results

5.1. Simulation

We conducted simulation studies to investigate the finite sample performance
of the proposed method. The first quantile residual life we study has the form
Qτ (Ti − t|Xi, Ti ≥ t) = β1(t) + β2(t)Xi, where Xi is the ith subject’s covariate,
τ = 0.5, and β1(t) and β2(t) are time varying intercept and slope coefficients
that are linear functions of t: β1(t) = β1c + β1lt and β2(t) = β2c + β2lt. We write
βc = β1c + β2c and βl = β1l + β2l. To generate data sets, we adopt the model
with survival function

S(t|Xi) =
{

1 +
t(XT

i βl)
(XT

i βc)

}log(1−τ)/log(1+XT
i βl)

= (1 − τ)log{1+tXT
i βl/(XT

i βc)}/log(1+XT
i βl).

Data generated here satisfy the quantile residual life model as long as β1(t) and
β2(t) do not simultaneously degenerate to a constant function. In fact, when
the slopes in both β1(t) and β2(t) are zero, the above survival function does not
exist, and we need to generate data from

S(t|Xi) = etlog(1−τ)/X>
i βc = (1 − τ)t/X>

i βc

in order to satisfy the corresponding quantile residual life model. We study all
four situations, in which β1(t), β2(t) can be either a linear function or a constant
function.

We generated the covariates Xi’s from a uniform distribution in [0, 2], and we
generated the censoring distribution from a mixture of infinity and an exponential
distribution, so that the censoring rate was approximate 15%–20%. The sample
sizes were n = 100, 200, 300, and 1,000, and we chose the first one-third of the
yi values to form the tj values in calculating the β̂j ’s. One could of course put
more values into the collection of tj ’s, but, as pointed in Section 3.1, the effective
samples participating in the estimation of β̂j are the ones with Yi ≥ tj . Thus,
a larger value of tj yields less efficient estimation of β̂j . When the effective
sample size is too small, the asymptotic results may not be relevant, and various
numerical issues also occur. For computational stability, we chose the tj values
to ensure that there were at least one third of the observations contributing to
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the estimation of β̂j . The quadratic spline basis functions were selected, we put
four knots at the boundary and equally spaced positions between the boundaries.
A total of 1,000 simulations was conducted in each model.

To illustrate the performance of the method on a non-polynomial functional
form of β(t), we conducted a second simulation study with the quantile residual
function m{X, β(t)} = e−2Xβ1(t) + e−Xβ2(t). Here β1(t) = {log(1 − τ)}2 and
β2(t) = −2

√
a + t log(1 − τ) at a = 0.01. It can be verified that the random

process with survival function

S(t|Xi) = exp
{
−eXi

(√
t + a −

√
a
)}

yields a τth quantile residual of the desired form. We generated the covariate Xi’s
from a uniform distribution in [−1.5, 0.5] and a censoring time from a mixture of
infinity and exponential distribution as before to retain a similar censoring rate.

We present the mean squared error (MSE) of the estimation for different
models and sample sizes in Table 1. Here for each function βj(t), the MSE was
calculated using

∑
i(β̂j(ti) − βj(ti))2, where ti’s are equally spaced on the range

of t considered. For comparison, we also present the MSE of the estimation with
smoothing the pointwise estimates of β(t). Clearly, for all the models and the
sample sizes, our method yields an estimate with smaller MSE than the pointwise
procedure. The improvement is especially dramatic when sample size is small or
moderate. When sample sizes are 1,000, presented for comparison purposes, the
improvement becomes less impressive, although still quite important. To provide
a visual inspection of the estimation for both the linear and nonlinear model, we
also plotted the mean estimated curves together with the true curves and 90%
pointwise confidence bands in Figure 1. As can be seen, the estimated average
curves are rather close to the truth, indicating the validity of our proposal. We
point out here that the confidence bands in Figure 1 contain a constant curve,
hence at the 10% level, one may not conclude that the varying coefficient model
is really necessary. This is caused by the small sample size. With n =1,000,
the 90% confidence bands corresponding to the nonlinear true function no longer
contain any constant curve.

We also implemented the Wald test procedure, where the interest is in testing
whether the slope function in the linear models or the coefficient function of e−X

in the nonlinear model β2(t) is the zero function. To test the level precision,
we let β1(t) = 1 and 1 + t for the linear models, and generated the data from
S(t|Xi) = exp

{
te2Xi/log(1 − τ)

}
for the nonlinear model. We considered the

levels 0.01, 0.05 and 0.1. The results for various sample sizes are given in Table
2. They indicate that the test levels are close to the nominal values when the
sample size is n = 300 for the linear models, while they generally perform well
even for smaller sample sizes for the nonlinear model. We point out that, because
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Table 1. MSE of un-smoothed and smoothed curve fitting.

True functions MSE un-smoothed MSE smoothed
n β1(t) β2(t) β1(t) β2(t) β1(t) β2(t)

1 0.5 0.0693 0.0553 0.0381 0.0302
1 0.5 + t 0.1211 0.1154 0.0634 0.0498

100 1 + t 0.5 0.1341 0.1014 0.0612 0.0448
1 + t 0.5 + t 0.1700 0.1483 0.0769 0.0600

(log2)2 2log2
√

0.01 + t 0.0561 0.1288 0.0347 0.0605
1 0.5 0.0456 0.0432 0.0296 0.0310
1 0.5 + t 0.0800 0.0924 0.0425 0.0535

200 1 + t 0.5 0.0903 0.0688 0.0447 0.0374
1 + t 0.5 + t 0.1350 0.1029 0.0623 0.0453

(log2)2 2log2
√

0.01 + t 0.0433 0.0946 0.0307 0.0410
1 0.5 0.0340 0.0352 0.0254 0.0290
1 0.5 + t 0.0581 0.0828 0.0354 0.0574

300 1 + t 0.5 0.0778 0.0633 0.0453 0.0423
1 + t 0.5 + t 0.1078 0.0968 0.0526 0.0547

(log2)2 2log2
√

0.01 + t 0.0376 0.0676 0.0287 0.0276
1 0.5 0.0150 0.0152 0.0118 0.0130
1 0.5 + t 0.0238 0.0407 0.0185 0.0345

1,000 1 + t 0.5 0.0287 0.0287 0.0200 0.0229
1 + t 0.5 + t 0.0419 0.0561 0.0295 0.0440

(log2)2 2log2
√

0.01 + t 0.0167 0.0226 0.0152 0.0139

of the nature of the model, the residual life at t practically relies only on the
observations that are both uncensored and still surviving at t; the sample size
n = 200, for instance, only yields an effective sample size of about 100 in our
simulation set up. Thus it is not a surprise to see this kind of level performance.
To demonstrate the local power of the test, in the linear models we kept the same
β1(t) with β2(t) = c/

√
n and c(1 + t)/

√
n for c = 5, 10. For the nonlinear model,

we set β1(t) = {clog(1− τ)}2/n, β2(t) = −2clog(1− τ)
√

(t + a)/n for c = 40 and
a = 0.01. and generated data from S(t|Xi) = exp

{
−eXi

√
n/c(

√
t + a −

√
a)

}
.

The local power results for various sample sizes are given in Table 3. One notices
that the power does not necessarily increase as the sample size increases. This is
because we are performing a local test where the local alternative is at a root n

distance from the null, while the typical convergence rate of β(t) is slower than
root n. We view the results in Table 3 as a worst case scenario of the power
result.

5.2. Application: MELAS study

For illustrative purpose, we applied Model (2.1) to part of the data from
the aforementioned MELAS study, consisting of 135 MELAS mutation carriers
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Figure 1. Curve fitting for β1(t) and β2(t) in different models. Top row:
m(x, β) = β1(t) + β2(t)X,β1(t) = 1 + t, β2(t) = 0.5 + t. Bottom row:
m(x, β) = e−2Xβ1(t) + e−Xβ2(t), β1(t) = (log(2))2, β2(t) = 2log2

√
0.01 + t.

True curve (’-’), median estimated curve (’-.’), and 90% pointwise confidence
band (’–’). Sample size n = 300.

Table 2. Level precision of the Wald tests for H0 : β2(t) = 0, H1 : β2(t) 6= 0.

n 0.01 0.05 0.1
linear model

100 0.1170 0.2350 0.3050
β1(t) = 1 200 0.0650 0.1610 0.2270

300 0.0090 0.0500 0.1050
100 0.0590 0.1230 0.1790

β1(t) = 1 + t 200 0.0460 0.1120 0.1580
300 0.0150 0.0550 0.0940

nonlinear model
100 0.0240 0.0490 0.0800

β1(t) = {log(1 − τ)}2 200 0.0260 0.0590 0.0960
300 0.0160 0.0520 0.0900

followed up over the past 10 years (Kaufmann et al. (2009)). We chose the disease
onset as the time when the patient fails to perform the daily activities of healthy
people. The Karnofsky score is common measurement for functional impairment,
ranging from 0 to 100. A healthy subject should be scored at 100. We take Ti to
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Table 3. Power of the Wald tests for H0 : β2(t) = 0, H1 : β2(t) 6= 0.

n 0.01 0.05 0.1
β2(t) = 5/

√
n

100 0.8640 0.9390 0.9650
β1(t) = 1 200 0.5470 0.7240 0.7980

300 0.2840 0.5110 0.6270
β2(t) = 5(1 + t)/

√
n

100 0.9660 0.9920 0.9970
β1(t) = 1 200 0.7470 0.8480 0.8920

300 0.4900 0.7050 0.7850
β2(t) = 5/

√
n

100 0.3510 0.5680 0.6760
β1(t) = 1 + t 200 0.2530 0.4450 0.5750

300 0.1140 0.2610 0.3830
β2(t) = 5(1 + t)/

√
n

100 0.4000 0.6160 0.7170
β1(t) = 1 + t 200 0.2970 0.4850 0.6010

300 0.1290 0.2790 0.3820
β2(t) = 10/

√
n

100 0.7700 0.8590 0.8940
β1(t) = 1 + t 200 0.7240 0.8530 0.8850

300 0.5900 0.7410 0.8090
β2(t) = 10(1 + t)/

√
n

100 0.8330 0.9070 0.9340
β1(t) = 1 + t 200 0.7520 0.8560 0.9050

300 0.6000 0.7480 0.8100
β2(t) = −80log(1 − τ)

√
(t + 0.01)/n

100 0.7470 0.8140 0.8340
β1(t) = {40log(1 − τ)}2/n 200 0.6600 0.8230 0.8820

300 0.4080 0.5830 0.6930

be first year that the ith patient’s Karnofsky score is at 90 or lower. About 30%
patients are censored since they are still neurologically fully functional at the
end of the study. The researchers found that male patients tend to have earlier
disease onset. It is of clinical interest to confirm whether MELAS affects male
and female patients differently in terms of residual life time. Using gender of a
patient as a predictor, we applied a varying coefficient linear median residual life
model.

The estimation of the constant coefficient function β1(t) and the time varying
gender effect β2(t), along with their upper and lower 5% quantile bootstrap
confidence bands are given in Figure 2. Specifically, β1(t) depicts the median
residual life time to disease onset of male MELAS patients at various ages. For
example, at birth, the median time to disease onset of a male MELAS patient is
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Figure 2. Estimated time varying intercept function (left) and slope func-
tion (right), and their confidence bands (upper and lower 10% quantile) in
MELAS study for median (upper), lower quartile (middle) and 10% quantile
(lower) residual life time.

about 34 years, while at year 16, the median residual time is about 20 years. Here
β2(t) describes the difference in median residual time between male and female
patients, with confidence bands largely situated above the zero level. Indeed,
a formal testing procedure using the method developed in Section 4, yields a
p-value 2.35e−7 that strongly suggests a gender difference. In Particular, the
female residual survival is superior to that of the male, with the median residual
time of female patients about 15 years longer than that of male patients. Such a
difference slightly increases after birth, and decreases again after age 8.

We also estimated the male and female residual life time at the 0.25 and
0.1 quantile levels. As withthe median, the female has later disease onset time
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at each age. For example, given that a patient survived to age 4, a female’s
residual life is 17 years longer than that of a male, with probability 0.9. This
is the age at which the female 10% residual life advantage is the largest. This
advantage slowly declines when the patient continues to survive. At age 16, 90%
of the surviving females have at least 6 years advantage over males, and 75% of
them have at least 11 years advantage. The plots of the 25% and 10% residual
life and their corresponding confidence intervals are also in Figure 2. Similar
to the median, a test on no gender differences at these two quantile levels yield
p-values of 3.94e−4 and 0.0255 respectively, hence it is quite clear that a female
has superior residual survival time at these two quantile levels as well.

One may notice from Figure 2 that, at the 80% confidence level, some confi-
dence bands contain a constant curve. In other words, one might adopt a constant
coefficient assumption to model the residual life in those cases. This is a rather
typical trade-off between the model complexity and flexibility – whether or not
to use a constant coefficient model here depending on how comfortable one feels
to make this simplification at a 80% confidence level. One also needs to note
that a constant coefficient model may be sufficient at one τ , but may not be so
for other τ values. Our methods can help in the decision of whether or not to
adopt a constant coefficient assumption.

6. Discussion

We have proposed a time-varying coefficient residual life quantile model.
This model allows one to simultaneously model the residual life at different
times, yet still ensure the self coherence of the model. Compared to modeling
the survival time directly, it allows more flexibility and enables one to describe
the residual life directly. We proposed a practically feasible estimation proce-
dure using the spline representation to approximate the time-varying coefficient
function, and demonstrated its validity through asymptotic properties. We em-
phasize here that slightly more complex, yet still feasible, estimation procedures
based on quadratic inference functions (Qu, Lindsay, and Li (2000)) can be used
to improve the efficiency of the unweighted estimation procedure. We further
proposed inference procedures to test the covariate effect. We applied both the
estimation and testing procedures in simulations studies as well as to MELAS
data.

We have not included the special case where some coefficient might be fixed
instead of varying with time. It is easy to see that this can be handled by
restricting the spline approximation to the time varying coefficient functions that
include the fixed unknown parameter in the set of α’s. The developed inference
tools can be used to determine whether a certain coefficient indeed varies with
time. Specifically, we can reparameterize to a coefficient function βj(t) = c0 +
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β∗
j (t), where β∗

j (0) = 0, and proceed to test β∗
j (t) = 0. As in Jung, Jeong,

and Bandos (2009) we have assumed the censoring process to be independent
of the covariates X, a reasonable assumption for MELAS data. If, however,
this assumption is violated, we only need replace the Kaplan-Meier estimator of
the censoring survival function with a suitable local Keplan-Meier estimator for
G(t|x). For example, we can use

Ĝ(t|x) =
n∏

i=1

[
1 − K{(xi − x)/h}∑n

j=1 I(Yj ≥ Yi)K{(xj − x)/h}

]I(Yi≤t,δi=0)

to replace Ĝ(t), where K is a kernel function and h is a bandwidth, and keep
all the remaining procedures unchanged. In the simulation, we used quadratic
spline basis functions with a fixed number of knots. If this is not sufficient
and more sophisticated spline smoothing techniques, for example the P-spline
or the regression spline, are needed, one can use smoothing parameter selection
techniques on the pseudo observations (tj , β̂j), j = 1, . . . , J . Because the β̂j ’s are
estimated at a root-n rate, while the spline smoothing rate is slower than that,
the consistency of the estimated coefficient functions is preserved without any
special treatment of the β̂j ’s. Finally, instead of splines, other basis functions,
such as wavelets or a Fourier basis, can be implemented. A kernel based approach
can also be explored, but research in these areas is clearly beyond the scope of
this paper.
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