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Cure rate models explicitly account for the survival fraction in failure time data. When the covariates are measured with errors, naively
treating mismeasured covariates as error-free would cause estimation bias and thus lead to incorrect inference. Under the proportional
hazards cure model, we propose a corrected score approach as well as its generalization, and implement a transformation on the mismeasured
covariates toward error additivity and/or normality. The corrected score equations can be easily solved through the backfitting procedure,
and the biases in the parameter estimates are successfully eliminated. We show that the proposed estimators for the regression coefficients
are consistent and asymptotically normal. We conduct simulation studies to examine the finite-sample properties of the new method and
apply it to a real data set for illustration.
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1. INTRODUCTION

In oncology studies, it is often observed that a certain per-
centage of subjects are either cured following treatment or are
unsusceptible to the event of interest and thus will never ex-
perience the failure (e.g., disease relapse). To explicitly incor-
porate the survival fraction for such data, cure rate models
have been proposed and extensively investigated. The two-
component mixture cure model (Berkson and Gage 1952) nat-
urally separates the entire population into cured and noncured
subjects,

S(t |X) = θ(X) + {1 − θ(X)}S∗(t |X),

where θ(X) is the cure probability and S∗(t |X) is a proper sur-
vival function for the uncured population, that is, limt→∞ S∗(t |
X) = 0. Its intuitive structure and ease of interpretation has
made this mixture cure model the focus of much attention (see,
e.g., Gray and Tsiatis 1989; Sposto, Sather, and Baker 1992;
Laska and Meisner 1992; Kuk and Chen 1992; Maller and Zhou
1996; Sy and Taylor 2000; Lu and Ying 2004; Li, Tiwari, and
Guha 2007). But the mixture cure model lacks certain desirable
properties, as pointed out by Chen, Ibrahim, and Sinha (1999).
Moreover, the numerical computation can be quite challenging
due to the additive structure of the cured and uncured compo-
nents.

Alternatively, the proportional hazards cure rate model devel-
oped by Yakovlev and Tsodikov (1996) and Tsodikov (1998a)
integrates the survival times of the cured and noncured subjects
into one single formulation of the survival function,

S(t |X) = exp{−θ(X)F (t)}, (1)

where θ(X) is a known link function and F(t) is an un-
known baseline cumulative distribution function (cdf). The cor-
responding cure rate is S(∞|X) = exp{−θ(X)}, and the haz-
ard function is λ(t |X) = θ(X)f (t), where f (t) = dF(t)/dt .
When θ(X) = exp(XT β) and β contains an intercept b, model
(1) becomes the usual Cox proportional hazards model (Cox
1972) subject to the restriction of a bounded baseline cumu-
lative hazard function, given by �0(t) = F(t) exp(b). Thus a
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cure rate model has a bounded cumulative hazard, leading to an
improper survival function [i.e., S(∞|X) > 0], whereas a non-
cure model, such as the Cox model, has an unbounded cumu-
lative hazard, thus resulting in a proper survival function [i.e.,
S(∞|X) = 0]. Yakovlev and Tsodikov (1996) and Chen et al.
(1999) provided a sound biological derivation for model (1),
and Tsodikov, Ibrahim, and Yakovlev (2003) provided a com-
prehensive review.

In reality, it is often the case that the covariate X can be mea-
sured only approximately or indirectly, leading to an errors-in-
variables problem. If covariates with measurement errors are
naively taken as error-free, then severe bias can be induced in
the parameter estimates. Fuller (1987) and Carroll, Ruppert,
Stefanski, and Crainiceanu (2006) explored various methods
for correcting the bias. The observed variable, denoted by W,
is typically related to the true covariate X through a model
pW|X(W|X, ξ), where ξ can be an unknown parameter. It is
common to assume a normal additive error structure, that is,
W equals X plus a normal random noise. When this normality
assumption does not hold, one needs to either adapt the method-
ology to treat the nonnormal error or transform the covariates X
and W into a normal error form (Nusser, Carriquiry, Dodd, and
Fuller 1996; Eckert, Carroll, and Wang 1997).

The Cox model with measurement errors, has been studied
extensively in, for example, the induced partial likelihood ap-
proach (Prentice 1982); joint models of survival times and lon-
gitudinal covariates measured with errors (Tsiatis, DeGruttola,
and Wulfsohn 1995; Wulfsohn and Tsiatis 1997; Tsiatis and
Davidian 2001), the regression calibration method (Wang, Hsu,
Feng, and Prentice 1997), pseudo–partial likelihood methods
(Zucker 2005) and in the presence of a validation set (Zhou
and Pepe 1995; Zhou and Wang 2000; Hu and Lin 2002).
Hu, Tsiatis, and Davidian (1998) and Song, Davidian, and
Tsiatis (2002) studied semiparametric likelihood-based meth-
ods to relax the distributional assumption on the covariates.
Various correction estimators and corrected scores have been
provided by Stefanski (1989), Nakamura (1990, 1992), Kong
and Gu (1999), Buzas (1998), Huang and Wang (2000), Au-
gustin (2004), Gorfine, Hsu, and Prentice (2004), and Song and
Huang (2005). Moreover, measurement error problems have
been addressed in other contexts: Kulich and Lin (2000) ex-
plored these problems in the additive hazards model; Cheng
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and Wang (2001), linear transformation models; Li and Ryan
(2004), with heterogeneous covariate errors; and Li and Lin
(2000), Greene and Cai (2004), and Hu and Lin (2004), in ex-
tensions to multivariate failure time data.

Although there is a rich body of literature dealing with mea-
surement errors in censored survival data, all the aforemen-
tioned research work cannot be directly applied to the case
with a cure fraction. To the best of our knowledge, measure-
ment error issues in semiparametric cure rate models have not
been addressed to date, and this is the first work to deal with
estimation and inference in this regard. We can appreciate the
difficulties involved in such models due to various unspecified
components and their interactions, including the distributions
of the unobservable variables, the censoring distribution, and
the baseline distribution function. In fact, we have found that
a general semiparametric method requires one to either assume
covariate-independent censoring or directly model the censor-
ing mechanism, neither of which is considered a satisfactory
approach.

This research is motivated by a recent lung cancer study, in
which the objective was to assess the association of patient sur-
vival with a certain biomarker expression in the tumor cell cy-
toplasm. For each patient, we had either one reading or two
readings of biomarker expression by different pathologists to
reduce the subjectivity of the evaluation. However, neither of
the two measurements of biomarker expression could be con-
sidered precise. Our interest lies in investigating the potential of
the biomarker as a new prognostic marker and therapeutic tar-
get for lung cancer. Figure 1 shows the Kaplan–Meier survival
curves stratified by tumor histology (adenocarcinoma or squa-
mous cell carcinoma). After approximately 7 years of follow-
up, we can see a stable plateau at the tails of the survival curves,
which indicates the existence of a possible cure fraction.

In this article we consider the proportional hazards cure rate
model in (1), where X is measured with errors. The error struc-

ture is not necessarily normal additive, and multiple measure-
ments may exist for X. Without making any assumptions on the
distribution of X, we propose a corrected score approach based
on the nonparametric maximum likelihood estimator (NPMLE)
and a new transformation on the contaminated covariates. We
show that the estimators for β and F(t) are strongly consis-
tent and converge to a Gaussian process at a root-n rate. Due
to the complex natures of such functional measurement error
problem and NPMLE, the derivations of these asymptotic prop-
erties are very involved. Furthermore, the proposed nonpara-
metric transformation on the covariates to improve the error
normality and additivity is very different from the Box–Cox
or spline transformation described by Eckert et al. (1997). We
show that our transformation, which can be broadly applied in
general measurement error problems, is effective and easy to
use. On the other hand, we note that the corrected score itself
can be generalized to accommodate nonnormal error structure.
Due to the proportional hazard structure, the NPMLE and par-
tial likelihood estimator are equivalent, and thus the same es-
timator can be derived from the partial likelihood instead of
NPMLE. A more detailed discussion of this issue is given in
Section 6.

The rest of the article is organized as follows. In Section 2 we
introduce notation and propose a computationally effective es-
timation procedure when covariates are measured with normal
additive errors. In Section 3 we derive the asymptotic properties
of the proposed estimators for β and F(t), and in Section 4 we
propose a general transformation to handle the nonnormal and
nonadditive measurement error structure. In Section 5 we report
the results of simulation studies that we conducted to evaluate
the finite-sample properties of the estimators, along with our
application of the proposed model to the lung cancer data set.
We give some concluding remarks in Section 6 and outline the
technical details of the proofs of the theorems in the Appen-
dix.

Figure 1. Estimated Kaplan–Meier survival curves for patients with lung cancer, stratified by tumor histology ( squamous;
adenocarcinoma).
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2. METHODOLOGY

For i = 1, . . . , n, let Ti be the failure time, let Ci be the cen-
soring time for subject i, and, correspondingly, let a q-vector
Xi denote the covariates, the first component of which is 1. We
assume that (Yi,�i,Xi ) are independent and identically dis-
tributed (iid), where Yi = min(Ti,Ci) and �i = I (Ti ≤ Ci) is
the censoring indicator. Furthermore, Ti is conditionally inde-
pendent of Ci given covariate Xi . The follow-up time is infinite
and a proportion of subjects never experience failure or right-
censoring, that is Yi = ∞ with probability one for those sub-
jects. To claim a subject cured, we need to choose a threshold
and then set Yi = ∞ if Yi is larger than this threshold. In prac-
tice, a typical threshold is the largest observed event time.

For simplicity of description, we assume a classical measure-
ment error model structure, where the error is additive and fol-
lows a mean-0 normal distribution. The treatment of the non-
normal and/or nonadditive error case is given in Section 4. We
formulate the cure rate model with covariate measurement er-
rors as

S(t |X) = exp
{−F(t)eXT β

}
, W = X + U,

where the error U ∼ N(0,V). The observations are of the form
{(Yi,�i,Wi1, . . . ,Wiri ), i = 1, . . . , n}; that is, for each un-
observable Xi , we have ri replicated observations of Wij ’s
(j = 1, . . . , ri). The number of replicates is allowed to vary
across different subjects, and it also may occur that ri = 1. The
case where some covariates are error-free is accommodated in
our model by setting the relevant terms in V to be 0. We fur-
ther make the typical surrogacy assumption that W and Y are
independent conditional on X. Thus, given the unobserved true
covariate X, the observed covariate W does not contain any ad-
ditional information.

Write the survival function and the probability density func-
tion for the event of interest as Se(Y |X) = exp{−F(Y )eXT β}
and fe(Y |X) = exp{−F(Y )eXT β}f (Y )eXT β . Similarly, for the
censoring times, let Sc(Y |X) = Pr(C ≥ Y |X) and fc(Y |X) =
−∂Sc(Y |X)/∂Y . Under the cure rate model, we know that
Se(∞|X) = exp(−eXT β) > 0 and Sc(∞|X) > 0.

If X is observed, then the likelihood of a single observation
(Y,�) given X can be written as

f (Y,�|X)

= [{fe(Y |X)Sc(Y |X)}�{fc(Y |X)Se(Y |X)}1−�
]I (Y<∞)

× {Se(∞|X)Sc(∞|X)}I (Y=∞).

Similar to the work of Zeng, Yin, and Ibrahim (2006), we con-
struct a sieve of the distribution function F , and thus the log-
likelihood is given by

logf (Y,�|X) = �I (Y < ∞)
{−F(Y )eXT β + logF {Y }
+ XT β + logSc(Y |X)

}

+ (1 − �)I (Y < ∞)

× {
logfc(Y |X) − F(Y )eXT β

}

+ I (Y = ∞)
{
logSc(∞|X) − eXT β

}
,

where F {Y } denotes the jump size of F(·) at Y and F(·) is a
right-continuous function with jumps at event times only. For

ease of exposition, we write pi ≡ F {Yi}, denote the ordered
distinct failure times as (Y(1), . . . , Y(m)), and denote the corre-
sponding jump sizes as (p(1), . . . , p(m)), where m is the number
of distinct failure times. Under the constraint

∑m
i=1 p(i) = 1, we

introduce a Lagrange multiplier, λ, and maximize

n∑

i=1

logf (Yi,�i |Xi ) − nλ

(
m∑

i=1

p(i) − 1

)

with respect to (β, λ,p(1), . . . , p(m)). Collecting only the terms
containing the unknown parameters (β, λ,F ), this is equivalent
to maximizing

n∑

i=1

[−F(Yi)e
XT

i β + �iI (Yi < ∞)(logF {Yi} + XT
i β)

]

− nλ

(
m∑

i=1

p(i) − 1

)

, (2)

where F(Yi) = ∑
Yj ≤Yi ,�j =1 F {Yj } and F(∞) = 1.

As opposed to using a profile likelihood approach (see Zeng
et al. 2006), we take a backfitting procedure to maximize the
log-likelihood. To be more specific, we solve for the p(i)’s and
λ by fixing β , and solve for β by fixing the p(i)’s and λ. The
derivatives of (2) with respect to the p(i)’s and λ are

1

p(i)

=
n∑

j=1

I
(
Y(i) ≤ Yj < ∞)

e
XT

j β + nλ, i = 1, . . . ,m,

(3)
and

m∑

i=1

p(i) = 1. (4)

Therefore, we can iterate between (3), (4), and

n∑

i=1

{
�iI (Yi < ∞) − F(Yi)e

XT
i β

}
Xi = 0 (5)

to obtain the estimators.
When X is not observable but the W’s are observed instead,

we modify the estimating equations so that they are functions of
the observed data and yield consistent estimators. We keep (4)
unchanged. Following the corrected score approach, we modify

the m equations in (3) by replacing eXT
i β with eWT

i β−βT Vβ/2,

1

p(i)

=
n∑

j=1

1

rj

rj∑

k=1

I
(
Y(i) ≤ Yj < ∞)

e
WT

jkβ−βT Vβ/2 + nλ,

i = 1, . . . ,m. (6)

An alternative way to handle multiple measurements is to take
an average of the Wik’s for each i a priori to form a single
“better” observation, that is, using

1

p(i)

=
n∑

j=1

I
(
Y(i) ≤ Yj < ∞)

e
W̄T

j β−βT Vj β/2 + nλ

to replace (3), where W̄i = ri
−1 ∑ri

k=1 Wik and Vi = r−1
i V. In

practice, we have found that the two treatments of the Wik’s
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yield very similar results. To modify (5), we replace Xi with

Wi and eXT
i βXi with eWT

i β−βT Vβ/2(Wi − Vβ) to obtain

n∑

i=1

1

ri

ri∑

k=1

{
�iI (Yi < ∞)Wik

− F(Yi)e
WT

ikβ−βT Vβ/2(Wik − Vβ)
} = 0. (7)

The final estimators under the corrected scores can be obtained
by solving (4), (6), and (7) simultaneously.

3. ASYMPTOTIC PROPERTIES

For ease of exposition, we focus on the situation in which
we have one surrogate W for the true unobserved X. We first
introduce some notation and define l∞(H) as the space of all
bounded linear functionals on H, where

H = {(h1, h2) : h1 ∈ Rq,‖h1‖ < 1,

h2 is a function in [0,∞) with ‖h2‖V ≤ 1}
and ‖h2‖V is the total variation of h2. Let l(β,F ) be the log-
likelihood conditional on X,

l(β,F ) = −F(Y )eXT β + �I (Y < ∞){logf (Y ) + XT β},
where we omit the part of l(β,F ) that does not involve β

or F . Denote the derivative of l(β,F ) with respect to β as
lβ(β,F ) and write lF (β,F )[∫ QF (h2) dF ] as the derivative
of l(β,F ) along the path (β,Fε = F + ε

∫
QF (h2) dF ), ε ∈

(−ε0, ε0) for a small constant ε0 > 0, where QF (h2) = h2(t)−∫ ∞
0 h2(t) dF (t). This operation ensures that QF (h2) integrates

to 0, and thus the perturbed F remains a valid cdf. This re-
striction plays the same role as the Lagrange multiplier. The
corrected scores can be constructed by replacing the terms in-
volving X in lβ(β,F ) and lF (β,F )[∫ QF (h2) dF ] with those
involving W. We denote the expressions after such replace-
ment as Sβ(β,F ) and SF (β,F )[∫ QF (h2) dF ]. Note that∫

QF (h2) dF does not involve X or W. Straightforward cal-
culation yields that

Sβ(β,F ) = −F(Y )eWT β−βT Vβ/2(W − Vβ) + �I (Y < ∞)W

and

SF (β,F )

[∫
QF (h2) dF

]

= −
∫ Y

0
QF (h2) dF (t) eWT β−βT Vβ/2

+ �I (Y < ∞)QF {h2(Y )}.
Let Pn and P denote the empirical measure of n iid observa-

tions and the expectation; that is, for any measurable function
g(Y,�,X) in L2(P ),

Pn[g(Y,�,X)] = 1

n

n∑

i=1

g(Yi,�i,Xi ) and

P[g(Y,�,X)] = E[g(Y,�,X)].
We assume that our model is identifiable and that the following
regularity conditions are satisfied:

(C1) The covariate W is bounded with probability 1.

(C2) Conditional on X, the censoring time C is independent
of T , and P(C = ∞|X) > 0.

(C3) The true parameter β0 belongs to the interior of a
known compact set B0, and the true cdf F0 is differen-
tiable with its first derivative f0(t) > 0 for all t ∈R+.

These are rather mild conditions that are routinely made in cure
rate models. We now present the asymptotic properties of the
estimators, including strong consistency, asymptotic normality,
and the variance estimation formula.

Theorem 1. Under the regularity conditions, assume the lim-
iting estimating equation

P

{
Sβ(β,F )T h1 + SF (β,F )

[∫
QF (h2) dF

]}
= 0

has a unique zero. With probability 1, the estimators β̂n and
F̂n(t) of (4), (6), and (7) satisfy

|β̂n − β0| → 0 and sup
t∈R+

|F̂n(t) − F0(t)| → 0.

Theorem 2. Under the regularity conditions,
√

n(β̂n − β0,

F̂n − F0) converges weakly to a mean-0 Gaussian process in
l∞(H).

The proofs of these two theorems depend heavily on the em-
pirical process theory (van der Vaart and Wellner 2000), which
are outlined in the Appendix.

Theorem 3. Under the regularity conditions, the estimator β̂n

satisfies
√

n(β̂n − β0) → N(0,A−1B(A−1)T )

in distribution as n → ∞, where

A = E

(
eWT β−βT Vβ/2

[
F0(Y ){V − (W − Vβ)(W − Vβ)T }

− (W − Vβ)

∫ Y

0
b4(y)T dF0(y)

])T

,

B =
{

Sβ(β0,F0) + SF (β0,F0)

[∫ Y

0
b4(y) dF0(y)

]}⊗2

,

and b4 is given in (A.5) in the Appendix.

The derivation of the variance sandwich formula with covari-
ate measurement errors is very different from that without mea-
surement errors, as shown in the Appendix.

4. NONNORMAL AND NONADDITIVE ERROR

Measurement error models often require transforming co-
variates toward the error normality and additivity. Considering
one component of W and X, we need to find a suitable transfor-
mation function φ so that φ(W) = φ(X)+U , where U follows
a mean-0 normal distribution. When the transformation φ be-
longs to a parametric family indexed by γ , for the case with
duplicates (ri = 2), we have that

φ(W1,γ ) = φ(X,γ ) + U1, φ(W2,γ ) = φ(X,γ ) + U2,

where U1 and U2 are independent mean-0 normal variables.
We can estimate the parameter γ through the maximum like-
lihood approach based on {φ(Wi1,γ ) − φ(Wi2,γ )}/√2, for
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i = 1, . . . , n. But in many practical situations, a standard trans-
formation family, such as the Box–Cox or power transforma-
tion, may not be sufficient to achieve the desired normal and
additive error structure. Eckert et al. (1997) proposed a class
of transformations based on piecewise cubic spline functions.
This family of transformation is nonparametric and versatile
and often performs superior to the Box–Cox transformation.
However, its implementation can be difficult, and the transfor-
mation contains several ad hoc procedures.

To enhance the flexibility of our model, we propose a trans-
formation that is easy to use and completely data-driven. We
first sort all of the Wij ’s in an increasing order, denoted as
(W(1),W(2), . . . ,W(2n)). Let bi = φ(Wi1) − φ(Wi2), b(i)’s be
the order statistics, and let (q1, q2, . . . , qn) correspond to the
(.5/n,1.5/n, . . . ,1 − .5/n) quantiles of the standard normal
distribution. Then we search for the set of φ(Wij )’s that min-
imizes

∑n
i=1[{b(i) − μb}/σb − qi]2, where μb and σ 2

b are
the sample mean and sample variance of the bi ’s. The mini-
mization is performed under a monotonic constraint that the
φ(Wij )’s follow exactly the same order as the Wij ’s, that is,
φ(W(1)) ≤ φ(W(2)) ≤ · · · ≤ φ(W(2n)). The basic intuition be-
hind this operation is that we want to find a transformation φ

so that the resulting n sample quantiles are the closest to the
expected quantiles in terms of the mean squared error (MSE).
Other than monotonicity, we impose no constraints on φ; thus
this transformation is more flexible than those proposed in the
literature. For convenience, we use the MSE as the evalua-
tion criterion for the transformation; one certainly could opt for
other criteria, such as the mean absolute deviation or a weighted
average, which may emphasize the central part more than the
tail part of the data or may focus only on the maximum dis-
tance.

The proposed transformation is rank-preserving but cannot
make a distinction between φ and a0 + a1φ for any con-
stants a0 and a1. Thus, to ensure identifiability, we set the
first two values, φ(W(1)) and φ(W(2)), to two constants, say
φ(W(1)) = 1 and φ(W(2)) = 2. Our original problem involves
an order-constrained minimization, which often requires rather
specialized optimization routines. If we reparameterize and
take φ(W(i)) = ∑i

j=1 eτj , then we can minimize
∑n

i=1[{b(i) −
μb}/σb − qi]2 without constraints to obtain the τj ’s and hence
the φ(Wij )’s. Note that a single value change in any of the τj ’s
would cause changes in μb and σb; thus the optimization cannot
be simplified by investigating each individual term separately.
In addition, the fixed order of φ(Wij )’s does not imply a fixed
order of bi ’s; thus the objective function may not be differen-
tiable at the τj values at which a change in the order of bi ’s
occurs. Because of these considerations, we use a large-scale
Nelder–Mead simplex method as the optimization procedure, in
combination with multiple sets of dispersed starting values for
τj ’s, to avoid convergence to local minima. It is worth point-
ing out that although the optimal solution gives the best trans-
formation toward normality, in reality, we would be content as
long as the resulting φ(Wi1) − φ(Wi2) was sufficiently close
to normality. Various procedures can be used to examine the
performance of the transformation. We formulate the Pearson-
type statistic in the form of

∑K
k=1 (Ek − Ok)

2/Ek, where K is
the number of partitions of the data space, and Ek and Ok are
the expected and observed bin counts. Under the null model in

which (bi − μb)/σb follows the standard normal distribution,
the Pearson statistic asymptotically follows a chi-squared dis-
tribution with degrees of freedom K − 1 (see, e.g., Rao 1973).
The proposed nonparametric transformation is straightforward
and is quite effective, as we show in our numerical studies.
Once we obtain the φ(Wij )’s, the variance V can be easily es-
timated using the sample variance of {φ(Wi1) − φ(Wi2)}/

√
2,

i = 1, . . . , n.
In general, there is no guarantee that a normal additive er-

ror can always be achieved. In cases where the normal er-
ror cannot be obtained, the estimating equations (3) and (5)

should be corrected by replacing Xj , e
XT

j β with Wj − E(Uj ),

e
WT

j β
/E(e

UT
j β

) and Xj e
XT

j β with Wj e
WT

j β
/E(e

UT
j β

) −
e

WT
j β

E(Uj e
UT

j β
)/E(e

UT
j β

)2.

5. NUMERICAL STUDIES

5.1 Simulation

We conducted three sets of simulation studies to examine the
small-sample performance of the proposed methods. First, we
studied a cure rate model function,

S(t |X1,X2) = exp{− exp(β0 + β1X1 + β2X2)F (t)}, (8)

where X1 is a uniformly distributed random variable on [0,1]
and subject to measurement errors and X2 is a Bernoulli ran-
dom variable that takes a value of 0 or 1 with equal probability.
We took the true parameters β0 = .5, β1 = 1, β2 = −.5, and
F(t) = 1− exp(−t). The measurement error model was formu-
lated as W = X1 + U , where U was a normal random variable
with mean 0 and standard deviation σ . We considered σ = .1
and .2 to examine the impact of the measurement error on the
estimators. When the censoring time was generated from an ex-
ponential distribution with mean 1, designated as exp(1), the
resulting data set had an approximate censoring rate of 17%,
and a cure rate of 8%; and when the censoring time was gener-
ated from exp(.1), it yielded a censoring rate of 33%. We took
sample sizes of n = 200 and 300, and performed 1,000 sim-
ulations under each configuration. For each data replicate, we
implemented the backfitting procedure to estimate β0, β1, and
β2 and the corresponding variances. The corrected estimating
equations were solved using the Newton–Raphson algorithm,
which converged very fast and was quite robust to the initial
values. For comparison, we also carried out a naive estimation
procedure, in which the measurement error was ignored and
W was treated as X1. The simulation results are presented in
Tables 1 and 2, corresponding to censoring rates of 17% and
33%. As we can see, even with a small measurement error scale,
σ = .1, the naive estimator of β0 was biased upward and that of
β1 was biased downward, and these biased increased severely
as the measurement error increased to σ = .2. The correspond-
ing coverage probabilities of 95% confidence intervals were un-
der the nominal level, especially for the cases with σ = .2. In-
terestingly, because covariate X2 was measured precisely, the
estimator of β2 under the naive method performed well; the bias
was negligible, and the coverage probability was close to 95%.
In contrast, the proposed estimator successfully corrected the
bias under all of the scenarios. Moreover, the estimated vari-
ances based on the asymptotic normal approximation formula
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Table 1. Simulation results under model (8) with 17% censoring

Proposed method Naive method

σ n Estimate β0 β1 β2 β0 β1 β2

.1 200 Bias −.011 .031 .002 .041 −.089 .006
Empirical variance .039 .095 .031 .035 .072 .030
Estimated variance .037 .098 .028 .031 .073 .027
95% cv .941 .956 .936 .923 .927 .929

300 Bias −.005 .021 −.001 .046 −.096 .003
Empirical variance .028 .066 .019 .025 .050 .018
Estimated variance .025 .064 .018 .020 .048 .018
95% cv .932 .939 .956 .901 .926 .950

.2 200 Bias −.007 .028 −.003 .152 −.336 .007
Empirical variance .054 .164 .032 .033 .058 .030
Estimated variance .052 .156 .040 .026 .055 .027
95% cv .941 .946 .944 .805 .687 .936

300 Bias −.008 .026 −.004 .148 −.331 .005
Empirical variance .034 .103 .020 .022 .038 .018
Estimated variance .033 .100 .019 .017 .037 .018
95% cv .943 .952 .951 .764 .576 .950

NOTE: 95% CV represents the coverage probability of 95% confidence intervals.

were quite close to the empirical variances, and our method pro-
duced satisfactory coverage probabilities at the 95% nominal
level. When σ increased, the estimated variances for the β’s
increased as more variability was incorporated into the model
and the estimation procedure. However, the opposite was true
for the naive estimators. Because W was treated as the true co-
variate X1, more variation in the covariate would produce bet-
ter estimators; the variances using the naive method were in fact
smaller for σ = .2 compared with those with σ = .1. At a higher
censoring rate, as shown in Table 2, similar conclusions can be
drawn. The estimated variances increased as the censoring per-
centage increased and decreased as the sample size grew large.

Our second simulation was designed to study a scenario with
replicates for mismeasured covariates. We considered a cure

rate model,

S(t |X1,X2,X3,X4) = exp
{− exp(β0 + β1X1 + β2X2

+ β3X3 + β4X4)F (t)
}
, (9)

where both X1 and X2 are Bernoulli random variables that
take a value of 1 with probabilities of .5 and .6, and X3 and
X4 are generated from uniform distributions on [−.5, .5] and
[0,1]. Here X4 was unobservable; instead, we observed two
replicates (W1,W2), where each replicate was X4 plus a nor-
mal error with mean 0 and standard deviation σ = .2. The true
parameters were β0 = .5, β1 = .5, β2 = −.5, β3 = 1, β4 = −1,
and F(t) = 1 − exp(−t). The censoring times were generated
independently from exp(1), yielding an approximate censoring

Table 2. Simulation results under model (8) with 33% censoring

Proposed method Naive method

σ n Estimate β0 β1 β2 β0 β1 β2

.1 200 Bias −.006 .016 −.003 .046 −.104 .000
Empirical variance .054 .135 .038 .047 .102 .037
Estimated variance .050 .126 .036 .041 .093 .034
95% cv .949 .946 .937 .928 .924 .935

300 Bias −.005 .006 .003 .046 −.110 .006
Empirical variance .035 .085 .025 .031 .065 .024
Estimated variance .033 .082 .024 .028 .062 .023
95% cv .939 .950 .945 .917 .921 .944

.2 200 Bias −.025 .078 −.008 .141 −.312 .007
Empirical variance .063 .207 .042 .038 .071 .038
Estimated variance .070 .205 .038 .036 .070 .034
95% cv .958 .951 .938 .863 .776 .934

300 Bias −.001 .032 −.009 .155 −.331 .003
Empirical variance .048 .149 .026 .030 .055 .024
Estimated variance .044 .128 .025 .023 .047 .023
95% cv .943 .932 .946 .790 .646 .950

NOTE: 95% CV represents the coverage probability of 95% confidence intervals.
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Table 3. Simulation results under model (9) with 25% censoring

Proposed method Naive method

n Estimate β0 β1 β2 β3 β4 β0 β1 β2 β3 β4

Average W̄

200 Bias .021 .009 −.013 .028 −.037 −.091 .005 −.008 .020 .184
Empirical variance .078 .044 .042 .134 .182 .060 .042 .040 .130 .108
Estimated variance .069 .042 .042 .128 .173 .053 .041 .040 .123 .099
95% cv .931 .952 .953 .946 .948 .920 .950 .953 .946 .896

300 Bias .012 .002 −.006 .013 −.023 −.096 −.002 −.001 .006 .189
Empirical variance .051 .030 .028 .082 .115 .039 .030 .027 .081 .069
Estimated variance .045 .028 .027 .084 .110 .035 .027 .027 .081 .065
95% cv .926 .948 .950 .960 .953 .912 .947 .952 .958 .869

Replicates (W1,W2)

200 Bias .023 .009 −.012 .028 −.040 −.162 .002 −.005 .014 .325
Empirical variance .080 .044 .042 .135 .187 .051 .042 .039 .129 .073
Estimated variance .069 .042 .042 .128 .182 .046 .041 .040 .122 .068
95% cv .929 .950 .955 .944 .956 .877 .954 .954 .945 .745

300 Bias .012 .002 −.006 .013 −.024 −.166 −.005 .002 .001 .327
Empirical variance .052 .030 .028 .082 .117 .034 .029 .027 .080 .047
Estimated variance .045 .028 .027 .084 .114 .030 .027 .026 .081 .045
95% cv .926 .946 .951 .959 .952 .835 .945 .953 .956 .654

NOTE: 95% CV represents the coverage probability of 95% confidence intervals.

rate of 25%. We implemented two different treatments of the
replicates: averaging W1 and W2 to obtain a single “better”
measurement, W̄ = (W1 + W2)/2, and incorporating each in-
dividual measurement (W1,W2) in the estimation as in (6) and
(7). The simulation results, given in Table 3, show that the esti-
mates using W̄ or (W1,W2) were comparable. In particular, the
bias could be corrected satisfactorily compared with the naive
method, the asymptotic variance provided a good approxima-
tion of the empirical variance, and the 95% coverage probabil-
ity closely matched the nominal level. As the sample size in-
creased, the bias and variance decreased. But the naive method
had obvious biases in the estimates of β0 and β4, whereas the
parameter estimates for the precisely measured covariates X1,
X2, and X3 were satisfactory. Furthermore, it is interesting that
using the duplicates (W1,W2) led to much worse biases and
coverage probabilities than those resulting from using the av-
erage W̄ based on the naive method. The averaged covariate
values could offset the effect of measurement errors to a certain
extent, because the random noise would diminish by averaging
over multiple replicates.

In the third simulation, we conducted a sensitivity analysis
to demonstrate the effectiveness of the proposed transforma-
tion and the robustness of our model to the misspecified normal
additive error. We examined model (8) with measurement er-
ror structure W = exp(X1 + U), where we generated U from a
normal, a Student t with degrees of freedom 10 and 5, and a uni-
form distribution. We set the mean of U to 0 and the standard
deviation of U to .2 for all of the scenarios. We implemented
the proposed transformation on the covariate, even though for
all cases but the first, whether or not a normal additive error
structure could be obtained is not clear. Table 4 shows that the
proposed method performed well by imposing our transforma-
tion when W is linked to X through a nonnormal and nonaddi-
tive error. We could capture the true transformation that recov-
ered the normal additive error structure. When the normality

assumption was violated, our estimation procedure appeared to
be quite robust and still produced estimates with very small bi-
ases. As the degree of freedom of the t distribution decreased to
5, the performance deteriorated slightly. In the simulations not
reported here, we also explored other transformations, such as
W = (X1 + U)3, and found similar results.

In the foregoing simulations, the censoring distribution has
an infinite support. Because in reality the censoring time is al-
ways finite, we also conducted simulations in which the censor-
ing distribution was finitely supported. Here a subject is con-
sidered cured if the subject is censored and the corresponding
censoring time is larger than the largest observed event time.
The estimator remains consistent, and the variance estimation
and the 95% coverage probability are satisfactory as well.

5.2 Lung Cancer Data

As an illustration, we applied the cure rate model with mea-
surement errors to the lung cancer data set. The study group
comprised 280 patients. The covariates of interest included ei-
ther one or two readings of biomarker expression, tumor his-
tology (61% adenocarcinoma = 1; 39% squamous cell carci-
noma = 0), and patient age (range, 34 to 90 years; mean, 66
years) and sex (52% female = 1; 48% male = 0). The covari-
ate age was standardized to have mean 0 and variance 1. The
underlying true expression of the biomarker could not be mea-
sured precisely. For half of the patients, only one reading of
biomarker expression was available, whereas for the other half,
two different readings were recorded, with no preference given
to either reading.

For the 140 patients with 2 readings of biomarker expres-
sion, we took the difference of the logarithm of the 2 readings
and found that the original observations of biomarker expres-
sion did not satisfy the normal additive error structure. After
carrying out our transformation on the readings of biomarker
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Table 4. Transformation and sensitivity analysis of the error structure under model (8)

Proposed method Naive method

n Error Estimate β0 β1 β2 β0 β1 β2

200 Normal Bias −.017 .047 −.003 .147 −.334 .008
Empirical variance .055 .163 .032 .034 .057 .029
Estimated variance .052 .159 .030 .026 .056 .028
95% cv .952 .951 .938 .808 .695 .943

t10 Bias −.015 .044 −.006 .147 −.334 .009
Empirical variance .057 .173 .033 .035 .061 .030
Estimated variance .051 .159 .030 .026 .056 .028
95% cv .939 .942 .946 .812 .690 .946

t5 Bias −.084 .203 −.011 .120 −.273 .007
Empirical variance .066 .220 .033 .036 .067 .030
Estimated variance .062 .203 .031 .027 .061 .028
95% cv .948 .939 .946 .847 .780 .947

Uniform Bias −.017 .047 −.003 .145 −.329 .007
Empirical variance .054 .150 .031 .035 .055 .029
Estimated variance .052 .158 .030 .026 .057 .028
95% cv .954 .957 .952 .803 .718 .944

300 Normal Bias −.006 .017 −.001 .150 −.341 .009
Empirical variance .035 .106 .020 .022 .041 .019
Estimated variance .033 .100 .019 .017 .037 .018
95% cv .936 .944 .951 .762 .578 .948

t10 Bias −.009 .027 −.002 .147 −.333 .007
Empirical variance .033 .103 .022 .021 .039 .020
Estimated variance .033 .099 .019 .017 .037 .018
95% cv .950 .941 .934 .756 .586 .937

t5 Bias −.075 .180 −.006 .120 −.272 .006
Empirical variance .038 .128 .023 .022 .042 .020
Estimated variance .039 .124 .020 .018 .040 .018
95% cv .952 .941 .935 .816 .729 .937

Uniform Bias −.006 .021 −.003 .147 −.331 .007
Empirical variance .032 .099 .020 .021 .038 .019
Estimated variance .033 .098 .019 .017 .037 .018
95% cv .957 .945 .941 .768 .567 .951

NOTE: 95% CV represents the coverage probability of 95% confidence intervals.

expression, we can see that the error structure was much closer
to normal based on the quantile–quantile plot in Figure 2. We
also performed the Pearson chi-squared test, under which we
obtained a p value > .7 for K ranging from 4 to 10; thus a nor-
mal error structure after the transformation was quite convinc-
ing. For patients with duplicated readings of biomarker expres-
sion, we used the averaged value W̄ and the individual observa-
tions (W1,W2) for the analysis. Table 5 shows that ignoring the
measurement error could cause severe bias, particularly in the
estimates of the intercept and the biomarker expression effect.
We found that biomarker expression significantly affected pa-
tient survival; a higher expression was associated with a shorter
survival time. The naive method tended to underestimate the
variance and produce a downward bias for the biomarker ef-
fect. As for other error-free covariates, the proposed method and
the naive method yielded similar estimates. Patients with a tu-
mor histology of adenocarcinoma had a significantly better sur-
vival rate than those with squamous cell carcinoma; moreover,
younger patients could be expected to live longer at a lower risk
of death. There was no significant difference in survival across

sex in this study population, although there was a trend that
women might live longer.

The cure threshold in our model could be determined through
consultation with physicians, which is a medical issue based on
the patient population and disease status. Because such a thresh-
old is restricted to lie to the right of the largest failure time,
we conducted a sensitivity analysis by taking the cure thresh-
old at 7, 7.5, or 8 years. We found that the parameter estimates
were not sensitive to the specification of the threshold, because
it only affected the censored observations at the right tail.

6. DISCUSSION

We have proposed a semiparametric cure rate model with co-
variate measurement errors. The model inherits the well-known
proportional hazards structure, with the corrected score func-
tions derived based on NPMLE to estimate β and F(t). The as-
ymptotic consistency and root-n convergence of the estimators
were established through modern empirical process techniques.
Simulation studies showed that the corrected score approach
produced consistent estimators, whereas the naive estimation
typically led to severe biases.
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(a) (b)

Figure 2. Quantile–quantile plots of the error with the transformed readings of biomarker expression (a) and the original observations (b) for
the lung cancer data.

For the proportional hazard cure model, the NPMLE and
partial likelihood estimator were in fact identical. This can be

verified by assigning nλ in NPMLE to
∑

Yj =∞ e
XT

j β . The de-
tails of this derivation are given in the Appendix. Naturally,
the corrected score estimator thus also can be derived equiv-
alently through the partial likelihood approach. In our view, us-
ing NPMLE has several advantages. First, consistency is self-
evident through a conditional distribution argument. Second,
the cure rate model and the Cox model are fundamentally dif-
ferent; therefore, to estimate the intercept b using the partial
likelihood procedure, we need to reparameterize the model by
taking b = log�0(∞). Third, the partial likelihood approach
is restricted only to the proportional hazards structure, whereas
NPMLE is much more general. For example, the proportional
odds cure model can be easily handled by NPMLE, whereas
the partial likelihood is not applicable (see Zeng et al. 2006).
Even though finding a corrected score is not always straight-
forward or even possible, a general Monte Carlo–corrected
score method can be implemented in practice. In this regard,

Table 5. Regression coefficient estimates and estimated variances for
the lung cancer data, using the averaged and individual reading

of biomarker expression

Estimate Intercept Histology Age Sex Biomarker

Averaged reading W̄

Proposed estimate −.2904 −.5622 .4352 −.0687 .0505
Estimated variance .2990 .0639 .0138 .0450 .0077

Naive estimate −.1672 −.5306 .4337 −.0748 .0299
Estimated variance .1347 .0489 .0130 .0426 .0026

Individual reading (W1,W2)

Proposed estimate −.2648 −.5555 .4348 −.0697 .0462
Estimated variance .2885 .0624 .0138 .0450 .0074

Naive estimate −.1448 −.5248 .4334 −.0758 .0261
Estimated variance .0923 .0476 .0134 .0434 .0020

Wi can be augmented with Ũi

√−1 to form W̃i , where Ũi

has the same distribution as the measurement error Ui ; cal-
culate the score function using W̃i ; and set the real part to 0
to solve for β . Although the Monte Carlo–corrected score ap-
proach does not always guarantee a consistent estimator, in the
case when a true corrected score does exist, it will be consis-
tent; thus it can be viewed as a numerical way of finding a
corrected score. Further exploration in these areas should be
worthwhile.

The corrected-score method belongs to the family of func-
tional approaches that make no distributional assumptions on
the unobservable true covariates, as opposed to structural mod-
els that specify a distribution of X. However, the corrected score
and its generalized form depend on the additive error structure.
Because in reality not all measurements can be transformed to
normality and/or additivity, the more general semiparamatric
approach proposed by Tsiatis and Ma (2004) is worth explor-
ing. Preliminary studies toward this end have uncovered several
modeling and computational issues, including the need to esti-
mate the censoring mechanism or strong assumptions, such as
censoring, independent of the covariates. These same difficul-
ties also prevent us from absorbing the transformation inside of
the estimation procedure itself.

An alternative approach in functional measurement error
models is based on the simulation-extrapolation (SIMEX)
method (Cook and Stefanski 1994; Stefanski and Cook 1995;
Li and Lin 2003; Greene and Cai 2004). SIMEX first simulates
data sets with an increasing amount of measurement errors and
then extrapolates back to the nonerror case. Because the correct
extrapolation function is generally unknown, in theory SIMEX
can produce only approximately consistent estimates. However,
in practice its performance is often satisfactory, and sometimes
it even outperforms the asymptotically “correct” methods. It
would be interesting to implement SIMEX under the cure rate
models with measurement errors.

In contrast to the usual classical measurement error structure,
where W = X + U, U is independent of X, in another class of
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errors, called Berkson error, X = W + U and U is independent
of W. Berkson error models are often relatively easier to deal
with, because the distribution of the unobservable variable X
does not appear in the likelihood. In the Cox model framework,
Zucker (2005) considered such an error structure and proposed
a consistent estimator. Similar estimators can be developed for
the cure rate model. Further consideration in the presence of a
mixture of classical and Berkson errors may be also of interest.

APPENDIX: PROOFS

Proof of Theorem 1

Multiplying (6) by p̂(i) = F̂n{Yi} on both sides and summing over
the m equations, we have

λ̂n = 1

n

n∑

i=1

�iI (Yi < ∞) −
∫ ∞

0
Hn(y, β̂n) dF̂n(y), (A.1)

where

Hn(y, β̂n) = 1

n

∑

Yj <∞
I (Yj ≥ y)e

WT
j β̂n−β̂nVβ̂n/2

.

Thus F̂n{Yi} = �i/n{λ̂n + Hn(Yi, β̂n)}. Obviously, from (A.1), λ̂n

should be bounded by a constant with probability 1; therefore, by
choosing a subsequence, still indexed by {n}, we assume that λ̂n → λ∗.
By choosing a further subsequence, we assume that β̂n → β∗ and
F̂n → F ∗ pointwise.

Note that the classes {W} and {I (Y ≥ y)} are P–Donsker, because
of their monotonicity and uniform boundedness. Under the continu-
ously differentiable operation of taking the exponential and the alge-
braic operation of multiplication, the class

{
I (∞ > Y ≥ y)eWT β−βT Vβ/2 :β ∈ B0

}

also is P–Donsker (see van der Vaart and Wellner 2000, thms. 2.7.5,
2.10.6, and 2.10.8) and thus is Glivenko–Cantelli. Due to the Gliven-
ko–Cantelli theorem and the bounded convergence theorem, we con-
clude that uniformly in y, Hn(y, β̂n) → H∗(y), where

H∗(y) = E
{
I (∞ > Y ≥ y)eWT β∗−β∗Vβ∗/2}

.

Moreover, the right side of (A.1) converges to

λ∗ = E{�I (Y < ∞)} − E

{
I (Y < ∞)

∫ Y

0
H∗(y) dF ∗(y)

}
.

We next show that |λ∗ + H∗(y)| is bounded away from 0. Because
each F̂n{Yi} is nonnegative and

∑n
i=1 F̂n{Yi} = 1, we have

1 =
n∑

i=1

I (Yi < ∞)�i

n(λ̂n + Hn(Yi, β̂n))
=

n∑

i=1

I (Yi < ∞)�i

n|λ̂n + Hn(Yi, β̂n)|

≥ 1

n

n∑

i=1

I (Yi < ∞)�i

|λ̂n + Hn(Yi, β̂n)| + ε
,

for any positive constant ε. Because Hn(y, β̂n) converges uniformly
to H∗(y), we have

1

n

n∑

i=1

I (Yi < ∞)�i

|λ̂n + Hn(Yi, β̂n)| + ε
− 1

n

n∑

i=1

I (Yi < ∞)�i

|λ∗ + H∗(Yi)| + ε
→ 0.

Then, after taking limits on both sides, we obtain 1 ≥ E{�I (Y < ∞)/

(|λ∗ + H∗(Y )| + ε)}. Let ε → 0; then we have

1 ≥
∫ ∞

0

c0 dy

|λ∗ + H∗(y)| , (A.2)

where c0 is a positive constant. This implies that there exists a
δ∗ > 0 such that |λ∗ + H∗(y)| > δ∗, because otherwise, we have that
infy |λ∗ + H∗(y)| = 0. If H∗(∞) + λ∗ = 0, then H∗(∞) = −λ∗ = 0.
In this case, |λ∗ +H∗(y)| = H∗(y) < 1 for sufficiently large y, which
contradicts (A.2). If λ∗ = −H∗(y0) for a finite y0, then (A.2) be-
comes 1 ≥ c0

∫ ∞
0 1/|H∗(y0) − H∗(y)|dy. This is impossible, be-

cause H∗(y) is continuously differentiable in a neighborhood of y0.
Furthermore, |λ∗ + H∗(y)| > δ∗ implies that when n is large, |λ̂n +
Hn(y, β̂n)| > δ∗. Note that F̂n(y) = n−1 ∑n

i=1 �iI (Yi ≤ y)/|λ̂n +
Hn(Yi, β̂n)| so F̂n(y) converges uniformly to F ∗(y) = E{�I (Y ≤ y)/

|λ∗ + H∗(Y )|}.
Based on the definitions of Sβ (β,F ) and SF (β,F )[∫ QF (h2) dF ],

we have

Pn

{
Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]}
= 0

for any (h1, h2) ∈ H. Using the uniform convergence of (β̂n, F̂n) to
(β∗,F ∗), as n → ∞, we obtain

P

{
Sβ (β∗,F ∗)T h1 + SF (β∗,F ∗)

[∫
QF ∗(h2) dF ∗

]}
= 0.

On the other hand, we also have

P

{
Sβ (β0,F0)T h1 + SF (β0,F0)

[∫
QF0 (h2) dF0

]}

= P

{
lβ (β0,F0)T h1 + lF (β0,F0)

[∫
QF0 (h2) dF0

]}

= 0, (A.3)

because of our construction. Based on the uniqueness assumption and
continuity of F0, we obtain β0 = β∗ and F ∗ = F0.

Proof of Theorem 2

Following the definition of H,
√

n(β̂n −β0, F̂n −F0) can be treated
as a linear functional in the metric space l∞(H), which is defined as

√
n(β̂n − β0, F̂n − F0)(h1, h2)

= √
n(β̂n − β0)T h1 + √

n

∫
h2(t) d(F̂n − F0).

We next establish the asymptotic distribution of
√

n(β̂n−β0, F̂n−F0)

in l∞(H).

We denote the derivative of Sβ (β,F ) with respect to β as
Sββ (β,F ), the derivative of Sβ (β,F ) with respect to F along

the path Fε = F + ε(F̂n − F) as SβF (β,F )[F̂n − F ], the deriva-
tive of SF (β,F )[∫ QF (h2) dF ] with respect to β as SFβ (β,F ) ×
[∫ QF (h2) dF ], and the derivative of SF (β,F )[∫ QF (h2) dF ] with
respect to F along the path Fε = F + ε(F̂n − F) as SFF (β,F ) ×
[∫ QF (h2) dF, F̂n − F ]. Explicitly, we have

Sββ (β,F )

= F(Y )eWT β−βT Vβ/2{V − (W − Vβ)(W − Vβ)T },

SFβ (β,F )

[∫
QF (h2) dF

]

= −
∫ Y

0
QF (h2) dF (t) eWT β−βT Vβ/2(W − Vβ),

SβF (β,F )[F̂n − F ]

= −{F̂n(Y ) − F(Y )}eWT β−βT Vβ/2(W − Vβ),
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and

SFF (β,F )

[∫
QF (h2) dF, F̂n − F

]

= −eWT β−βT Vβ/2
∫ Y

0
QF (h2) d(F̂n − F)

+ {
eWT β−βT Vβ/2F(Y ) − I (Y < ∞)�

}∫ ∞
0

h2(t) d(F̂n − F).

Our estimating equations require that

Pn

{
Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]}
= 0.

Noting (A.3), we obtain

√
n(Pn − P)

{
Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]}

= −√
nP

{
Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]}

+ √
nP

{
Sβ (β0,F0)T h1 + SF (β0,F0)

[∫
QF0(h2) dF0

]}
.

(A.4)

We now examine the left and right sides of (A.4). For the left side,
we note that the classes {W} and {F(Y )} are P–Donsker, because of
their monotonicity and uniform boundedness. Under the continuously
differentiable operation of taking the exponential, and the algebraic
operation of multiplication, the class

{
eWT β−βT Vβ/2, eWT β−βT Vβ/2(W − Vβ),

eWT β−βT Vβ/2(W − Vβ)F (Y ) :

‖β − β0‖ < δ0, sup
y

|F(y) − F0(y)| < δ0

}

also is P–Donsker (see van der Vaart and Wellner 2000, thms.
2.7.5, 2.10.6, and 2.10.8). In addition, the class {h2,QF (h2),∫ Y

0 QF (h2) dF :‖h2‖V ≤ 1, supy |F(y) − F0(y)| < δ0} contains
functions of Y with bounded variations, and so also is P–Donsker.
Therefore, from the explicit expressions of Sβ and SF , the preserva-
tion of the Donsker classes under algebraic operations implies that the
class

A=
{

Sβ (β,F )T h1 + SF (β,F )

[∫
QF (h2) dF

]
:

‖h1‖ ≤ 1,‖h2‖V ≤ 1,‖β − β0‖ + sup
y

|F(y) − F0(y)| < δ0

}

is P–Donsker. On the other hand, based on the consistency of β̂ and
F̂n, the bounded norm of h1 and the bounded total variation of h2, it
is straightforward to show that

Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]

→ Sβ (β0,F0)T h1 + SF (β0,F0)

[∫
QF0 (h2) dF0

]

uniformly in (h1, h2) ∈H. Thus the left side of (A.4) is equal to

√
n(Pn − P)

{
Sβ (β0,F0)T h1 + SF (β0,F0)

[∫
QF0(h2) dF0

]}

+ op(1),

where op(1) is a random variable that converges to 0 in probability in
l∞(H). As a result, the left side of (A.4) converges weakly to a mean-0
Gaussian process in l∞(H).

For the right side, simple algebra shows that uniformly in (h1,

h2) ∈ H,
∣∣∣∣Sβ (β̂n, F̂n)T h1 + SF (β̂n, F̂n)

[∫
Q

F̂n
(h2) dF̂n

]

− Sβ (β0,F0)T h1 − SF (β0,F0)

[∫
QF0 (h2) dF0

]

−
{
(β̂n − β0)T Sββ (β0,F0)h1

+ (β̂n − β0)T SFβ (β0,F0)

[∫
QF0 (h2) dF0

]

+ hT
1 SβF [F̂n − F0]

+ SFF (β0,F0)

[∫
QF0 (h2) dF0, F̂n − F0

]}∣∣∣∣

≤ op

{‖β̂n − β0‖ + ‖F̂n − F0‖l∞(H)

}
.

Thus, combining this with the expressions of Sββ ,SβF ,SFβ , and
SFF , we obtain that the right side of (A.4) equals

−√
n

{
(β̂n − β0)T �β (h1,QF0 (h2))

+
∫ ∞

0
F (h1,QF0(h2)) d(F̂n − F0)(y)

}

+ op

{√
n
(‖β̂n − β0‖ + ‖F̂n − F0‖l∞(H)

)}
,

where

�β

(
h1,QF0(h2)

)

= E
[
F0(Y )eWT β−βT Vβ/2{V − (W − Vβ)(W − Vβ)T }h1

]

− E

[
eWT β−βT Vβ/2(W − Vβ)

∫ Y

0
QF0 (h2) dF0(t)

]

and

F

(
h1,QF0(h2)

)

= E
{
eWT β−βT Vβ/2F0(Y ) − I (Y < ∞)�

}
QF0 {h2(y)}

− E
(
I (y ≤ Y )eWT β−βT Vβ/2[

(W − Vβ)T h1 + QF0 {h2(y)}])

+
∫ ∞

0
E

(
I (y ≤ Y )eWT β−βT Vβ/2

× [
(W − Vβ)T h1 + QF0 {h2(y)}])dF0(y).

Note that the last term in the foregoing expression is added to en-
sure that

∫
F (h1,QF0(h2)) dF0 = 0. We now show that (�β ,F ),

which is a linear operator on a subspace of H to itself, with mean-0
F under F0, is invertible. Note that

�β

(
h1,QF0 (h2)

)

= E

{
Sββh1 + SFβ

[∫
QF0(h2) dF0

]}

= E

[
E

{
∂Sβ

∂β
h1 + ∂SF [∫ QF0 (h2) dF0]

∂β

∣∣∣X, Y,�

}]

= E

{
∂E(Sβ |X, Y,�)

∂β
h1 + ∂E(SF [∫ QF0 (h2) dF0]|X, Y,�)

∂β

}

= E

(
lββh1 + lFβ

[∫
QF0 (h2) dF0

])



754 Journal of the American Statistical Association, June 2008

= −E

(
lβ lTβ h1 + lF

[∫
QF0(h2) dF0

]
lβ

)

and, similarly,
∫ ∞

0
F

(
h1,QF0 (h2)

)
dG(y)

= E

(
hT

1 SβF [G] + SFF

[∫
QF0 (h2) dF0,G

])

= E

{
E

(
hT

1 SβF [G] + SFF

[∫
QF0 (h2) dF0,G

]∣∣∣X, Y,�

)}

= E

(
hT

1 lβF [G] + lFF

[∫
QF0 (h2) dF0,G

])

= −E

(
hT

1 lβ lF [G] + lF

[∫
QF0 (h2) dF0

]
lF [G]

)

for an arbitrary function G such that
∫ ∞

0 dG(y) = 0. In particular, for
G = ∫

QF0 (h2) dF0, we obtain
∫ ∞

0
F

(
h1,QF0 (h2)

)
QF0(h2) dF0

= −E

{
hT

1 lβ lF

[∫
QF0(h2) dF0

]
+

(
lF

[∫
QF0 (h2) dF0

])2}
.

If for certain (h1, h2) and an arbitrary G satisfying
∫ ∞

0 dG(y) = 0,
we have

�β

(
h1,QF0 (h2)

) = 0 and
∫ ∞

0
F

(
h1,QF0 (h2)

)
dG(y) = 0,

then we obtain

0 = hT
1 �β

(
h1,QF0(h2)

) +
∫ ∞

0
F

(
h1,QF0(h2)

)
QF0 (h2) dF0

= −hT
1 E

(
lβ lTβ h1 + lF

[∫
QF0 (h2) dF0

]
lβ

)

− E

{
hT

1 lβ lF

[∫
QF0 (h2) dF0

]
+

(
lF

[∫
QF0 (h2) dF0

])2}

= −E

{
(hT

1 lβ )2 + 2hT
1 lβ lF

[∫
QF0(h2) dF0

]

+
(

lF

[∫
QF0 (h2) dF0

])2}

= −E

{(
hT

1 lβ + lF

[∫
QF0 (h2) dF0

])2}
;

therefore, with probability 1, hT
1 lβ + lF [∫ QF0 (h2) dF0] = 0. When

Y = ∞, lF [∫ QF0 (h2) dF0] = 0, and thus we obtain h1 = 0. Subtract-
ing lF evaluated at (Y < ∞,� = 1) by its value at (Y < ∞,� =
0), we obtain lF [∫ QF0 (h2) dF0](Y,� = 1) − lF [∫ QF0 (h2) dF0](Y,

� = 0) = QF0 {h2(Y )} = 0 for any Y < ∞, and thus h2 = 0. There-
fore, we have shown that (�β ,F ) is indeed invertible. Denoting its

inverse (�−1
β ,−1

F
), we can rewrite (A.4) as

√
n

{
(β̂n − β0)T h1 +

∫ ∞
0

QF0 (h2) d(F̂n − F0)

}

= −√
n(Pn − P)

{
Sβ (β0,F0)T �−1

β

(
h1,QF0 (h2)

)

+ SF (β0,F0)

[∫
−1

F

(
h1,QF0 (h2)

)
dF0

]}

+ op

{√
n(‖β̂n − β0‖ + ‖F̂n − F0‖l∞ )

} + op(1)

for all (h1, h2) ∈ H. So,
√

n{(β̂n − β0)T h1 + ∫ ∞
0 QF0 (h2) d(F̂n −

F0)} = Op(1) for all (h1, h2) ∈H, and thus {√n(‖β̂n −β0‖+‖F̂n −
F0‖l∞)} = Op(1). As an immediate result,

√
n

{
(β̂n − β0)T h1 +

∫ ∞
0

QF0 (h2) d(F̂n − F0)

}

= −√
n(Pn − P)

{
Sβ (β0,F0)T �−1

β

(
h1,QF0 (h2)

)

+ SF (β0,F0)

[∫
−1

F

(
h1,QF0 (h2)

)
dF0

]}

+ op(1),

and thus the proof of the theorem is complete.

Proof of Theorem 3

From the proof of Theorem 2, if we take QF0(h2) = 0, then we
obtain that

√
n(β̂n − β0)T h1

= −√
n(Pn − P)

{
Sβ (β0,F0)T �−1

β (h1,0)

+ SF (β0,F0)

[∫
−1

F
(h1,0) dF0

]}
+ op(1).

Write

b1(y) = E
{
I (y ≤ Y )eWT β−βT Vβ/2(W − Vβ)

}
,

b2 =
∫ ∞

0
b1(y) dF0(y),

c1 = E
{
eWT β−βT Vβ/2F0(Y ) − I (Y < ∞)�

}
,

c2(y) = E
{
I (y ≤ Y )eWT β−βT Vβ/2}

,

b3 =
[∫ ∞

0
{c1 − c2(y)}−1 dF0(y)

]−1
(A.5)

×
[∫ ∞

0
{b1(y) − b2}/{c1 − c2(y)}dF0(y)

]
,

b4(y) = {c1 − c2(y)}−1{b1(y) − b2 − b3},
a1 = E

[
F0(Y )eWT β−βT Vβ/2{V − (W − Vβ)(W − Vβ)T }],

a2 = E

[
eWT β−βT Vβ/2(W − Vβ)

∫ Y

0
b4(y)T dF0(y)

]
.

It can be verified that

�−1
β (h1,0) = (a1 − a2)−1h1 = (A−1)T h1

and

−1
F

(h1,0) = b4(y)T (A−1)T h1,

where A = (a1 − a2)T . Thus
√

n(β̂n − β0)T h1

= −√
n(Pn − P)

[{
Sβ (β0,F0)T + SF (β0,F0)

[∫
b4(y)T dF0

]}

× (A−1)T h1

]
+ op(1).

Denote

B =
{

Sβ (β0,F0) + SF (β0,F0)

[∫
b4(y) dF0

]}⊗2
,
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where a⊗2 = aaT for a vector a. Then the result follows.

Equivalence of the NPMLE and Partial Likelihood Estimator

The partial likelihood estimator for the proportional hazards cure
rate model can be obtained by solving

n∑

i=1

�iI (Yi < ∞)

{
X̃i −

∑
j∈Ri

X̃j e
X̃T

j β̃

∑
j∈Ri

e
X̃T

j β̃

}
= 0 (A.6)

and
n∑

i=1

�iI (Yi < ∞)

∑
j∈Ri

e
X̃T

j β̃
− eb = 0, (A.7)

where Ri is the risk set at Yi and X̃i and β̃ represent X and β with the
first component (corresponding to the intercept b) excluded (see, e.g.,
Tsodikov 1998b).

In the NPMLE, setting the Lagrange multiplier nλ =
∑

Yj =∞ e
XT

j β , from (3), we immediately obtain

pi = �iI (Yi < ∞)

∑
j∈Ri

e
XT

j β
and F(Yi) =

∑

Yk≤Yi

�kI (Yk < ∞)

∑
j∈Rk

e
XT

j β
,

and thus
n∑

i=1

eXT
i βXiF (Yi) =

n∑

i=1

∑

Yk≤Yi

eXT
i βXi�kI (Yk < ∞)

∑
j∈Rk

e
XT

j β

=
n∑

k=1

�kI (Yk < ∞)

∑
j∈Rk

e
XT

j βXj

∑
j∈Rk

e
XT

j β
,

and, from (5), we obtain

n∑

i=1

�iI (Yi < ∞)

(
Xi −

∑
j∈Ri

e
XT

j βXj

∑
j∈Ri

e
XT

j β

)
,

equivalent to (A.6). From (4), we have

n∑

i=1

�iI (Yi < ∞)

∑
j∈Ri

e
XT

j β
= 1,

equivalent to (A.7).

[Received September 2007. Revised February 2008.]
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