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Abstract: For randomly censored data, the authors propose a general class of semiparametricmedian residual

life models. They incorporate covariates in a generalized linear form while leaving the baseline median

residual life function completely unspecified. Despite the non-identifiability of the survival function for a

given median residual life function, a simple and natural procedure is proposed to estimate the regression

parameters and the baselinemedian residual life function. The authors derive the asymptotic properties for the

estimators, and demonstrate the numerical performance of the proposed method through simulation studies.

Themedian residual life model can be easily generalized tomodel other quantiles, and the estimationmethod

can also be applied to the mean residual life model. The Canadian Journal of Statistics 34: 665–679; 2010
© 2010 Statistical Society of Canada

Résumé: Les auteurs proposent une classe générale de modèles semi-paramétriques pour la durée de vie

résiduelle médiane de données censurées aléatoirement. Les covariables sont incorporées dans la partie

linéaire généralisée tandis que la durée de vie résiduelle médiane de référence est entièrement non spécifiée.

Malgré que la fonction de survie soit non identifiable pour une fonction de durée de vie résiduelle médiane

donnée, une procédure simple et naturelle est proposée pour estimer les paramètres de régression ainsi que la

fonction de durée de vie résiduellemédiane de référence. Les auteurs obtiennent les propriétés asymptotiques

des estimateurs et ils illustrent la performance numérique de la méthode proposée à l’aide de simulation. Le

modèle de durée de vie résiduelle médiane peut facilement être généralisé pour modéliser les autres quantiles

et la méthode d’estimation peut aussi être appliquée au modèle de durée de vie résiduelle moyenne. La
revue canadienne de statistique 34: 665–679; 2010 © 2010 Société statistique du Canada

1. INTRODUCTION

The residual lifetime characterizes the remaining survival time of a subject, given that the subject

has already survived up to time t. Correspondingly, the mean residual lifetime is the remaining

life expectancy conditional on survival at time t, which is defined as

m(t) = E(T − t|T > t) for t ≥ 0,

where T is the failure time. If we denote X as a p-dimensional vector of covariates, Oakes & Dasu

(1990) proposed the proportional mean residual life model

m(t|X) = m(t) exp(XTβ),
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wherem(t|X) = E(T − t|T > t, X) andm(t) is the unknown and unspecified baselinemean resid-

ual lifetime. When there is no censoring, Maguluri & Zhang (1994) proposed the Cox-type esti-

mating equation based on the proportional hazards structure (Cox, 1972), and studied the forward

recurrence times in the renewal process. Under general censorship, Oakes & Dasu (2003) devel-

oped the inferential procedures for one-sample and two-sample cases. Recently, Chen & Cheng

(2005) proposed a semiparametric regression model and a quasi-partial-score approach based on

counting process theories.

In contrast to the proportional mean residual lifetime model, Hall & Wellner (1984) studied a

class of survival distributions characterized by linearmean residual lifetimes. To handle covariates

in a general regression setting, Chen & Cheng (2006) proposed a semiparametric linear life

expectancy model

m(t|X) = m(t) + XTβ,

where the baseline function m(t) is left unspecified. Both the proportional mean residual life

model and the linear life expectancy model can be viewed as special cases of a more general

formulation given by

m(t|X) = g{m(t), X;β},
where g(·) is a known link function. The mean residual lifetime has an explicit one-to-one corre-

spondence to the conditional survival function

S(t|X) = m(0|X)

m(t|X)
exp

{
−

∫ t

0

1

m(u|X)
du

}
. (1)

This nice feature greatly facilitates the semiparametric estimation procedure, because it

uniquely determines a closed form of the conditional survival function S(t|X) for a

given mean residual lifetime m(t|X). Also, see Chen, Jewell & Cheng (2005) and Chen

(2007).

However, it may be undesirable to use the mean residual lifetime when the underlying distri-

bution is highly skewed or heavy tailed. In such cases, a single long-term survivor would impose

a notable influence on the mean because the mean of survival is sensitive to outliers. Furthermore,

we observe that the mean residual lifetime is given by

E(T |T > t) = t + 1

S(t)

∫ ∞

t

S(u) du,

in which the integration does not converge for an improper survival function S(t), or for any

S(t) that decreases at a rate of 1/t or slower. Thus, a mean residual lifetime may not even exist.

As a natural alternative, instead of modelling the mean residual lifetime, one could consider the

median or any other quantile of the residual lifetime. The median residual life model can be

viewed as a more flexible and robust version than the mean residual life model in two different

aspects. First, it is well known that the median is less sensitive to outliers in contrast to the mean,

which is also true for the residual lifetimes. Second, there are an infinite number of survival

functions that correspond to the same median residual life function, which is a multiple-to-one

relationship. Thus, the median residual life model is less restrictive than the model based on

the mean residual lifetime which is one-to-one correspondent to the survival function as in (1).

As a result, inference based on the median residual life model would be more robust to model

misspecification. Moreover, by modelling a broad range of quantiles of the residual lifetime, we
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can offer a more complete evaluation of the distribution of the residual lifetime. Based on these

considerations, the median and other quantiles of the residual lifetime are often more relevant in

practice.

Quantile regression models provide a natural way for robust and complete assessment of

covariate effects, which have been extensively studied in various contexts (Koenker & Bassett,

1978; Yu, Lu & Stander, 2003; and Koenker, 2005). In addition, quantile regression has been

extended to modelling censored data, including both fixed and random censoring cases (Powell,

1984; Ying, Jung & Wei, 1995; Yang, 1999; Bang & Tsiatis, 2002; Portnoy, 2003; and Peng &

Huang, 2008). However, limited research has been carried out with respect to the median residual

lifetime. Gelfand & Kottas (2003) proposed a Bayesian semiparametric approach to the median

residual life model. For the two-sample comparison, Jeong, Jung & Costantino (2008) studied a

nonparametric median residual life function that can be constructed through the Kaplan–Meier

survival estimator. In an extension, Jung, Jeong & Bandos (2009) proposed a general regression

model based on the median residual lifetime, which is built upon the work by Ying, Jung & Wei

(1995). These methods typically begin by modelling a survival function and then make inference

on the median residual life function. Such backward inferential procedures are not very appeal-

ing or intuitive, and in certain cases, the survival function may lead to a complicated or even

intractable median residual life function. The conventional mean residual life model approach

entails reconstructing the survival function, then proceeding with the typical nonparametric max-

imum likelihood estimation in a semiparametric setting. However, the non-identifiability of the

survival function from the median residual life specification invalidates such an approach. This

dominates the major difference in the treatment between the median and mean residual life mod-

els.

Our goal is to model the median residual lifetime by incorporating covariates, and to provide

a computationally simple estimation and inference procedure. If we focus on the τth quantile of

the residual lifetime, then a general semiparametric quantile residual life model can be expressed

as

qτ(T − t|T > t, X) = g{m(t), X;β}, (2)

where qτ(·|T > t, X) is the conditional quantile function given T > t andX. In practice, the covari-
ates are often modeled through a generalized linear form, that is, g{m(t), X;β} = g{m(t), XTβ}
and the baseline residual life functionm(t) is unspecified. The function g(·) can be chosen as linear
or of any other convenient form, which greatly enhances the model flexibility. For the median

residual life model corresponding to τ = 0.5, a survival function cannot be uniquely identi-

fied from the median model specification. This is true for any other quantile value 0 < τ < 1

as well. Thus, the standard approaches used in the mean residual life model are not applicable

to the median residual life model. This includes the direct use of the mean residual life func-

tion to construct the corresponding survival function. In lieu of that approach, we introduce

a simple and computationally effective procedure to estimate β and m(t) directly in the me-

dian residual life model. The proposed estimation procedure is very general and intuitive, and

can also be applied to the mean residual life model. In addition, the proposed procedure esti-

mates the parameters in the median residual life model without the need to recover the survival

function.

The rest of the paper is organized as follows. In Section 2, we introduce the notation, present

the estimation procedure, and derive the asymptotic properties of the parameter estimates for β

and m(t). In Section 3, we conduct simulation studies to examine the finite sample properties of

the proposed estimators. We illustrate the proposed model with a real data set from a leukemia

study in Section 4, and give some concluding remarks in Section 5.
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2. MEDIAN RESIDUAL LIFE MODEL

2.1. Two-Stage Estimation Procedure
Under random censorship, let Ti be the failure time and Ci be the censoring time for subject i. We

observe Yi = min(Ti, Ci), and the censoring indicator�i = I(Ti < Ci), where I(·) is the indicator
function. We assume that Ci is independent of Ti and covariates Xi. In addition, the observations

(Yi, �i, Xi) are assumed to be independent and identically distributed for i = 1, . . . , n.

The τth quantile residual life model in (2) can be equivalently expressed as

S[t + g{m(t), X;β}|X] = (1 − τ)S(t|X), (3)

where S(t|X) is the conditional survival function given covariates X. The functional equation in

(3) can be recognized as Schröder’s equation, which does not yield a unique solution for S(t|X),

but a very rich family of survival functions (Gupta & Langford, 1984). In general, the solutions of

Schröder’s equation cannot be written out explicitly. In fact, any solution S(t|X) would involve

the inverse of a function f (t, X), where f itself is defined through a recursive formula. Specifically,

a basic solution of (3) has the form of

S(t|X) = (1 − τ)f
−1(t,X)+1,

where f−1 represents the inverse function of f. The function f is recursively defined as

f {h(u + 1, X), X} = (1 − τ)f {h(u, X), X},

where h is a function that is strictly increasing in [0, 1] and also satisfies h(−1, X) = 0, h(1, X) =
g{m(0), X;β}, and h(u, X) = g[m{h(u − 1, X)}, X;β]. It worths noting that there are two recur-

sive relationships: one is in terms of the definition of f, and the other is in the definition of h. The
second recursive relationship involving h is more difficult to handle, since to define h(u, X), it

requires evaluation of the unspecified baseline median or τth quantile residual life functionm(t) at

the times resulting from the previous definition h(u − 1, X). Such a recursively defined function

f is formidable to invert in practice, hence a direct estimation procedure based on even one fixed

special S(t|X) is difficult to implement.

However, we observe that model (2) holds for all t ≥ 0, thus at t = 0, the equality in fact

reduces to qτ(T |X) = g{m(0), X;β}, or equivalently,

T = g{m(0), X;β} + ε with qτ(ε|X) = 0.

Viewing m(0) and β as the regression parameters and ε as the error, this model at t = 0 sim-

plifies to a standard censored quantile regression problem. If we had fully observed all of the

data {(Ti, Xi), i = 1, . . . , n}, the standard quantile regression method could be directly applied

(Koenker, 2005).Under randomcensoring,we canmodify the estimation procedure by implement-

ing the inverse probability weighting technique. Let K̂(y) be the Kaplan–Meier estimator of the

survival function for the censoring time, based on the observations {(Yi, 1 − �i), i = 1, . . . , n}.
Then, we obtain the estimators {m̂(0), β̂} by minimizing

n∑
i=1

�iρτ[Yi − g{m(0), Xi;β}]
K̂(Yi)

, (4)
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where ρτ(·) is the usual “check function”, defined as ρτ(u) = u{I(u ≥ 0) − (1 − τ)}. Here, to
ensure the validity of the method, we make the standard assumptions that the survival times are

continuous and bounded in [0, L] for a fixed value L, and the censoring times are continuous and

satisfy Pr(Ci ≥ L) > 0 for i = 1, . . . , n. This permits our technical derivations, and also ensures

that there can be patients observed throughout the study period.

Not only ourmethod provides an estimator for the parameter of interest, β, but also it estimates

the baseline median residual life function m(t). Following this route, we can in fact estimate m(t)

at an arbitrarily chosen time t. In the situation with no censoring, we can simply collect the

observations from {(Ti, Xi), i = 1, . . . , n} such that Ti > t, and estimate {m(t), β} by minimizing∑n
i=1 I(Ti > t)ρτ[Ti − t − g{m(t), Xi;β}]. The selection of the subsample that satisfies Ti > t

would guarantee the conditional requirement specified in model (2). Under random censoring, by

using the fact that I(Ti > t)�i = I(Yi > t)�i, we would need to modify the estimator {m̂(t), β̂}
to the minimizer of

n∑
i=1

I(Yi > t)�iρτ[Yi − t − g{m(t), Xi;β}]
K̂t(Yi)

,

where K̂t(y) is the Kaplan–Meier estimator of Kt(y), the survival function for the censoring time

in the subpopulation where the survival time of each individual is beyond t. However, a direct

estimation of Kt(y) is not available because for subjects censored before t, it is impossible to

know if they would survive beyond t or not, hence it is impossible to form a random sample of

the subpopulation. Fortunately, because of the independence between the event and the censoring

process,Kt(y) = Pr(C ≥ y|T > t) = Pr(C ≥ y), we can directly use the Kaplan–Meier estimator

of the entire sample K̂(Yi) to replace K̂t(Yi), and no new estimation for Kt(Yi) is needed.

The parameter β stays the same for the different values of t, and we can thus use the largest

amount of information from the data to estimate βwhen t = 0.We propose a two-stage estimation

procedure for m(t): in the first stage, we estimate m(0) and β at t = 0; and in the second stage, for

other values of t, we fix the parameter β at the pre-estimated value β̂ from stage 1, and estimate

the corresponding m(t). That is, we estimate m(t) for each t > 0 by minimizing

n∑
i=1

I(Yi > t)�iρτ[Yi − t − g{m(t), Xi; β̂}]
K̂(Yi)

with respect to m(t), while fixing β̂ at the estimator obtained from (4) in stage 1.

The estimators of {m(0), β} from (4) correspond to a standard M-estimation procedure based

on the inverse probabilityweighting, thus it has the usual square root-n consistency and asymptotic

normality. The same argument applies to the estimator of m(t) for each specified value of t > 0.

However, as t increases, fewer observations would contribute to the estimator, which is equivalent

to reducing the effective sample size. Hence, the performance of m̂(t) deteriorates as t increases.

2.2. Asymptotic Properties
For a fixed time t, the proposed estimation procedure leads to a median regression model with

randomly censored responses. Using similar arguments as those in Bang & Tsiatis (2000; 2002),

we can obtain the asymptotic properties of the estimators.

For ease of exposition, at a fixed t, we define θ = {m(t), βT}T, g(Xi; θ) = g{m(t), Xi;β},

s(Xi, Yi, θ̂) = [I{Yi < t + g(Xi; θ̂)} − τ]
∂g(Xi; θ)

∂θ

∣∣
θ=θ̂

,
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and assume that the first nt survival times (T1, . . . , Tnt ) are larger than t. Then, the estimating

equation takes the form of

n∑
i=1

I(Yi>t)�i

K̂(Yi)
s(Xi, Yi, θ̂) =

n∑
i=1

I(Ti>t)�i

K̂(Yi)
s(Xi, Ti, θ̂)

=
nt∑

i=1

�i

K̂(Yi)
s(Xi, Ti, θ̂),

which is Op(1) instead of 0 due to the non-differentiability of the check function. To

further separate the effect of the Kaplan–Meier estimator of the censoring distribution,

we write

Op(1) =
nt∑

i=1

�i

K̂(Yi)
s(Xi, Ti, θ̂)

=
nt∑

i=1

�i

K̂(Yi)
s(Xi, Ti, θ) +

nt∑
i=1

∂
∂θT

E
{

�is(Xi,Ti,θ
∗)

K̂(Yi)

∣∣∣Ti > t
}
(θ̂ − θ)

=
nt∑

i=1

s(Xi, Ti, θ) +
nt∑

i=1

{
�i

K(Yi)
− 1

}
s(Xi, Ti, θ) +

nt∑
i=1

�i{K(Yi)−K̂(Yi)}
K(Yi)K̂(Yi)

s(Xi, Ti, θ)

+nt

[
∂E{s(Xi,Ti,θ)|Ti>t}

∂θT
+ op(1)

]
(θ̂ − θ)

(5)

where θ∗ lies on the line segment between θ̂ and θ. To circumvent the non-differentiability of s(·),
we take the derivative of its expectation, which is a typical technique used in quantile regression

(see, e.g., Ying, Jung &Wei, 1995). In addition, because the sample contributed to the estimation

is a random sample from the subpopulation with survival times larger than t, all the expectations
are in fact conditional on Ti > t. The derivation in (5) is based on the understanding that θ̂ is

a consistent estimator. Because the estimating equation is consistent under the true parameter

values (Tsiatis, 2006), the consistency of θ̂ should hold intuitively, as inherently assumed in Bang

& Tsiatis (2002).

Let L be the upper limit of all the event and censoring times, and define the filtration Ft(u)

for u to be the set of σ-algebras generated by

σ{I(Ci ≤ v), v ≤ u; I(t < Ti ≤ y), Xi, s(Xi, Ti, θ), 0 ≤ y < L, i = 1, . . . , n}.

LetNc
i (u) = I(Yi ≤ u, �i = 0) be the counting process for the censoring time,Ri(u) = I(Yi ≥ u)

be the risk process, and let λc(u) be the hazard function for the censoring distribution. Fur-

thermore, we consider the martingaleMc
i (u) = Nc

i (u) − ∫ u

0 λc(v)Ri(v) dv and denoteMc(u) =∑n
i=1Mc

i (u), Nc(u) = ∑n
i=1 Nc

i (u) and R(u) = ∑n
i=1 Ri(u). Note that R(u) = nK̂(u−)Ŝ(u−),

where K̂(u−) is the left continuous version of the Kaplan–Meier estimator for the survival func-

tion of the censoring timesK(u), and Ŝ(u) is the Kaplan–Meier estimator for the survival function

S(u) = Pr(T ≥ u). Then, using a martingale integral representation (Gill, 1980, p. 37), we have

that

K(v)−K̂(v)
K(v)

= ∫ v

0
K̂(u−)
K(u)

dMc(u)
R(u)

= ∫ L

0
I(v≥u)K̂(u−)

K(u)
dMc(u)

R(u)

= ∫ L

0
I(v≥u)

nK(u)Ŝ(u−) dMc(u).
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Define

F̂t(s, u) = 1
nt Ŝ(u−)

nt∑
i=1

�is(Xi,Ti,θ̂)I(Yi≥u)

K̂(Yi)

= 1
nt Ŝ(u−)

nt∑
i=1

�is(Xi,Ti,θ̂)I(Ti≥u)

K̂(Yi)
,

and denote F̃t(s, u) to be the same as F̂t(s, u) except that F̃t(s, u) is evaluated at θ. Thus, we obtain

nt
−1/2

nt∑
i=1

�i{K(Yi)−K̂(Yi)}
K(Yi)K̂(Yi)

s(Xi, Ti, θ) = nt
−1/2

nt∑
i=1

�is(Xi,Ti,θ)

K̂(Yi)

∫ L

0
I(Yi≥u)

nK(u)Ŝ(u−) dMc(u)

= nt
−1/2

∫ L

0
ntF̃t (s,u)
nK(u)

dMc(u)

= nt
−1/2

n∑
i=1

∫ L

0
ntFt (s,u)
nK(u)

dMi
c(u) + op(1),

whereFt(s, u) = E {s(Xi, Ti, θ)I(Ti ≥ u)|Ti > t} /S(u). Using the property similar to Robins and

Rotnitzky (1992, p. 313) that

�i

K(Yi)
= 1 −

∫ L

0

dMc
i (u)

K(u)
,

we obtain

nt
−1/2

nt∑
i=1

{
�i

K(Yi)
− 1

}
s(Xi, Ti, θ) = −nt

−1/2
nt∑

i=1

∫ L

0

s(Xi, Ti, θ)

K(u)
dMc

i (u).

Inserting these relationships into (5), we obtain

−
[

∂E{s(Xi,Ti,θ)|Ti>t}
∂θT

+ op(1)
] {

nt
1/2(θ̂ − θ)

}
= nt

−1/2
nt∑

i=1

s(Xi, Ti, θ) − nt
−1/2

nt∑
i=1

∫ L

0
s(Xi,Ti,θ)

K(u)
dMc

i (u)

+n
1/2
t

n

n∑
i=1

∫ L

0
Ft (s,u)
K(u)

dMc
i (u) + op(1).

(6)

Because s(Xi, Ti, θ) is Ft(0) measurable, the first term and the remaining two terms on the right-

hand side of equation (6) are uncorrelated. Thus, we have that nt
1/2(θ̂ − θ) ∼ N(0, A−1B(A−1)T),

where

A = − ∂E{s(Xi,Ti,θ)|Ti>t}
∂θT

= E

[
∂g(Xi;θ)

∂θ

{
∂g(Xi;θ)

∂θ

}T
fε(0|Xi, Ti > t)

]
B = E{s(Xi, Ti, θ)

⊗2|Ti > t} + E
{∫ L

0
s(Xi,Ti,θ)

⊗2

K(u)2
λc(u)Ri(u) du

∣∣∣Ti > t
}

+nt

n
E

{∫ L

0
Ft (s,u)

⊗2

K(u)2
λc(u)Ri(u) du

}
− 2nt

n
E

{∫ L

0
s(Xi,Ti,θ)Ft (s,u)

T

K(u)2
λc(u)Ri(u) du

∣∣∣Ti > t
}

,
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where fε(·|X, T > t) is the probability density function of T − t − g(X; θ) conditional on T > t,

and a⊗2 = aaT for an arbitrary vector a.
The last three terms in B are obtained through the martingale central limit theorem (Fleming

& Harrington, 1991). When nt = o(n), B simplifies to

E{s(Xi, Ti, θ)
⊗2|Ti > t} + E

{∫ L

0

s(Xi, Ti, θ)
⊗2

K(u)2
λc(u)Ri(u) du|Ti > t

}
to the first order, which indicates that the estimation of K(u) does not have any effect on the

asymptotic efficiency compared to knowing the true K(u). It is generally known that in the

inverse probability weighting procedure, using an estimated weight outperforms using a known

weight in terms of variance estimation (Masayuki & Shinto, 2004). Our discovery finds that

such improvement can occur only if the weights are estimated at the same rate as the parameters

of interest. This agrees with the intuition that since K̂(u) has a root-n convergence rate, its

estimation variance and its contribution to the final estimation of θ is ignorable compared to the

root-nt rate for θ̂ as a consequence of using a subsample of size nt . Moreover, the asymptotic

result is under the condition nt → ∞. In practice, this implies that t should be reasonably small

to ensure that a sufficient amount of observations belong to the subsample and participate in the

estimation procedure. Note that here, nt is the number of subjects who would survive beyond time

t, nt ≥ ∑n
i=1 I(Yi > t). Thus, as long as we choose time t such that

∑n
i=1 I(Yi > t) is sufficiently

large, nt would also be sufficiently large. Based on a subsample, the estimators β̂ and m̂(t) are both

root-nt consistent and asymptotically normal. When estimating the parameter of interest β, we

choose t = 0 to carry out the estimation so as to obtain the standard root-n rate. We do not average

the β̂’s obtained at different values of t, because these β̂’s are estimated from a sequence of nested

subsamples and thus they are highly correlated. At t = 0, we estimate β based on the maximum

amount of data information, and as t increases, the available data information shrinks. Therefore,

averaging the β̂’s at different values of t would cause a deterioration in the estimation efficiency.

Whereas, the convergence rate of m̂(t) is root-nt depending on t because m(t) is estimated using

the data truncated by t. When letting t = 0, we can obtain the classical root-n asymptotic property

of θ with m(0).

The matrix A can be estimated by using its corresponding sample version of the expectation

and plugging in the estimated parameter values,

Â = −n−1
t

∂

∂θT

{
n∑

i=1

I(Yi > t)�is(Xi, Yi, θ̂)

K̂(Yi)

}
,

where the partial derivative with respect to θ can be replaced with a numerical derivative if the

closed form solution is difficult to obtain. The matrix B has four terms, sequentially denoted as

Bj, j = 1, . . . , 4, which can be approximated by using their respective empirical counterparts,

B̂1 = n−1
t

n∑
i=1

s(Xi,Yi,θ̂)
⊗2I(Yi>t)�i

K̂(Yi)

B̂2 = n−1
n∑

i=1

F̂t (s
⊗2,Yi)(1−�i)

K̂(Yi)2

B̂3 = nt

n2

n∑
i=1

F̂t (s,Yi)
⊗2(1−�i)

K̂(Yi)2

B̂4 = − 2nt

n2

n∑
i=1

F̂t{sF̂T
t (s,·),Yi}(1−�i)

K̂(Yi)2
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2010 MEDIAN RESIDUAL LIFE MODEL 673

As an illustration, we write out the details for the estimation ofB2, and other terms can be derived

similarly,

B2 = E
{∫ L

0
s(Xi,Ti,θ)

⊗2

K(u)2
λc(u)Ri(u) du

∣∣∣Ti > t
}

= E

[∫ L

0

E
{

s(Xi,Ti,θ)
⊗2I(Ti>u)|Ti>t

}
I(Ci>u)

K(u)2
λc(u) du

]
= E

{∫ L

0
Ft (s

⊗2,u)S(u)I(Ci>u)

K(u)2
λc(u) du

}
= E

{∫ L

0
Ft (s

⊗2,u)

K(u)2
Ri(u)λ

c(u) du
}

.

When the sample size is small, the approximationmay be unstable, therefore bootstrap is typically

implemented as in the usual quantile regression (Koenker, 2005).

3. SIMULATION STUDY

We examined four different median residual life models in the simulation study. We first consid-

ered a simple linear additive median residual life model

g{m(t), X;β} = m(t) + β1X1 + β2X2, (7)

where the baseline residual life function was a constant m(t) = 1 and the g(·) function had a

linear additive form. We generated covariate X1 as a binary variable taking a value of 1 or 0 with

probability 1/2, and X2 from a uniform distribution on [0, 1]. Although there were many survival

functions corresponding to model (7), we chose to generate the failure times from the survival

function

S(t|X) = exp

{
log(1 − τ)t

m(0) + β1X1 + β2X2

}
,

with the true parameter values β1 = 0.7, β2 = −1 and m(0) = 1. We simulated the censoring

times from uniform distributions, so that the censoring rate was approximately 10% or 20%.

To examine the scenario in which the baseline median residual life function m(t) increases as

t increases, in the second simulation study, we set the true function m(t) = c + αt in model (7).

Corresponding to a median residual life function of this form, we chose to generate the failure

times from the survival function

S(t|X) = exp

{
log

(
1 + αt

c + β1X1 + β2X2

)
log(1 − τ)

log(1 + α)

}
,

with c = 1, α = 0.1, β1 = 0.7, β2 = −1, and τ = 0.5.

In the third numerical example, we investigated a proportional residual life structure. More

specifically, the median residual life function had the form

g{m(t), X;β} = m(t) exp(−β1X1 − β2X2),

and we set m(t) = − log(1 − τ)/λ, which equals log(2) when λ = 1 and the median (τ = 0.5) is

considered. One survival function that would yield such a median residual life function was the
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exponential model,

S(t|X) = exp(−λteβ1X1+β2X2 ),

which we used to simulate the failure times. We took the true parameter values λ = 1, β1 = 1

and β2 = −1. The covariates X1, X2 and the censoring times were simulated in the same way as

those in model (7).

Finally, we studied a more complicated model given by

g{m(t), X;β} = (1 + β1X1 + β2X2) log(1 − τ){(1 + β1X1 + β2X2) log(1 − τ) − 2m(t)},

with m(t) = √
t. It can be verified that the data generated from the survival function

S(t|X) = exp

( −√
t

1 + β1X1 + β2X2

)
yield such amedian residual structure.We set the true parameters values to be β1 = −0.5, β2 = 1,

and generated the covariates in the same way as before. We simulated the censoring times from a

mixture of an exponential distribution and a point mass at infinity to achieve the target censoring

rates.

We replicated 1,000 data sets with a sample size of 200. For each data realization, we computed

the parameter estimates for β1, β2 and m(o), and estimated the corresponding variances based

on the usual bootstrap procedure to avoid the nonparametric functional estimation of the error

density function.

In Table 1, we present the average of the parameter estimates over 1,000 simulations, the

empirical variances, themedianvariance estimates using the bootstrapprocedure, and the coverage

probabilities of the 95% confidence intervals. For each replicated data set, we took 500 bootstrap

samples for variance estimation.

The simulation results show that the parameter estimates are close to the true values, and the

biases increase as the censoring rates increase. The estimated variances provide a good approxi-

mation of the variation in the parameter estimates, and the 95% coverage probabilities are close

to the nominal level. Thus, the proposed estimation procedure performed reasonably well for the

finite sample size.

In the second simulation study, if we had known that the baseline functionm(t) was of a linear

form, it would be interesting to also estimate the slope α. A straightforward approach is to obtain

m̂(t) at different values of t, and then carry out a simple linear regression. Using this approach, our

estimate for the slope was 0.0902, with an empirical 95% confidence interval [−0.1216, 0.4437]

for the case with 10% censoring. Further discussions on estimation with a known parametric or

smooth function m(t) are given in Section 5.

4. EXAMPLE

As an illustration, we applied the proposedmedian residual lifemodel to a data set from a leukemia

study conducted at M.D. Anderson Cancer Center (Tsimberidou et al., 2006). In that study, 130

patients were diagnosedwith Richter’s syndrome (RS) via biopsy or fine-needle aspiration. RS is a

rare and aggressive type of acute adult leukemia that often results from a transformation of chronic

lymphocytic leukemia into diffuse large cell lymphoma. RS is usually fatal within a short period

of time. The patients in the study were treated by either chemoimmunotherapy with rituximab

or chemotherapy alone. Figure 1 shows the Kaplan–Meier survival curves stratified by treatment

groups. We can see that there is a sharp change point in the survival curve around 2 years of
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Table 1: Simulation studies under four different median residual life models with a sample size of 200.

Median residual life model Estimate 10% censoring 20% censoring

β1 β2 m(0) β1 β2 m(0)

Additive (m(t) = 1) True value 0.7 −1 1 0.7 −1 1

Est 0.6900 −0.9841 0.9923 0.6529 −0.9445 0.9626

var 0.0287 0.0476 0.0330 0.0304 0.0526 0.0355

v̂ar 0.0312 0.0547 0.0358 0.0338 0.0613 0.0386

CP (%) 94.8 95.5 94.0 94.4 95.2 93.9

Additive (m(t) = 1 + 0.1t) True value 0.7 −1 1 0.7 −1 1

Est 0.6861 −0.9772 0.9879 0.6320 −0.9210 0.9455

var 0.0319 0.0525 0.0364 0.0342 0.0588 0.0396

v̂ar 0.0339 0.0605 0.0397 0.0374 0.0674 0.0427

CP (%) 94.6 95.7 94.0 92.8 95.1 93.8

Proportional (m(t) = log(2)) True value 1 −1 0.6931 1 −1 0.6931

Est 1.0004 −0.9759 0.7102 0.9418 −0.9082 0.7055

var 0.0562 0.2577 0.0437 0.0647 0.2691 0.0494

v̂ar 0.0613 0.2298 0.0399 0.0716 0.2648 0.0449

CP (%) 95.4 95.3 94.7 94.9 94.7 92.6

Nonlinear (m(t) = √
t) True value −0.5 1 0 −0.5 1 0

Est −0.5047 1.0454 0.0145 −0.5145 1.0457 0.0216

var 0.1063 0.2850 0.0446 0.1294 0.3439 0.0520

v̂ar 0.1100 0.3079 0.0483 0.1362 0.3847 0.0590

CP (%) 96.2 95.6 93.6 95.6 96.3 95.2

Est is the averaged parameter estimate over 1,000 simulations; var represents the sample empirical variance; v̂ar

is the median variance estimate using the bootstrap procedure; and CP (%) is the coverage probability of the 95%

bootstrap confidence interval.

follow-up, which would typically cause a violation of the usual proportional hazards assumption.

The censoring rate of the data was approximately 12%. Three covariates were included in our

analysis: treatment (1 if chemotherapy alone, and 0 if chemoimmunotherapy with rituximab),

patient age (ranging from 29 to 77 years with a median of 60 years), and patient sex (1 if male,

and 0 if female).

We fitted two of the proposed median residual life models including the linear additive and

the proportional model structures, as both were reasonable candidate models based on an initial

inspection of the scatter plots. In addition to the median, we also examined the quantile levels at

τ = 25% and 75% for each model. As shown in Table 2, under the additive quantile residual life

model, we found no difference in treatment at any of the three quantiles, with P-values of 0.437,
0.889 and0.267, for τ = 25%,50%and75%, respectively.Under the proportional quantile residual

life model, the treatment effect was not significant at the τ = 25% and 50% quantile level, with P-
values of 0.381 and 0.972, respectively. However, at τ = 75%, the treatment exhibited a significant

difference with a P-value of 0.025, indicating that patients treated with chemoimmunotherapy

plus rituximab had a longer residual lifetime than those treated with chemotherapy alone. This
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Figure 1: Estimated Kaplan–Meier survival curves stratified by treatment for the Richter’s syndrome data.

finding can also be empirically observed in Figure 1, which shows a spread in the survival curves

between 1 and 2 years of follow-up. In both models at all of the three quantile levels, we did not

find patients’ age or sex to have a significant effect on the residual lifetime. To determine which

model structure was more suitable for the RS data, we carried out an ad-hoc model selection

procedure based on the optimization value of the objective function given in (4). We found that

the additive and proportional models yielded very similar minima for τ = 25% and 50%. When

τ = 25%, the objective function in (4) took a value of 0.5347 under the additive model, and

0.5341 under the proportional model; and when τ = 50%, it took values of 0.9882 and 0.9883,

respectively. Hence, there did not seem to be any significant favouring of one model over the

other. However, for τ = 75%, the objective function of the proportional model took a value of

1.0032, while that of the additive model was 1.2397. Therefore, the proportional model appeared

to outperform the additive model in terms of model fitting.

For the residual lifetime, one could also consider the mean instead of the median. Thus, we

fitted the mean residual life models under the additive and proportional structures, respectively.

In Table 2, we can see that the mean residual life model yielded quite different results from those

based on quantile residual life models. In particular, under the additive model, the mean residual

life model produced a statistically significant treatment difference, while none of the quantile

residual life models demonstrated this treatment difference. We expect that the mean residual life

model might not fit the data well because it focuses on the central covariate effects, while Figure

1 shows that the survival curves are very irregular and several change or crossing points exist

in the survival curves. This may violate the assumptions for any model that tries to characterize

the central effects of covariates for the entire survival curve. In contrast, quantile residual life

models are more focused on local covariate effects centering around certain conditional quantiles,

which can particularly characterize the local features of the survival curve without imposing any

requirement for the entire curve. In additional to robustness, the quantile residual life models

based on different values of τ provide a comprehensive evaluation of the covariate effects.
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Table 2: Analysis of the Richter’s syndrome data using the quantile and mean residual life models.

Additive model Proportional model

Treat Sex Age m(0) Treat Sex Age m(0)

Quantile residual life model, τ = 0.25

Est −0.0861 −0.0212 −0.0476 0.3127 0.4391 0.1549 0.2066 0.3398

SE 0.1108 0.1162 0.0581 0.1245 0.5008 0.5371 0.3702 0.1552

P-value 0.4372 0.8552 0.4128 0.0120 0.3806 0.7730 0.5767 0.0286

Quantile residual life model, τ = 0.5

Est 0.0329 −0.1897 0.0315 0.8136 −0.0351 0.2604 −0.0396 0.8138

SE 0.2358 0.3621 0.1213 0.3127 0.9849 1.1687 0.3258 0.2904

P-value 0.8890 0.6002 0.7948 0.0093 0.9716 0.8237 0.9034 0.0051

Quantile residual life model, τ = 0.75

Est 0.9675 −1.3293 0.1000 2.0354 −2.5895 2.2155 0.3198 1.1793

SE 0.8715 4.8752 0.3018 4.7387 1.1575 1.1776 0.2897 0.4031

P-value 0.2669 0.7851 0.7402 0.6675 0.0253 0.0599 0.2696 0.0034

Mean residual life model

Est 2.3082 −2.7257 −0.2931 2.3497 −1.6999 1.3340 0.1271 1.0207

SE 0.9738 1.5796 0.3309 0.9715 1.3564 2.3524 0.5530 0.4523

P-value 0.0178 0.0844 0.3758 0.0156 0.2101 0.5707 0.8183 0.0240

5. DISCUSSION

Wehave proposed a semiparametricmedian residual lifemodel and a simple estimation procedure.

The estimation method is quite general and can be applied to other residual life models, for

example, the mean residual life model. The estimation procedure is also applicable to the varying-

coefficient model

qτ(T − t|T > t, X) = g{m(t), X;β(t)},

where at each time t, we estimate the fixed unknown parameters {m(t), β(t)}. This makes the

varying-coefficient residual life model attractive, as it is more flexible yet does not require extra

computational complexity. Model selection in quantile regression has received much attention

(Koenker & Machado, 1999; and He & Zhu, 2003). In selecting the best model among a set of

candidate models, we can simply use the model selection criterion similar to the AIC or BIC.

It would be interesting to further develop model selection procedures in quantile residual life

models.

If we assume additionally that m(t) is smooth or has certain parametric form as in the second

simulation example, we could use the estimatedm(t) at different values of t as pseudo observations
and then smooth them to obtain a nonparametric estimation of m(t) or directly fit the parametric

model. Although it is conceptually straightforward, the smoothing here is vastly different from

the traditional nonparametric curve fitting due to the finite sample bias, the inherent correlation

among these pseudo observations and their heteroscedasticity. In addition, by taking into account

the smoothness ofm(t), the estimation ofm(t) at each fixed time t could be carried out differently,
which may warrant further investigation.
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Thenon-uniqueness of the survival function for a givenmedian residual life functionmakes the

estimation and inference very different from those of other regression models. Multiple survival

functions correspond to the same median residual life function, which, however, further enhances

the robustness of the proposed method.
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