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Summary. We study the heteroscedastic partially linear single-index model with an unspeci-
fied error variance function, which allows for high dimensional covariates in both the linear and
the single-index components of the mean function. We propose a class of consistent estima-
tors of the parameters by using a proper weighting strategy. An interesting finding is that the
linearity condition which is widely assumed in the dimension reduction literature is not neces-
sary for methodological or theoretical development: it contributes only to the simplification of
non-optimal consistent estimation. We also find that the performance of the usual weighted least
square type of estimators deteriorates when the non-parametric component is badly estimated.
However, estimators in our family automatically provide protection against such deterioration,
in that the consistency can be achieved even if the baseline non-parametric function is com-
pletely misspecified. We further show that the most efficient estimator is a member of this family
and can be easily obtained by using non-parametric estimation. Properties of the estimators
proposed are presented through theoretical illustration and numerical simulations. An example
on gender discrimination is used to demonstrate and to compare the practical performance of
the estimators.

Keywords: Dimension reduction; Double robustness; Linearity condition; Semiparametric
efficiency bound; Single index model

1. Introduction

We study the partially linear single-index model
Yi=x{v+9@ B)+e.  Eelxi,z)=0, i=1,....n, M)

where x; € R% and z; € R% are random variables with possibly high dimensions d, and dg respec-
tively. We do not assume any parametric form for the conditional distribution of ¢. In particular,
we allow ¢ to be heteroscedastic. For identifiability, we assume that the first component of s 1,
and we use z_1 to denote the last ds — 1 components of z. Let 0= T, ,GT)T andd=dg+d,— 1.
Without loss of generality, we assume that E(z;) =0 in what follows. The interest is usually in
estimating 6, whereas all the other unknown components of model (1), such as the unspecified
function ¢(-) and the unknown error distribution, are termed nuisance parameters.
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Model (1) was proposed by Carroll et al. (1997). It is a natural extension of the partially linear
model (Engle et al., 1986) in the situation when multiple covariates need to be included non-
parametrically. It can also be viewed as an extension of the single-index model or as a special
case of the multi-index model. See Xia et al. (1999) and Xia (2008) and the references therein
for a discussion on the links. The parametric component x'~ provides a simple summary of
covariate effects which are of the main scientific interest, the index z' 3 enables us to simplify the
treatment of the multiple auxiliary variables which may have high dimension and the smooth
baseline component g(-) enriches model flexibility.

Estimation of model (1) has been studied in Carroll et al. (1997), Yu and Ruppert (2002) and
Xia and Héardle (2006), in which consistently estimating g(-) is mandatory during the estimation
process to ensure consistency of the estimator of 8. An intriguing finding here is that the con-
sistency of the parameter estimator for 8 can be achieved without estimating g(-). In addition,
although Carroll ez al. (1997), Yu and Ruppert (2002) and Xia and Hardle (2006) did not explic-
itly make an equal variance assumption for ¢, they did not account for the heteroscedasticity
of model (1) either. Consequently, none of these estimators are efficient. One might think that
an inverse-to-variance weighting scheme can lead to efficiency. However, we discover that it is
not always so. In fact, a formal study on the efficient estimator for model (1) has only been
conducted in the homoscedastic error case (Wang et al., 2010), where an efficient estimator is
constructed when the covariates are assumed elliptical. In this paper we construct an estimator
that reaches the optimal semiparametric efficiency bound under heteroscedasticity and without
distributional assumptions on the covariates.

When dg is potentially large, a routinely assumed condition in the dimension reduction
literature (Li, 1991) is the linearity condition

E(z|z' B) =Pgz. 2

Here P; = ».8(8".8)"'8T and =, =var(z). Wang et al. (2010) also assumed this condition
to facilitate their investigation on the consistency of the estimators in the homoscedastic par-
tially linear single-index model. We find that this condition is unnecessary in our methodological
development and it does not contribute to an improved efficiency of estimation. The only util-
ity of condition (2) is in computation, in that it simplifies the construction of a non-optimal
consistent estimator. We emphasize here that the linearity condition (2) does not lead to any
simplification of the efficient estimator.

In summary, we propose a general class of estimating equations to estimate the parameters 3
and ~ in model (1) with a heteroscedastic error. The estimating equations have several robust-
ness properties, in the sense that they allow us to obtain a consistent estimator for 3 and ~ even
when several components, including ¢(-), are not consistently estimated or are misspecified.
Consistent estimation of 3 and ~ without consistently estimating g(-), whether with a homosce-
dastic or heteroscedastic error, has not been discovered before in the literature. In addition, the
consistency holds without any distributional assumption on the covariates. In particular, the
linearity condition (2) is not required although it can simplify some of the computations when
it is true. Relaxing the linearity condition under this framework has also never been achieved
before as far as we are aware. Note that here all the robustness properties hold in the sense that
consistency of B and 4 is preserved under misspecification of several components of the model.
If practical interest is in estimating some of these model components, then we can still estimate
them. If we estimate all the components involved in the estimating equations consistently, then
the resulting estimator for 3 and ~ is guaranteed to be efficient. In other words, the optimal
member of the general class requires consistent estimation of the various components, includ-
ing g(-) and ¢'(-). To the best of our knowledge, this is the first time that efficient estimation in
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model (1), with possibly high dimensional covariates, has been proposed.

The rest of the paper is organized as follows. In Section 2, we examine a class of weighted
estimators and propose a general class of consistent estimators for heteroscedastic model (1)
that has a double-robustness property. We identify a member of this class that is easy to compute
under condition (2). The efficient estimator is derived in Section 3 where a simple algorithm is
provided and g(-) is also estimated as a by-product. The performance of the estimators proposed
is illustrated in simulation studies in Section 4 and in real data in Section 5. We discuss some
extensions of our method in Section 6.

2. A general class of consistent estimators

Our goal in this section is to present a general class of consistent estimators for 8 that has a
double-robustness property. Double robustness has also been discovered in other contexts. See,
for example, Robins and Rotnitzky (2001) and Tan (2010). We explore this double-robustness
property and derive a simplified estimation procedure in the presence of the linearity condition
(2). We also reveal a limitation of the standard weighting method in handling the heteroscedas-
tic error variance and hence provide an explanation why heteroscedastic errors are usually not
accounted for even if it is acknowledged.

To ease the presentation of consistency considerations among different estimators, we pres-
ent each estimator as a solution to an estimating equation. The consistency of the estimator is
studied through the consistency of the estimating equation. We consider the following class of
estimating equations:

w2 S (¥ Xy — f@! B atxi, ) — Efatx, 2|2 811 =0, 3)
i=1

where f(zT3) is a given function of zT 3 that may or may not equal g(z'3), E(-|z' 3) denotes
a function of z' 3 which may or may not be the true E(-|z' 3) and a(-,-) € R is an arbitrary
function of x and z. It is easily verified that, at the true parameter values of 3 and -, equation (3)
has mean 0. We can view equation (3) as a sample version of the population mean. We assume
that, when n — oo, equation (3) has a unique solution in the neighbourhood of the true param-

eter values of B and ~. Because Y; — xiT'y - g(ziTB) is the ith error ¢;, we can rewrite equation
(3) as

w12 S (64 9T B) — @l B) a(xiz) — E{a(xi 212} B) + Efa(xi, 2|2} B}
i=1

— E{a(x;,z)|z] B}]=0.
It is now easy to recognize that the above estimating equation has a double-robustness prop-
erty. On the one hand, if f(-)=g(-), then equation (3) is consistent whether or not £ (-l2'8) =
E(-|z'3). In an extreme case, we can simply set E(-|zT 3) =0. This choice combined with the
choice a(x,z) = (xT, zzl)T ora(x,z)=(xt, g’(zTB)zz1 )T yields

n
n 2 Vi =Xy =g B2t T =0
i=1
or
n
n 2SS Y- xT v — 9@ B g 2 B2t pT =0,
i=1
which are the most familiar forms of estimator. On the other hand, if E(-|zY3) = E(-|z18),
then equation (3) is also consistent whether or not f(-) = g(-). In an extreme case, we can set
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f(ziTB) =0. Making the natural choice of a(x,z) = (xT, le )T, we obtain a consistent estimator
from the estimating equation

w2 5 (= xIp [T 2T, )T — E{T. 2T, )T 12T =0,
i=1

Of course, the two choices of ¢(-) or E(-|zY3) can also be combined as we now illustrate. For
example, we can directly set g(-) =0 in one part of the estimating equations and still retain the
two different choices of either g(-) or E(-|z'3) in the other part of the estimating equations.
Specifically, we can consider estimating equations of the form

12 5 (Y= Xy — T B) i — Exilz! B} =0,
i=1
n )
n /2 S —xl-T’y){Z,- — E(zi|zl-T,8)} =0.
i=1

In this construction, the first d,-dimensional equation corresponds to choosing the first d,
components of a(x;,z;) in equation (3) to be x;, and the second ds-dimensional equation cor-
responds to choosing f =0 and the second dz components of a(x;, z;) in equation (3) to be z;
and E(x; |zl-Tﬁ) =E (xi|ziTﬁ). The construction (4) has a fully fixed form in the second d; equa-
tions, while still leaving the flexibility of using either f(-)=g(-) or E(x; |zl-T,8) = E(x,'|le,6) in the
first d., equations. The above estimating equation (4) still offers consistent estimators for both
~ and 8.

Next we examine the role that the linearity condition (2) plays in the estimating equation. We
use the estimating equation (4) as an illustrative example. When condition (2) is true, expression
(4) becomes

n ~
n 2N {Yi—x]y = fz] BHxi - Exilz] B} =0,
i=1
n (5)
n2 Y (Y= XTI = Py)z;=0
i=1
We shall see that expression (5) leads to the simplest consistent estimator for model (1).
To solve equations (5), we rewrite the second equation as

n

Y Y —xy) =%, { 21 B2, 18 (v, —xly) }

i=1
The quantity in the curly brackets of this equation is a scalar. Hence we can ‘profile out’ 3 by
setting

By =B {E@) - Eax")}.
Here, £(-) and f]z are the sample mean and covariance estimates, and the constant ¢(v) #0
is a normalizing constant to ensure that the first component of [:3 is 1. Specifically, c(v) is
the inverse of the first component of E Y E(zY) — E(zxT~)}. Two possibilities are available in
obtaining <4 corresponding to the two ch01ces of specifying g(-) or E (x|zTB). If we decide to
specify E(x|z'3), we can set f(zTﬁ) =0 and plug in B(7) to solve for v from

Z (Vi —x{ Y[x; — E{x|z] B(x)}]=
If we decide to specify g(-), we can set E(x; |zl-TB) =0 and solve for « from

f:l[Yi —x! v —g{z! B }x;=0.
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If we do not have sufficient information or are reluctant to specify any one of the two functions,
we can estimate one of them or both by using, for example, the standard kernel non-paramet-
ric regression or local linear approximation, provided that sufficient smoothness or regularity
conditions hold.

To take advantage of the linearity condition (2), we have chosen to set f(z,-Tﬁ) =01inthe second
of equations (5) because of its simplicity. In general, f(-) can be any function of zl.TB. However,
f() needs to satisfy

E[z] B{9(zI B) — fz] B)}] #0; (6)

otherwise degeneration will occur and the second of equations (5) (corresponding to a special
f(-)=0) will not yield a solution. We give a detailed account of this phenomenon in the on-line
supplementary information for this paper.

The estimating equation class (3) does not take into account the error variance form. A natural
correction for this is to include inverse variance weights to improve the efficiency of estimation.
Denote w; = w(X;, z;) = var(e;|x;, z;)~'. The weighted estimating equation class is then

n
n~1/2 Zl w(xi, 2){Yi —x} v — f(z} B)Ya(xi,z:) — E{a(xi,z;)|z} B}]=0. @)

i=
However, class (7) lacks some of the nice properties of the original family (3). It can be easily
verified that, even if w; can be consistently estimated or is completely known, the consistency of
4 and B now always requires a consistent estimation of g(-). Thus, not only the double-robust-
ness property is lost, but also the simplification that is contributed by the linearity condition
(2) becomes limited. Similar controversy is discovered for the partially linear model in Ma et al.
(2006), and we suspect that this is why a standard inverse variance weighting scheme is not
pursued in the partially linear single-index model in the literature, even when there is hetero-

scedasticity.

3. Efficient estimator via proper weighting

To improve the estimation variance through incorporating the weights w; while retaining the
nice properties of expression (3), we perform a slight modification of expression (7) and propose

_E(WiXi|ZiT,6) _
EmilZfB) |

>

23 Y =Xy — f(ZiTﬁ)}{Xf
i=1

®)

PR Ewiz_y |z} B)
172 LY —xFTy — fzF T g e PR L ).
n i=§ ) wilYi —x; v — f(z; B)} b(z; ,6){2 1, Eonle"B) } 0

For simplicity in expression (8), we directly set a(x,z) = (xT, b(zTﬁ)zL)T, which is the simplest
form to use in practice. Here b(-) can be an arbitrary function and is included here for increased
flexibility.

Similarly to expression (3), expression (8) provides a consistent estimator under several mis-
specifications. For example, we can use f(-) that is not a consistent estimate of g(-); as long as
E(-|2'8) = E(-|z' B), expression (8) yields consistent estimators for 8 and ~. We can also choose
not to estimate E(-|z' 3) carefully, by using some parametric model or even simply setting it
to zero; as long as f(-) =g(-), expression (8) is still valid. Finally, the weights w; can also be
misspecified; as long as one of g(-) and E(-|z' B) is correctly specified or both are consistently
estimated, we still have consistency for 3 and ~. If we adopt a weight w that depends on x
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and z only through zT 3, expression (8) becomes a member of class (7). This indicates that the
weighting scheme in expression (7) is valid only in some limited situations.

In addition to the robustness property, expression (8) also provides an efficient estimating
equation when we have the correct weights, use a consistent estimator of g as the f-function,
use a consistent estimator of ¢’ as the h-function and at the same time estimate the conditional
expectation E (12T B) consistently. To see this, we first derive the semiparametric efficient score
function for model (1). The semiparametric efficient score is defined as the projection of the

score vector onto the orthogonal complement of the nuisance tangent space; for details, see
Bickel et al. (1993) and Tsiatis (2006).

Proposition 1. Assume that the conditional probability density function of ¢ given (x,z),
pe(e]X,2), is differentiable with respect to ¢ and that 0 < E(g?|x,z) < oo almost everywhere.
Denote w=w(x, z) = E(¢?|x,z) . The semiparametric efficient score is

T
_ T E(wxT|zTB) T T E(wzzl|zTﬁ)
Seft —W8<X Ew|ZTH) .9 (z 6){1—1 Ew|ZI3) .

The expression for Segr suggests that, by carefully choosing w, / and b in expression (8), we should
obtain a semiparametric efficient ﬁ as the solution to expression (8). The proof of proposition
1 is given in the on-line supplementary document.

Obtaining w or the error variance var(e|x,z) through a non-parametric regression of the
residuals on the covariates (x,z) is itself a high dimensional problem which suffers from the
curse of dimensionality. To focus our presentation on the main concepts, we assume that
there is a low dimensional variable £ = £(x,z) such that var(elx,z) =var(¢l§) and £ has a
known form. For example, £ can be z'3, indicating that the error variance depends on the
covariates through zT3 only. £ can also be x1~, indicating that the error variance depends
on the covariates through xT~ only. It can also be a combination of these two or can have
any other form. In practice, a reasonable approximation of £ can be obtained via standard
procedures to model error variance, using the residuals from an initial estimation of the model.
We shall concentrate on the case where £ is univariate. It is worth noting that this assumption is
often made to simplify the estimation of weights. The assumption can be weakened to
include intermediate multivariate models as components, e.g. with additive structures, so that
the univariate convergence rates remain achievable and that the variance structure is still very
flexible.

If we use non-parametrically estimated g, ¢/, w, E(w|z! 3), E(wx|z' B3) and E(wz_;|z' 3), the
estimator that is obtained from expression (8) can be written as the solution to

EDi(x,2)xlz; B}
E{b(x,2)|2] B}

E{W(x,2)z_1|z] B}
E{w(x,2)lz/ B} |

In expression (9), the quantities with circumflexes can be estimated via kernel estimation.
To be precise, let K be a kernel function and K, (-) =h~'K(-/h). Recall also the notation for
w(x;,z;) and & = £(x;,z;) defined in Section 3. For bandwidths %1, k> and &3, we set

0=n""2 3 {Y —x[vy - 4] B)} w(xi,2:)
i=1

X; —

El

)

0=n""2 3" (¥, —xv— 4z B)}(xi.z) § (' B)
i=1

Z_1,;—

9z B = z?é: Kz B—2! B)Yi—x] )/ ; Kn(z] B—12 B),
J7t JFi
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@)= { > Kiy @ B=5 B =xI9) 3 K, (2] -20)
#i J#i

- ; Khl(zTB z} B (Y —x;v)
JFi

2
<3 K, @ 8-2'3)} /{ b Kz B8-2'B)} .
WX, z;) = Z Kn,(§i—8&)/ Z K, (& —&)ed,

E{v(x,2)x|z] B} = ;1@3(?,6 z%w(x,,zl)x,/ z Kny(z] B—12] B),
JFL

E{n(x,2)lz] B} = § Ky (2] B—1 B) W(xi,2) § Kh3<z,Tﬁ -2 B),
J7l JFI
EDv(x, 2z 112] B} =" Kh3(Z]Tﬂ—Z,-Tﬂ) WX, 2)Z-1,i/ > th(Z,Tﬂ—ZiTﬁ)~
J# J#

We remark that we use the same bandwidth in the last three quantities, because a same band-
width already suffices to guarantee the efficiency of the estimate that is obtained from expression
(9); see the proof of proposition 2.

The algorithm to solve expression (9) is as follows.

Step 1. we use the estimation procedure that was described in Section 2 to obtain an initial
estimator 0 = AT, BT)T.

Step 2: obtain § and §’ by using non-parametric regression of ¥ —x'4 on z'3 described
above. Denote Y =Y — Q(xTB)

Step 3: obtain the residual ¢; = x 'y g(zTﬁ) Estimate o2 (X, z) according to the vari-
ance model by using the data {¢ (x,, zl), } and the initial parameter values 0if necessary. Set
lf/i=&72(xi,zi). ~ ~

Step 4: obtain E(xw|z'B) and E(w|zT3) via non-parametric regression by using the data
(x,w,,z 6 wi). Set X=X — E(xw|zT6)/E(w|zT,8)

Step 5: obtain E(z_ 1w|zTﬁ) via non-parametric regression by using the data (z_1 ;W;, z, ﬁ)
Setz_1=z_| — E(z_1w|zT,8)/E(w|zT[)').

Step 6: update the estimate for v from

4= Eex") " EGhkY)
where the E are simply the sample averages. Solve for 8 from
n ~
2 Y- X5 — (& B § (2] P71, =0.

Here g( ) and g '(+) are treated as known functions and hence do not need to be updated, and
w;ig (Z ﬂ)z 1, are the previously obtained values.

In this algorithm, each time that a kernel estimation procedure needs to be performed, if a
new bandwidth needs to be selected, we can simply use the traditional cross-validation proce-
dure. In our experience, the performance of the estimation is very insensitive to the choice of
bandwidth, which agrees with the common observation in many semiparametric problems and
is also explained by the wide range of possible choices of bandwidth in the following regularity
condition 6. In particular, we do not need to undersmooth anywhere. This is a by-product of
the double-robustness and will be justified in proposition 2. It is a property that is also shared
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by the profile likelihood method (Lin and Carroll, 2006). We also emphasize that the only
estimating equation that needs to be solved is in step 6. Since this step does not involve any
non-parametric procedures, it is a simple parametric estimating equation and can be solved via
for example the Newton—-Raphson procedure. In finite sample situations, it can happen that
no roots are available for an estimating equation. In this case, instead of solving for zero, one
can aim at minimizing the square of the estimating equation. One may note that, although
the linearity condition (2) can simplify the initial estimation @, it will not contribute to the
subsequent operations at all. The way in which the weights w; enter expression (9) requires
a different type of linearity condition to achieve simplification, namely a weighted linearity
condition of the form

E(wz|z' B)=Psz E(w|z' B). (10

We can easily see that, when w is a function of zT 3 or when w is uncorrelated with z conditional
on z! B3, equation (10) is equivalent to condition (2). This indicates that equation (10) is not
much stronger than the usual linearity condition (2) and may hold in various situations. If we
are willing to make this assumption, then the second equation in expression (9) is simplified and
it suffices to solve

S Y —x{ 5 — Gl B § (2F Brz_1 i =0. (11)
i=1

Therefore, the above algorithm can be simplified through skipping step 5, and replacing the last
estimating equation in step 6 with equation (11).

We now list a set of regularity conditions that are sufficient for our main proposition to hold.
These conditions are not the weakest possible, but they facilitate our technical derivations.

Condition 1. The second moments of all covariates are finite, i.e. max;gi<q, £ (Xiz) < oo and
max|<;<dg E(Z?) < o00. There is a positive constant § such that E(s*+? | x, z) < cc.

Condition 2. There are v(-), £ =£(X, z) and positive constants ¢; and ¢, such that £ (£2|x,2) =
v(€),0<c1 <v(-) <cp<oo,and E(Xl.2 | £) < o0.

Condition 3. The functions E(x|zY3), E(z|z'3), E(w|z'3), E(wz|z'3) and E(wx |z'3) are
twice continuously differentiable with finite derivatives. As a function of (x,z), £(x, z) is three
times continuously differentiable with finite derivatives. The functions g(z'3) and v(¢) are four
times continuously differentiable with finite derivatives.

Condition 4. Assume that the random variables & and z! 3 have densities fe(© and f,r ﬂ(zT 3)
such that f¢(§) and f,rg (2" B3) are twice continuously differentiable with finite derivatives, sat-
isfying 0 <inf f¢(§) <sup fe(§) <ooand 0 < infszﬁ(zT,B) <sup fZTB(zT,B) < 00.

Condition 5. The kernel function K is symmetric, and its derivative K’ is continuous in com-
pact support [—1, 1].

Condition 6. The bandwidths /; that are used in the kernel estimators satisfy log2 (n)/(nh;)—0
for i =1,2,3. In addition, nh} — oo and nh$ — 0, h} log?(n)/h; — 0 and log*(n)/(nhih;) — 0
fori=2,3,and hy = O(n~'/3) and h3 = 0(n~1/%).

Proposition 2. Assume that 4 and L:} solve expression (9) or expression (9) with the second

equation replaced by equation (11). Then, under the above regularity conditions, 4 and 3 reach
the optimal semiparametric efficiency bound. In particular, when n — oo,

(&L BHT - (T, BT /n— NO, VT



Efficient Estimators for Partially Linear Single-index Models 313

in distribution, where

V=(E(SerSop)) = <¥; Xz )
and
Ewx|z'8) E(wxT |21 B)
VIIZE{WXXT— E(W|ZTﬂ) >
) E(wx |z'B)E(wzY, |2' 3)
Vio=E g(ZTB){WXZL B Ew|zTB) 1 ’

Vo =E

Ew|zIB)

E(wz_,|2' B) E(wzl 2" B)
Ew|213) ’

g/(ZTﬁ){WZ_le _ Evzi| 21 8) ElwxT |27 8) H’

Vo=E

g’(ZTﬂ)Z{wz_ﬂL -

The proof of proposition 2 is given in the on-line supplementary document. The above results
suggest that, as long as regularity conditions 1-6 hold, the non-parametric estimator does not
cause any loss of efficiency. In other words, @ is asymptotically equivalent to the solution to
expression (9) with known g, ¢/, w, E(w|2z' 8), E(wx |z 3) and E(wz_1|2z' 8); hence the optimal
semiparametric efficiency is practically achieved. We can also see that the presence of the linear-
ity condition (2) or the corresponding weighted form (10) does not improve efficiency. Hence the
benefit of these conditions is merely computational, in that, if condition (2) or (10) holds, then
the corresponding non-parametric regression of z or w or wz on z! 3 can be avoided. In addition,
the classical linearity condition (2) alone cannot contribute to computational simplification of
the efficient estimator. Therefore, although the linearity condition is routinely assumed in the
dimension reduction literature, it is not necessary in our case. In the special case when the error
is homoscedastic and hence w is a constant, our resulting efficient estimation variance is the
same as that given in Carroll ez al. (1997). However, even in the homoscedastic error case, the
result in proposition 2 is stronger than the efficient result in Carroll et al. (1997). This is because
their efficient result was established only for the normal error case, whereas our result is not
restricted to any special distributional form.

4. Simulations

In this section, we conduct simulation studies to evaluate the performance of various estimation
procedures. We generate X from a uniform distribution U(0, 1), X, from a binomial distribution
with success probability 0.5 and X3 from a Poisson distribution with parameter 2. We generate
other covariates as follows.

(a) In case 1, we generate (X4,..., X4, Z1,. .., Zd,@)T from a multivariate normal distribu-
tion with mean 0 and variance—covariance matrix (0;;)—2)x(@—2) Where o;; =0.5=/1
and d =d, +ds — 1. In this case, the covariates z= (Zy, ..., Zdﬁ)T satisfy the linearity
condition (2).

(b) In case 2, we replace Zs in case 1 by Zi so that the linearity condition (2) is violated. All
other covariates remain unchanged.

With the covariate vectors x = (X1, ..., Xz ) andz=(Z,, ..., Zdﬁ)T, we generate Y from a nor-
mal distribution with mean x T~ + exp(zflﬁ) and variance function |z' 3| where v=(2,1,—1,
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0.5,00T and 8=(4,1,1,1, l)T/\/ZO. When d, > 5 or dg > 5, the additional components of « or
B3 are 0.

We carry out a group of simulations to examine the finite sample performance of the estima-
tors corresponding to the following estimating equations (a)—(e):

(a) S —X,-T’?—Z,-Tﬁ)(’z‘f ) _o,
i=1 i
S i = x4 — 5@ A} xi - Ex | 27 By} =0,
(b) = .
S (Yi—x{ 9 -2 Bz =0,
i=1
> (1= XI5 = 0] B)) (i — Exlz! ) =0,
(©) =
> (Vi =X 5 — 2 B){z— E@lz B)} =0,
i=1
" R . E{xw(x,2)|z] B}
@ S AYi =X =@ B} vz [ YT o =0,
= §'@ Pz

Table 1. Simulation results of estimating equations (a)—(e) for case 1 where linearity condition (2) is satisfied
when n=250, d, =5 and dg =57

Estimator  Parameter 1 (%) (%) v (%) (%) s (%) Bi(%) B (%) s (%)

(a) bias 189.43 65.28 31.49 —0.12 023 282 0.33 —0.54
std 54.11 42.83 12.98 26.31 31.38 5.39 12.13 9.93
mse 38811.01 6095.64 1160.10  692.10  984.88 37.03 147.34 98.84
(b) bias 1.48 0.07 —0.15 —0.01 264 281 0.39 —0.41
std 26.03 14.69 5.22 8.47 11.22 5.31 11.81 9.80
mse 679.84 215.90 27.26 71.68 132.84 36.07 139.51 96.15
Oracle bias 1.50 0.10 —0.13 —0.00 265 =281 0.39 —0.41
std 26.23 14.81 5.23 8.52 11.27 5.31 11.81 9.80
mse 690.25 219.26 27.32 72.58 133.94 36.06 139.60 96.28
(¢ bias 1.65 0.08 —0.16 —0.15 -0.20 -0.13 —0.60 —0.44
std 22.20 13.33 4.68 7.75 8.93 1.94 5.07 4.20
mse 495.49 177.79 21.89 60.09 79.71 3.76 26.05 17.80
Oracle bias 1.57 0.07 —0.15 —0.16 —-0.18  —=0.15 —0.54 —0.41
std 22.11 13.28 4.67 7.76 8.88 2.02 5.05 4.30
mse 491.48 176.30 21.88 60.24 78.83 4.10 25.75 18.66
(d) bias 1.74 0.11 —0.17 —0.20 038  —0.30 —0.05 —0.05
std 21.66 12.96 4.55 7.64 8.28 1.29 3.80 3.23
mse 472.34 167.91 20.72 58.35 68.64 1.74 14.43 10.46
Oracle bias 1.15 0.09 —-0.04  —0.08 362  —4.49 0.28 —1.16
std 22.51 12.90 4.65 7.62 10.00 7.15 15.66 1291
mse 508.23 166.41 21.59 58.02  113.19 71.27 24536  168.01
(e) bias 1.71 0.11 —0.17 —0.19 036 —0.29 —0.10 —0.05
std 21.61 12.95 4.54 7.65 8.29 1.31 3.86 3.28
mse 469.85 167.77 20.68 58.54 68.85 1.79 14.87 10.75
Oracle bias 1.34 0.07 —0.09 —0.22 033 —-0.28 —0.02 —0.06
std 19.09 11.33 3.96 6.72 7.38 1.34 3.82 3.33
mse 366.31 128.47 15.67 45.25 54.62 1.86 14.61 11.12

1The oracle estimates of (b)—(e) assume that the link function g and its first derivative g’ are known.
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We choose these estimating equations on the basis of the following considerations. The estima-
tor that is obtained from (a) corresponds to the ordinary least squares estimator in the classical
linear model, which is asymptotically biased without any condition; estimators obtained from
(b) are consistent only when condition (2) is satisfied. Owing to the double-robustness property,
estimator (c) is always consistent. Similarly, estimator (d) offers consistent estimation, and the
resulting estimator is efficient if condition (2) is satisfied; estimator (e) offers consistent and
efficient estimates even when condition (2) is violated. In addition, for estimators (b)—(e), we
also experimented with their corresponding oracle version, where § and § are replaced by the
true functions g and ¢'. In all the non-parametric regression procedures, the Epanechnikov
kernel function is used, and the bandwidth is always set to be 2.21520(%n)_1/ 3~ 0.5, where
o =1.26 is the standard deviation of the regression covariate when z satisfies the linearity con-
dition (2), and 2.2152 is the adjustment from the normal kernel to the Epanechnikov kernel.
We used an undersmoothed bandwidth rate of n~!/3 to ensure the consistency of the estimating
equations (c) and (d). Although we could have implemented an optimal bandwidth for both
(b) and (e), we decided not to do so for fair comparison. Similarly to the optimal bandwidth,

Table 2. Simulation results of estimating equations (a)—(e) for case 2 where linearity condition (2) is violated
when n=250, d, =5 and d3 =5}

Estimator  Parameter v (%) 2 (%) (%) (%) s (%) Bi(%) B2 (%) Bs (%)

(a) bias 190.81 65.45 31.65 —0.90 1.19  —16.89 —3.37 24.65
std 75.56 50.20 15.79 34.89 39.33 13.17 11.26 14.94
mse 42118.11 6804.15 1250.82 1218.09 1548.57  458.83 138.20  831.06

(b) bias 1.04 0.25 0.12 —0.85 27.03 —19.49 —2.89 26.63
std 37.22 21.01 7.90 12.96 21.30 14.36 11.34 15.32
mse 1386.34 441.56 62.46 168.78 1184.42  586.24  136.86  943.95

Oracle bias 1.76 0.40 0.28 —0.98 2742 —19.53 -2.90 26.64
std 39.78 23.71 9.17 14.03 22.32 14.41 11.34 15.33
mse 1585.19 562.29 84.12 197.75 1249.73  588.90  137.07 944.92

(c) bias 1.85 0.38 —0.09 0.06 —0.21 —0.24 —0.41 —0.23
std 21.68 13.14 4.62 7.82 8.96 1.93 5.18 4.07
mse 473.36 172.93 21.38 61.21 80.37 3.76 27.03 16.61

Oracle bias 1.91 0.34 —0.09 0.02 —0.14 —0.25 —0.35 —0.27
std 21.48 13.10 4.59 7.76 8.86 1.96 5.16 4.09
mse 464.99 171.68 21.09 60.27 78.56 3.92 26.75 16.81

(d) bias 1.66 0.26 —0.14 —0.11 047  —0.31 —0.13 0.28
std 20.96 12.52 4.48 7.59 8.24 1.27 3.93 2.83
mse 441.97 156.89 20.08 57.57 68.05 1.70 15.45 8.10

Oracle bias 2.01 —0.03 0.15 —0.46 13.60 —11.98 —2.10 15.46
std 23.22 13.80 5.06 8.58 11.25 8.57 14.14 10.28
mse 542.97 190.36 25.66 73.90 311.56  216.89  204.47  344.57

(e) bias 1.64 0.25 —0.15 —0.10 036  —0.26 —0.18 —0.22
std 20.97 12.52 4.48 7.61 8.20 1.31 3.97 2.99
mse 442.47 156.76 20.12 57.90 67.44 1.78 15.76 8.96

Oracle bias 1.53 0.10 —0.07 —0.25 0.55 —0.35 —0.13 —0.10
std 18.83 11.22 4.03 7.15 8.42 2.14 4.55 3.23
mse 356.86 125.96 16.27 51.13 71.19 4.71 20.67 10.47

TThe oracle estimates of (b)—(e) assume that the link function g and its first derivative ¢’ are known.
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this undersmoothed bandwidth still suffices to ensure the consistency of (b) and the efficiency
of estimator (e).

We now evaluate the accuracy of estimation of 3 and -y on the basis of 1000 data replications.
The bias (‘bias’) and the standard deviation (‘std’) of the estimates of v and a subset of 3 are
summarized in Table 1 for case 1 where condition (2) is satisfied and (n, d.,,, dg) = (250, 5, 5). We
can clearly see that estimator (a) has very large biases, whereas the biases for all other situations
are much smaller. In terms of the estimation variability, (d) and (e) produce estimates with
smaller variance than all other estimating equations, which also complies with our expectation
since (d) and (e) are efficient. In addition, we can see that the estimating equations (b)—(e) offer
competitive or sometimes even better estimators than their corresponding oracle versions which
use the true link function g and its first derivative ¢’. This is in line with our theoretical finding
in proposition 2, which indicates that non-parametric smoothing does not affect the first-order
asymptotic property of the estimator.

The parallel simulation results are reported in Table 2 for case 2 where condition (2) is violated
and (n,d,,dg) =(250,5,5). Again, estimator (a) has a non-ignorable bias. Since condition (2)
is violated, estimator (b) also shows a large bias, and we can see that estimator (c) outperforms
(b), and (e) is superior to (d) in terms of both the bias and the variance. This is especially clear
in estimating 3. This indicates that the linearity condition (2) needs to be verified. Blindly using
a non-verified linearity condition will lead to biased results. The double-robustness form helps

Table 3. Simulation results of estimating equations (a)—(e) for case 1 where linearity condition (2) is satisfied
when n=250, d, =5 and dﬂ =107}

Estimator  Parameter 1 (%) (%) (%) (%) s (%) Bi(%) B (%)  PBs (%)

(a) bias 189.56 63.33 31.82 0.72 0.39 —5.66 —0.59 —-1.23
std 56.03 40.14 13.50 26.16 29.27 591 12.23 11.33
mse 39073.67  5622.59 119471 68493  857.03 66.97 149.94  129.78

(b) bias —0.45 0.29 0.15 0.00 4.17 —5.67 —0.62 —1.10
std 27.34 16.19 5.67 9.17 11.64 5.81 12.04 11.02
mse 747.82 262.35 32.12 84.06  152.93 65.84 145.44  122.57

Oracle bias —0.43 0.39 0.17 —0.03 4.20 —5.67 —0.62 —1.10
std 27.44 16.46 5.71 9.23 11.82 5.82 12.04 11.03
mse 753.23 271.04 32.67 85.12  157.34 66.00 14528  122.84

(© bias 0.00 0.23 —0.05 —0.33 —0.74 —0.76 —0.55 —0.40
std 23.67 13.46 4.78 7.45 9.18 2.10 5.29 4.86
mse 560.16 181.34 22.88 55.67 84.88 4.98 28.31 23.80

Oracle bias —0.13 0.22 —0.06 —0.30 —0.80 —0.76 —0.57 —0.45
std 23.47 13.38 4.76 7.50 9.23 2.10 5.28 4.87
mse 550.80 179.12 22.63 56.29 85.85 5.00 28.24 23.94

(d) bias 0.10 0.36 —0.08 —0.13 —0.35 —0.64 —0.31 —0.08
std 22.34 12.59 4.52 7.08 8.23 1.45 4.15 3.90
mse 499.22 158.59 20.44 50.20 67.78 2.52 17.35 15.21

Oracle bias 0.13 0.31 0.01 0.20 7.38 -9.17 -1.79 —2.52
std 24.53 14.68 5.16 8.14 10.77 7.73 15.29 14.04
mse 601.92 215.64 26.61 66.31 170.42 143.85 23698  203.48

(e) bias 0.18 0.34 —0.09 —0.13 —0.35 —0.65 —0.34 —0.09
std 22.35 12.63 4.50 7.06 8.18 1.47 4.24 3.93
mse 499.37 159.56 20.29 49.87 67.06 2.60 18.10 15.42

Oracle bias 0.23 0.30 —0.09 —0.10 —0.22 —0.69 —0.13 —0.10
std 19.45 11.12 3.91 6.28 7.34 1.53 4.25 3.72
mse 378.44 123.85 15.31 39.40 53.89 2.83 18.06 13.84

1The oracle estimates of (b)—(e) assume that the link function g and its first derivative g’ are known.
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Table4. Simulation results of estimating equations (a)—(e) for case 2 where linearity condition (2) is violated
when n =250, d, =5 and dg =10f

Estimator ~ Parameter 1 (%6) 72 (%) v (%) (%) s (%) Bi(%) Ba(%)  Bs (%)

(a) bias 187.83 64.28 32.53 0.69 034 —18.25 —3.89 23.04
std 73.24 53.39 17.42 35.13 38.64 12.46 11.53 14.24
mse 4064536  6983.39  1361.69 1234.67 1493.53  488.42  148.09  733.60

(b) bias —0.83 0.53 0.05 0.21 26.34 —20.78 —3.60 25.01
std 38.21 22.40 7.73 12.35 19.77 13.44 11.54 14.63
mse 1460.43 502.20 59.76 152.60 1084.49 612.39  146.11 839.40

Oracle bias —0.03 0.50 0.15 0.41 26.56 —20.83 —3.58 25.04
std 42.51 23.54 8.39 13.14 20.75 13.46 11.56 14.64
mse 1806.81 554.54 70.48 172.89 113578 615.05 14646  841.32

(c) bias 0.48 0.17 —0.09 —0.20 —-0.80  —0.90 —0.60 —0.14
std 23.57 13.10 4.83 7.34 9.25 2.15 5.28 4.42
mse 555.96 171.68 23.34 53.92 86.17 5.44 28.25 19.59

Oracle bias 0.57 0.22 —0.13 —0.21 -0.75  -0.92 —0.63 —0.04
std 23.49 13.07 4.85 7.29 9.17 2.19 5.29 4.55
mse 551.97 170.79 23.53 53.21 84.69 5.66 28.40 20.75

(d) bias 0.25 0.49 —0.06 —0.08 —-0.16  —0.71 —0.27 0.27
std 21.68 12.44 4.45 6.97 8.13 1.39 4.36 2.92
mse 470.15 155.02 19.81 48.61 66.06 2.43 19.08 8.61

Oracle bias —0.38 0.33 0.11 0.28 16.23 —15.95 —3.47 14.28
std 25.71 15.44 5.41 8.69 11.96 9.41 14.33 10.15
mse 661.40  238.64 29.26 75.62  406.37 342.74  217.35  306.85

(e) bias 0.31 0.44 —0.06 —0.10 -022  —0.67 —0.22 —0.34
std 21.79 12.43 4.43 6.98 8.11 1.41 4.42 3.09
mse 475.10 154.77 19.61 48.68 65.89 2.43 19.55 9.66

Oracle bias 0.03 0.19 —0.05 —0.10 —0.11 —0.72 —0.15 —0.24
std 19.24 11.12 3.87 6.28 7.37 1.47 4.34 3.39
mse 370.22 123.67 14.99 39.46 54.35 2.69 18.87 11.58

+The oracle estimates of (b)—(e) assume that the link function ¢ and its first derivative ¢’ are known.

Table 5. Average estimated standard deviation 53, Monte Carlo standard
deviation sd and 95% confidence interval coverage Cl of § from estimating
equation (e)

Case Parameter " Y2 Y3 V4 B&]

(n,dy, dg)=(250,5,5)

1 sd 02091  0.1206  0.0426  0.0696  0.0755
sd 02161  0.1295  0.0454  0.0765  0.0829
I 94.1%  93.4%  94.5%  92.9%  92.7%

2 sd 02045  0.1180  0.0417  0.0681  0.0743
sd 02097  0.1252  0.0448  0.0761  0.0820
CI 954%  93.6%  93.8%  92.6%  92.8%

(n, dy, dg) = (250, 5, 10)

1 sd 02045  0.1178  0.0417  0.0682  0.0740
sd 02235  0.1263  0.0450  0.0706  0.0818
I 93.2%  94.4%  93.8%  95.1%  92.0%

2 sd 02000  0.1153  0.0408  0.0667  0.0727
sd 02179  0.1243  0.0443  0.0698  0.0811

CI 93.4% 94.0% 93.2% 94.4% 92.1%
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to achieve small bias without all the non-parametric regressions. It also yields superior finite
sample performance when all the non-parametric regressions are performed.

To study the performance of the estimators when the covariates are of high dimension, we
further increased the dimension of z to 10 and the bias and the standard deviation in estimating
~ and 3 are summarized in Tables 3 and 4 for (n,d,,ds) =(250,5,10). These results convey
similar messages.

Since estimator (e) provides an efficient estimator regardless of whether the linearity condition
(2) is satisfied or not or whether the error is homoscedastic or heteroscedastic, it is not surpris-
ing to note that estimator (e) always offers estimates with the smallest Monte Carlo standard
errors among all estimators. Table 5 further reports the average estimated standard deviation
and the Monte Carlo standard deviation, as well as the empirical coverage probabilities of the
95% confidence intervals for 4 from the 1000 simulations. As we can see, the estimated standard
deviations match the Monte Carlo counterparts reasonably well, and the coverage probabilities
are close to the nominal level.

5. Example

The Fifth National Bank of Springfield faced a gender discrimination suit in which it was charged
with paying substantially lower salaries to its female employees than to its male employees. The
bank’s employee database (based on 1995 data) is listed in Albright et al. (1999), with only the
bank’s name being changed. For each of its 208 employees the data set includes each employee’s
annual salary Y and gender X.

The average salary for the male employees (X1 =1) is 45.505 (in thousands of dollars) and the
average for the females (X1 =0) is 37.262, yielding a p-value of less than 10~ from a two-sample
t-test. However, a naive comparison of the average salaries of males and females may not be
suitable because there are many confounding factors that may affect salary. To make a faithful
and complete comparison, we must account for these confounding factors. In this data set,
three categorical and three continuous confounders are collected. The categorical confounders
include a binary variable X; indicating whether the employee’s job is computer related or not,
a five-level categorical variable (X3 1,..., X3 4) representing the employee’s educational level
and a six-level categorical variable denoting the employee’s current job level (X4 1,..., X45).
The three continuous confounders are respectively working experience at the current bank (Z,
measured by the year when an employee was hired), the employee’s age (Z,) and experience
at another bank before working at the Fifth National Bank (Z3, measured by the number of
years at another bank). There was an obvious outlier in the data set, which was removed from
our subsequent analysis. The continuous confounders Z; were standardized marginally to have
mean 0 and variance 1.

To account for the effect of the confounders, two models arise naturally: the linear model

4 5 3
Y=v+nX1+7Xo+> 73, X3+ > 1iXai+ > BiZi+e (12)
i=1 i=1 i=1

and the partial linear single-index model

4 5 3
Y=y X1+7X2+ 3730 X3,i+ 20 iXai +g< > ﬁizi> +e. (13)

i=1

1= 1=

We require 8= (1, 5>, 43)T in model (13) to have unit length and positive sign for the first
non-zero element to ensure identifiability. We applied ordinary least squares to model (12),
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which corresponds to the estimating equation (a) in Section 4. In addition, we applied estimat-
ing equations (b), (c) and (e) to estimate the parameters in model (13). We reiterate here that
estimating equation (b) requires condition (2) for consistency of estimation. Both (c) and (¢)
yield consistent estimators without condition (2), but (e) is more efficient if the data exhibit
heteroscedasticity.

The estimated coefficients and their associated standard errors for models (12) and (13) are
summarized in Table 6. The ordinary least squares estimate of +; in the linear model (12) has
a p-value of nearly 0.10, indicating no significant gender effect on salary. The semiparametric
inference procedures (b), (c) and (e) suggest a similar conclusion, which is contrary to the two-
sample z-test result.

Because model (12) is nested within model (13), we first examine whether the link function
g(-) in model (13) is linear. The estimated link function along with its pointwise confidence band
is shown in Fig. 1(a), where the bandwidth is determined by leave-one-out cross-validation. We
can see that there are quite a few data points in the upper right-hand part of Fig. 1(a) which
exhibit a clear non-linear pattern. A closer inspection of these data points reveals that these
mainly correspond to the executives who earned handsome salaries at the Fifth National Bank.
The linear model (12) fails to capture this feature, indicating that it is insufficient to describe the
data. Therefore, the results of semiparametric inference procedures obtained from estimating
equations (b), (c) and (e) is more trustworthy.

From Table 6, we can see that both estimator (b) and estimator (¢) indicate that none of the
covariates in z has any effect on the employee’s salary, which contradicts our common sense
because we would expect the working experience, for example, to be an important factor for
salary. We suspect that estimator (b) failed to produce a consistent estimator, which would be
so if the linearity condition (2) was not satisfied. To verify this conjecture, we examine whether z

Table 6. Estimated coefficients and standard errors for the Fifth National Bank data

Parameter  Results for model (12), Results for model (13) and the following estimators:
estimator (a)
Estimator (b) Estimator (c) Estimator (e)
Coefficient  Standard
deviation
Coefficient Standard  Coefficient Standard  Coefficient Standard
deviation deviation deviation

7 1.4273 0.8504 1.2381 1.3163 —0.1572 1.5864 0.6726 1.5409
%) 4.5738 1.2258 5.0360 2.2537 44178  2.3679 3.4229  2.1513
73,1 —3.8173 1.3532 —0.5834 2.2137 1.4330 2.7118 —1.7172  2.4421
73,2 —4.1015 1.3018 —-1.1123 2.1733 0.1020  2.5062 —2.9037  2.5332
73,3 —2.7977 0.9749 —1.7869 1.7624 —0.4008 1.8991 —2.2040 1.7955
73,4 —3.1605 1.8026 —0.5708 3.3598 —0.9586  3.5150 —2.1893 3.2231
V4,1 —26.1685 2.3418 —24.1351 2.0737  —30.2798 3.4069 —24.9195 29111
o) —24.5755 2.2937 —22.6682 1.9986  —28.3341 3.2557 —23.1889 2.8851
V4,3 —21.3149 2.2023 —18.7183 1.8050  —23.7748 3.1097 —19.2959 2.7476
V4,4 —17.9505 2.0632 —14.0674 1.9868  —18.5167 3.0344 —14.9075 2.7432
V4,5 —13.0403 1.9952 —8.2875 2.0998 —11.4228 3.1984 —9.0453  2.6962
05 3.9500 0.5570 0.7787 19.6816 0.2329  0.1963 0.5546  0.0220
5> —0.1526 0.4909 —0.6020 15.3779 0.4854  0.3464 0.4647  0.0268
53 0.5729 0.3664 0.1765 4.4941 —0.8427 0.6024 0.6902 0.0218

R? 0.8342 0.8569 0.8446 0.9194
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Fig. 1. (a) Estimated link function (h = 0.3788), (b) Q-Q-plot of ' 3, (c) scatter plot of the residuals (h =
0.3618) and (d) scatter plot of salaries for the fifth National Bank data

satisfies the linearity condition (2). The O—Q-plot of z! 3 that is presented in Fig. 1(b) indicates
that the linearity condition (2) is probably violated because the distribution of z! 3 deviates
from a normal population significantly.

We next compare (c) with (e). We note that (c) differs from (e) in that (e) accounts for the
heteroscedasticity. We calculated the residuals of model (13) to examine the existence of het-
eroscedasticity. Fig. 1(c) reports the scatter plot of the squared residuals versus the component
z' 3. The full curve in Fig. 1(c) is the fitted variance function w(-)~! obtained from standard
non-parametric smoothing, where the bandwidth is determined by leave-one-out cross-valida-
tion. We can clearly see from Fig. 1(c) that the data points were heteroscedastic, which was
ignored by estimator (c). Thus, estimator (e) offers a more efficient estimate than (c). It also
complies with the results in Table 6 because the standard errors of the estimates obtained from
estimator (e¢) are smaller than those obtained from (c).

The last row of Table 6 summarizes the R2-values for all procedures. We can see that estima-
tor (e) has the largest R2-value, which suggests the best performance among all estimation
procedures. Fig. 1(d) shows a nice fit of the predicted salaries from estimator (e) and the observed
salaries of all employees.
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Considering all the above discussion, we believe that the results of estimator (e) based on
model (13) are convincing. In fact, Fan and Peng (2004) analysed the same data by using
another semiparametric model and reached the same conclusion that there is no significant
evidence supporting gender discrimination in salary.

6. Conclusion

We have studied the partially linear single-index model with possibly high dimensional cova-
riates, which can be viewed as a generalization of the model in Carroll ef al. (1997), with the
normality and homoscedasticity assumptions relaxed. We proposed a class of estimators that
do not rely on the profile likelihood method. In addition, estimators in this class have a double-
robustness property, which enables us to misspecify some of the non-parametric components.
We also derived a computationally simple estimation procedure that achieves semiparametric
efficiency. This further generalizes the efficiency result of Carroll et al. (1997). The presence of
the popular linearity condition further simplifies the computation. However, we have shown
that this additional condition does not contribute to the theoretical property of the estimator.
In other words, the benefit of the linearity condition is purely computational. This does not
come as a surprise since it is a very weak condition that always holds in the asymptotic sense
(Hall and Li, 1993).

To preserve the usual optimal bandwidths /; = O(n~13) fori=1,2,3, we have intentionally
avoided the undersmoothing condition nh‘ll — 0. A more careful but tedious analysis than that
in the on-line supplementary document shows that, to guarantee the root n consistency of the
resulting estimates, the valid bandwidth range is between nh% — o0 and nh% — 0. Hence, if one
feels comfortable in using an undersmoothing bandwidth in estimating 3 and -, then the com-
putation of consistent estimates can be relaxed because of the double robustness. Specifically,
if we use a bandwidth between nh% — 00 and nh‘ll — 0, then we can opt to estimate either the
g-function or the appropriate conditional expectation E(-|zT3). This is computationally bene-
ficial when we are not willing to propose a model for either of the two quantities, in that it is not
necessary to estimate both. If g or E(-|zT 3) is of interest, one can always perform an additional
standard non-parametric regression after obtaining the 3- and ~y-estimates.

Equivalent arguments and conclusions hold when model (1) is generalized to the scenario
in which the partially linear function x}~ -+ g(z} B) is replaced by an arbitrary semiparametric
function m(x;, ziTﬁ, 7, 9). The estimator will have the form

=V,

i=1

no o | mi@)  E{i0mi(0)/9ylzi}
2, m,(e)}w,[ oy E(Obilz;)

M=

s L. 999 T .
{Yi —mi(0) }iz; [Bm,(e) — 4w orii (6)/0(2; B)m}]:(),
1

¥z} 0) E(Wilz)

i

where m;(0) =m(xi,ziT5,'y, §). The estimator remains consistent and efficient provided that
E(Wam/d6|z) and E(W|z) are properly estimated non-parametrically.

We did not expand our model to allow common components in x and z, which actually
leads to very different results. This will be investigated in our subsequent work, and readers are
referred to Xia ez al. (1999) for related discussion and results. Finally, when zT 3 is not sufficient
to describe the regression, the partially linear additive model or partially linear multi-index
model represent common strategies to overcome the curse of dimensionality. Recent work in
this area includes Xia (2008) and Li et al. (2011).
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