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SUMMARY

Linearity, sometimes jointly with constant variance, is routinely assumed in the context of suf-
ficient dimension reduction. It is well understood that, when these conditions do not hold, blindly
using them may lead to inconsistency in estimating the central subspace and the central mean
subspace. Surprisingly, we discover that even if these conditions do hold, using them will bring
efficiency loss. This paradoxical phenomenon is illustrated through sliced inverse regression and
principal Hessian directions. The efficiency loss also applies to other dimension reduction pro-
cedures. We explain this empirical discovery by theoretical investigation.

Some key words: Constant variance condition; Dimension reduction; Estimating equation; Inverse regression; Linearity
condition; Semiparametric efficiency.

1. INTRODUCTION

In the sufficient dimension reduction literature, two essential conditions are linearity and con-
stant variance. Denote X the p-dimensional random covariate vector, and let the dimension reduc-
tion subspace be the column space of a full rank p × d matrix β. The linearity condition assumes
E(X | βT X) = P X , where P = �β(βT�β)−1βT is a p × p matrix and � = cov(X). The con-
stant variance condition assumes cov(X | βT X) = Q, where Q = � − P�PT. These two condi-
tions have played a central role throughout the development of the sufficient dimension reduction
literature. For example, the linearity condition, sometimes jointly with the constant variance con-
dition, permitted the establishment of sliced inverse regression (Li, 1991), sliced average vari-
ance estimation (Cook & Weisberg, 1991), directional regression (Li & Wang, 2007), cumulative
slicing estimation (Zhu et al., 2010a), discretization-expectation estimation (Zhu et al., 2010b),
ordinary least squares (Li & Duan, 1989), and principal Hessian directions (Li, 1992; Cook & Li,
2002). It is no exaggeration to call linearity and constant variance the fundamental conditions of
dimension reduction.

It is a different story regarding the validity of these conditions and their verification in practice.
Hall & Li (1993) showed that the linearity condition would hold in an asymptotic sense when
p goes to infinity. Yet whether the asymptotically true result suffices for a finite-dimensional
problem remains unclear. This has prompted researchers to relax these conditions. For example,
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Fig. 1. Comparison of sliced inverse regression, SIR, and principal Hessian directions, PHD, with their semipara-
metric counterparts, SEMI-SIR, SEMI-PHD, in Model (I) (left half in each panel) and Model (II) (right half in

each panel). Results are based on 1000 simulated datasets with sample size n = 200.

Li & Dong (2009) and Dong & Li (2010) replaced the linearity condition by a polynomial con-
dition. Ma & Zhu (2012) completely eliminated both conditions.

Following the relaxation of the linearity and constant variance conditions, a natural question
arises: what do we lose by ignoring these conditions when they hold? It is natural to conjecture
that this will cause estimation variance inflation. However, our discovery is exactly the opposite.

We illustrate this paradoxical phenomenon empirically. Consider

Model I : Y = βT
1 X/{0·5 + (βT

2 X + 1·5)2} + ε,

Model II : Y = (βT
1 X)2 + (βT

2 X)2 + ε,

where β1 = 10−1/2(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T, β2 = 10−1/2(1, −1, 1, −1, 1, −1, 1, −1, 1, −1)T

and ε is a standard normal random variable. Thus, p = 10, d = 2 and β = (β1, β2) in these mod-
els. We generate X from a multivariate standard normal distribution. Thus both the linearity and
the constant variance conditions hold. For Model I, we implement classical sliced inverse regres-
sion and its semiparametric counterpart where the linearity condition is not used. For Model
II, we compare classical principal Hessian directions and its semiparametric counterpart where
neither condition is used. Here, the sliced inverse regression and principal Hessian directions
are identical to their semiparametric counterparts, except that the sliced inverse regression and
principal Hessian directions utilize the linearity and the constant variance conditions to obtain
E(X | βT X) and cov(X | βT X), while their semiparametric counterparts estimate E(X | βT X)

and cov(X | βT X) nonparametrically. See Ma & Zhu (2012) for details on these semiparametric
estimators. We generate 1000 datasets each of size n = 200, and summarize the results in Fig. 1.
To make a fair comparison, we estimate the kernel matrix of the classical sliced inverse regres-
sion by using kernel smoothing rather than the usual slicing estimation. This allows us to avoid
selecting the number of slices, which usually adversely affects the performance. Thus, sliced
inverse regression is implemented in its improved form.

Figure 1(a) contains the boxplots of the four estimation procedure results, measured by a
distance between the estimated and the true dimension reduction subspaces. This distance is
defined as the Frobenius norm of P̂ − P , where P is as defined before, P̂ = �β̂(β̂T�β̂)−1β̂T

and β̂ = (β̂1, β̂2) is obtained from the aforementioned estimation procedures. This distance cri-
terion is widely used to evaluate the performance of different estimation procedures, with a
smaller distance indicating better estimation of the dimension reduction subspace. Figure 1(a)
shows clearly that the semiparametric counterparts outperform their classical versions. Thus, not
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taking advantage of the linearity condition or the constant variance condition, although both are
satisfied, seems to bring a gain in estimating the dimension reduction subspaces.

Figure 1(b) contains the boxplots of the same results measured by the trace correlation, defined
as trace(P P̂)/d. A larger value of this criterion indicates better performance. Figure 1(b) demon-
strates again that the semiparametric counterparts outperform their classical versions, once again
indicating that not taking advantage of linearity or constant variance, even though both hold,
brings a gain.

Finally, Fig. 1(c) shows the results for yet another popular criterion, the canonical correlation,
defined as the average of d canonical correlation coefficients between β̂T X and βT X . Under this
measure, larger values indicate better estimation results, and the conclusion from Fig. 1(c) is
consistent with those from Fig. 1(a) and Fig. 1(b).

Having observed these unexpected results, our goal here is to demonstrate that the improve-
ment is not an accident, but is theoretically verifiable. Because it is already well understood that
using linearity and constant variance when they do not hold causes bias, here we consider exclu-
sively the case when the covariate vector satisfies the linearity condition and, if required, the con-
stant variance condition. Thus the aforementioned original methods, such as sliced inverse regres-
sion and principal Hessian directions, are valid and will provide consistent estimation. Although
this is the classical setting of the dimension reduction literature and seems well understood, we
will formally establish that if we ignore the linearity and the constant variance conditions, and
instead, estimate the conditional expectation E(X | βT X) or more generally E{a(X) | βT X} non-
parametrically, then the performance of sufficient dimension reduction methods will improve.
The improvement is in the asymptotic variance of the estimated dimension reduction subspace,
in that not using linearity or constant variance will yield a more efficient estimator than using
them, even when they are true.

2. SOME PRELIMINARIES

We first lay out the central subspace and the central mean subspace models and some notation
we use throughout. Let Y be a univariate response variable and let X and β be defined as in
§ 1. Throughout this paper we assume that X satisfies both the linearity and the constant vari-
ance conditions. Using an invariance property (Cook, 1998, p. 106), we assume without loss of
generality that E(X) = 0 and cov(X) = Ip. The essence of the sufficient dimension reduction
literature is to assume that Y depends on X only through a few linear combinations βT X , and to
identify the space spanned by the columns of β. Mainly two types of links between Y and X are
commonly studied, the conditional distribution and the conditional mean function. In the first
model type (Li, 1991; Cook, 1998), one assumes that

F(y | X) = F(y | βT X), y ∈ R, (1)

where F(y | X) = pr(Y � y | X) denotes the conditional distribution function of Y given X . The
smallest column space of β satisfying (1) is called the central subspace, SY |X . In the second
model type (Cook & Li, 2002), one assumes that the conditional mean function satisfies

E(Y | X) = E(Y | βT X). (2)

The corresponding smallest column space of β is called the central mean subspace SE(Y |X).
Estimation of SY |X and SE(Y |X) is the main purpose of sufficient dimension reduction. In the
following development, we focus on the classical sliced inverse regression and principal Hessian
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directions methods as representative estimators for SY |X and SE(Y |X) respectively, although the
conclusion applies to other sufficient dimension reduction methods.

To further ensure that the identifiability of SY |X or SE(Y |X) implies the identifiability of β, we
require the upper d × d submatrix of β to be the identity matrix. Through this parameterization,
estimatingSY |X orSE(Y |X) is equivalent to estimating the lower (p − d) × d submatrix in β. This
submatrix contains all the unknown parameters involved in the estimation of SY |X or SE(Y |X)

and uniquely defines the corresponding space SY |X or SE(Y |X). This particular parameterization
is simple and enables us to study the properties of the space estimation by studying those of
estimators of the parameters in β. Other parameterizations can also be used.

We further introduce two matrix operators. We use vecl(β) to denote the length (p − d)d
vector formed by the concatenation of the columns in the lower (p − d) × d submatrix of β, and
use vec(M) to denote the concatenation of the columns of an arbitrary matrix M .

3. THEORETICAL EXPLANATION OF THE PARADOXICAL PHENOMENON

Following Ma & Zhu (2012), to identifySY |X in model (1), the sliced inverse regression solves
for the parameters contained in β from an estimating equation based on the relation

E[E(X | Y ){X T − E(X T | βT X)}] = 0. (3)

When the linearity condition holds, (3) simplifies to

QE{E(X | Y )X T} = Q cov{E(X | Y )} = 0,

where Q = Ip − P = Ip − β(βTβ)βT. Consequently, solving (3) is equivalent to calculating the
eigenspace of the matrix cov{E(X | Y )} associated with its d nonzero eigenvalues.

Similarly, to identify SE(Y |X) in model (2), the principal Hessian directions method solves for
the parameters contained in β from an estimating equation based on the relation

E[{Y − E(Y )}{X X T − E(X X T | βT X)}] = 0. (4)

When both the linearity and the constant variance conditions hold, (4) simplifies to

E[{Y − E(Y )}X X T] = P E[{Y − E(Y )}X X T]P.

Thus, solving (4) is equivalent to computing the eigenspace of the matrix E[{Y − E(Y )}X X T]
associated with its d nonzero eigenvalues.

To simultaneously consider both the sliced inverse regression in (3) and the principal Hessian
directions in (4), we consider a unified form

E[g∗(Y ){a∗(X) − E(a∗ | βT X)}] = 0, (5)

where g∗ is a fixed function of Y that satisfies E(g∗ | X) = E(g∗ | βT X), and a∗ is a fixed
function of X . Clearly (5) contains both sliced inverse regression and principal Hessian direc-
tions as special cases, by choosing g∗ = E(X | Y ) and a∗ = X T to yield (3) or g∗ = Y − E(Y ) and
a∗ = X X T to yield (4). Denote the observations by (Xi , Yi ) (i = 1, . . . , n). To facilitate our sub-
sequent inference procedure, we perform the following operations. First we vectorize the sample
version of (5), then we use a generalized method of moment argument to reduce the number of
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estimating equations to (p − d)d, then finally we simplify these estimation equations to obtain

n∑
i=1

q∑
j=1

[g j (Yi ){a j (Xi ) − E(a j | βT Xi )}] = 0, (6)

where g j (Y ) is a scalar or column vector that satisfies E(g j | X) = E(g j | βT X), and a j is a row
vector, for j = 1, . . . , q. A more detailed description of how to obtain (6) from (5) is given in the
Appendix. We also assume that (6) has a unique solution when n → ∞. As (6) is equivalent to
(5) when n → ∞, we can view (6) as a compact expression of the sample version of (5).

We now study the asymptotic properties of the estimating equation (6), both when the E(a j |
βT X)s are known and when they are estimated nonparametrically. The analysis of (6) for q > 1
can be readily obtained after we study (6) for q = 1, so in the sequel, whenever appropriate, we
shall focus on the case q = 1 in (6) and ignore the subscript j .

When we decide to give up using any properties of the covariate X such as linearity or constant
variance, we need to estimate E(a | βT X) nonparametrically. For example, we can estimate E(a |
βT X) through

Ê(a | βT X) =
n∑

i=1

Kh(βT Xi − βT X)a(Xi )

/
n∑

i=1

Kh(βT Xi − βT X) .

Here Kh(·) = K (·/h)/h is a kernel function and h is a bandwidth which can be estimated by
leave-one-out crossvalidation. Replacing E(a | βT X) in (6) with Ê(a | βT X), we obtain an esti-
mator β̂ by solving the equation

n∑
i=1

g(Yi ){a(Xi ) − Ê(a | βT Xi )} = 0. (7)

Crossvalidation is one possible way of selecting h, and its validity in the nonparametric context
can be found in Härdle et al. (1988). In the semiparametric context, the final estimate is insensi-
tive to the bandwidth choice. This is reflected in Condition A4, see the Appendix, where a range
of bandwidths are allowed, all of which will yield the same first-order asymptotic properties for
estimation of β. In terms of finite sample performance, bandwidth has also been observed to have
low impact, see for example Maity et al. (2007). Theorem 1 states the asymptotic properties of β̂.

THEOREM 1. Under the regularity conditions given in the Appendix, β̂ satisfies

−n1/2 A vecl(β̂ − β) = n−1/2
n∑

i=1

vec[{g(Yi ) − E(g | βT Xi )}{a(Xi ) − E(a | βT Xi )}] + op(1),

where

A = E

(
∂ vec[{g(Y ) − E(g | βT X)}{a(X) − E(a | βT X)}]

∂ vecl(β)T

)
.

Hence, when n → ∞, n1/2 vecl(β̂ − β) →N {0, A−1 B1(A−1)T} in distribution, where

B1 = cov(vec[{g(Y ) − E(g | βT X)}{a(X) − E(a | βT X)}]).
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Remark 1. We consider only the situation where g∗ and hence g are fixed functions. In
practice, sometimes g∗ and hence g are estimated, thus more careful notation is ĝ∗ and ĝ. How-
ever, as long as the estimated function ĝ converges to g at a proper rate (Mack & Silverman,
1982), the first-order result in Theorem 1 stays unchanged if we replace g with ĝ.

Alternatively, E(a∗ | βT X) may have a known form, say E(a∗ | βT X) = h∗(βT X, β), where
h∗(·) is a known function. This will further yield a known form for E(a j | βT X) in (6),
which we denote h j (β

T X, β) ( j = 1, . . . , q). For example, under the linearity condition, for
a∗(X) = X T, h∗(βT X, β) = P X = βT(βTβ)−1(βT X); under both the linearity and the constant
variance conditions, for a∗(X) = X X T, h∗(βT X, β) = Q + P X X T P = Ip − β(βTβ)−1βT +
β(βTβ)−1(βT X)(βT X)T(βTβ)−1β. This allows us to solve a simplified version of (6). For q = 1
and ignoring the subscript j , we need to solve only

n∑
i=1

g(Yi ){a(Xi ) − h(βT Xi , β)} = 0 (8)

to obtain an estimator β̃. The asymptotic properties of β̃ are given in Theorem 2.

THEOREM 2. If h is differentiable with respect to β, then β̃ satisfies

−n1/2 A vecl(β̃ − β) = n−1/2
n∑

i=1

vec[g(Yi ){a(Xi ) − E(a | βT Xi )}] + op(1),

where A is given in Theorem 1. Hence, when n → ∞, n1/2 vecl(β̃ − β) →N {0, A−1 B2(A−1)T}
in distribution, where

B2 = cov(vec[g(Y ){a(X) − E(a | βT X)}]).
Comparison of B1 and B2 reveals the difference between β̂ from solving (7) and β̃ from solving

(8), as stated in Proposition 1.

PROPOSITION 1. Under the conditions in Theorems 1 and 2, n[cov{vecl(β̃)} − cov{vecl(β̂)}]
is positive definite when n → ∞.

Combining the results in Theorems 1, 2 and Proposition 1, we are now ready to state our main
results, in Theorem 3. Its proof combines that of Theorems 1, 2 and Proposition 1, and is omitted
to avoid redundancy.

THEOREM 3. Let β̃ and β̂ solve (6) with E(a j | βT X) replaced by h j (β
T X, β) and by its non-

parametric kernel estimator Ê(a j | βT X) respectively. Under the regularity conditions given in
the Appendix, n[cov{vecl(β̃)} − cov{vecl(β̂)}] is positive definite when n → ∞.

We emphasize that β̃ and β̂ solve the same estimating equation (6), except that β̃ takes
advantage of the known forms of E(a j | βT X) while β̂ does not. They are estimators of the
same parameter β. Therefore, Theorem 3 states the interesting result that by giving up using the
linearity and constant variance conditions, we enjoy a decreased estimation variance.

In estimating the central subspace SY |X , any function of Y is a qualified g∗ function, because
E(g∗ | X) = E(g∗ | βT X) by the model assumption (1). Specifically, choose g∗(Y ) = E(X |
Y ), a∗(X) = X T, and h∗(βT X, β) = βT(βTβ)−1(βT X). After vectorizing and using a general-
ized method of moments to reduce the number of estimating equations, the over-identified
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estimating equation
∑n

i=1 g∗(Yi ){a∗(Xi ) − E(a∗ | βT Xi )} = 0 reduces to (6). Theorem 3 then
directly shows that giving up using the h j functions, hence giving up the linearity condi-
tion, will reduce the variance of sliced inverse regression. In estimating the central mean
subspace SE(Y |X) defined in (2), Y − c is the only qualified g∗ function, where c is an
arbitrary constant. Specifically, choose g∗(Y ) = Y − E(Y ), a∗(X) = X X T, h∗(βT X, β) = Ip −
β(βTβ)−1βT + β(βTβ)−1(βT X)(βT X)T(βTβ)−1β. Vectorizing the estimating equations and
using the generalized method of moments to reduce the number of estimating equations will
again yield an estimating equation of the form (6). Theorem 3 shows that giving up the linearity
and constant variance conditions will reduce the variance of principal Hessian directions.

Ma & Zhu (2012) studied many other forms of the sufficient dimension reduction estimators
that use the linearity and constant variance conditions. Those estimators can all be written in the
form (6). Following Theorem 3, these estimators suffer the same efficiency loss as sliced inverse
regression and principal Hessian directions, in that their estimation variance can be decreased
by nonparametric estimation of E(a j | βT X). Since we work in the semiparametric framework,
our analysis does not apply when Y is categorical and X is multivariate normal given Y . Under
these two conditions, the model is parametric and the sliced inverse regression is the maximum
likelihood estimator and cannot be further improved.

To keep the vital information simple and clear, we have presented the inverse regression
methods in their ideal forms, where the knowledge E(X) = 0 and cov(X) = I is directly incor-
porated into estimation. In practice, one might need to replace E(X) with X̄ and cov(X) with
ˆcov(X), and proceed with the estimation. Denote the resulting estimator by β̌. However, the esti-

mation of E(X) and cov(X) does not recover the efficiency loss caused by using the linearity and
constant variance conditions. In other words, n[cov{vecl(β̌)} − cov{vecl(β̂)}] is still a positive
definite matrix. We omit the proof because it is very similar to the proofs of Theorems 1–3 and
Proposition 1.

4. DISCUSSION

The surprising discovery that the linearity and constant variance conditions cause efficiency
loss reminds us of the situation widely experienced in using the inverse probability weighting
idea to handle missing covariates. There it is well known that using the true weights yields a less
efficient estimator than using the estimated weights. Such a phenomenon has been well studied
in Henmi & Eguchi (2004), and a nice geometrical explanation was provided there. However, our
problem shows several important differences. First, the efficiency improvement in the inverse
probability weighting scheme can be obtained through any valid parametric estimation of the
weights, while the efficiency improvement is not guaranteed when we view the linearity condition
as a truth, and replace it with an arbitrary valid parametric estimation. This makes the geometric
explanation in Henmi & Eguchi (2004) invalid in our context. Second, our efficiency gain is
achieved through replacing the linearity condition with nonparametric estimation, while only
parametric estimation is considered in Henmi & Eguchi (2004).

Finally, having focused on the drawback of using the linearity and the constant variance condi-
tions when they do hold, we acknowledge that using these conditions does ease the computation.
When these conditions hold, a nonparametric estimation procedure can be avoided, leading to
less programming effort and fast computation. However, nonparametric estimation is more or
less routine in modern statistics, while the linearity and constant variance conditions remain
uncheckable. As estimation is the final goal and this is better achieved without using the linear-
ity or constant variance conditions, whether or not they hold, one would expect that giving up
computational convenience for better statistical results can be sensible.
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APPENDIX

Obtaining (6) from (5)

We first vectorize the estimating function in (6) to obtain

f (Y, X, βT X) =

⎛
⎜⎝

g∗(Y )[a∗
1(X) − E{a∗

1(X) | βT X}]
...

g∗(Y )[a∗
l (X) − E{a∗

l (X) | βT X}]

⎞
⎟⎠ . (A1)

Here we assume a∗ contains l columns, denoted a∗
1 , . . . , a∗

l . Assume g∗(Y )a∗
1(X) contains l ′ rows. We

then perform the generalized method of moments step to obtain

D f (Y, X, βT X) =
l∑

j=1

D j g
∗(Y )[a∗

j (X) − E{a∗
j (X) | βT X}] =

l∑
j=1

g j (Y )[a∗
j (X) − E{a∗

j (X) | βT X}],

where

D = (D1, . . . , Dl) = E

{
∂ f T(Y, X, βT X)

∂ vecl(β)
D∗

}

has (p − d)d rows and D j is a (p − d)d × l ′ matrix, for j = 1, . . . , l. Here D∗ is an arbitrary positive-
definite ll ′ × ll ′ matrix, with the optimal choice being D∗ = E( f f T)−1, and g j (Y ) = D j g∗(Y ). In (A1)
a∗

j (X) is either a scalar, such as in sliced inverse regression, or a column vector, such as in principal
Hessian directions. When the a∗

j (X)s are column vectors, we further expand the matrix multiplication
g j (Y )[a∗

j (X) − E{a∗
j (X) | βT X}] ( j = 1, . . . , l) so that eventually, after simplification through combining

terms that are redundant, each summand contains a scalar function a∗
j and a scalar or column vector g j (Y ).

We use q to denote the total number of summands. By now the form of D f (Y, X, βT X) is almost the desired
form in (6), except that if several different a∗

j (X) − E{a∗
j (X) | βT X} are multiplied by the same g j (Y )

functions, we can write them more concisely by forming a row vector of the corresponding vectors a∗
j and

this is what we name a j in (6). For example, writing X = (X1, . . . , X p)
T, for sliced inverse regression, we

have

D f (Y, X, βT X) =
p∑

j=1

D j E(X | Y ){X j − E(X j | βT X)},

hence q = p, g j (Y ) = D j E(X | Y ), which is a column vector, and a j (X) = X j , which is a scalar, in (6).
For principal Hessian directions, we have

D f (Y, X, βT X) =
p∑

j=1

{Y − E(Y )}D j {X X j − E(X X j | βT X)}

=
p∑

k=1

p∑
j=1

{Y − E(Y )}D jk{Xk X j − E(Xk X j | βT X)}, (A2)
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where D j has dimension (p − d)d × p, and D jk stands for the kth column of D j . We rewrite (A2) into a
matrix form as

p∑
k=1

{Y − E(Y )}{X T D·,k Xk − E(X T D·,k Xk | βT X)}, (A3)

where D·,k is a p × (p − d)d matrix with j th row DT
jk (k = 1, . . . , p). Using (A3) to form (6), we hence

have q = p, g j (Y ) = Y − E(Y ), a scalar, and a j (X) = X T D·, j X j , a row vector, in (6).

List of regularity conditions

Condition A1. The univariate kernel function K (·) is symmetric, has compact support and is Lipschitz
continuous on its support. It satisfies∫

K (u) du = 1,

∫
ui K (u) du = 0 (i = 1, . . . , m − 1), 0 |=

∫
|u|m K (u) du < ∞.

Thus K is a mth order kernel. The d-dimensional kernel function is a product of d univariate kernel
functions, that is, Kh(u) = K (u/h)/hd = �d

j=1 Kh(u j ) = �d
j=1 K (u j/h)/hd for u = (u1, . . . , ud)

T. Here
we abuse notation and use the same K regardless of the dimension of its argument.

Condition A2. The probability density function of βT X , denoted by f (βT X), is bounded away from
zero and infinity.

Condition A3. Let r(βT X) = E{a(X) | βT X} f (βT X). The (m − 1)th derivatives of r(βT X) and
f (βT X) are locally Lipschitz-continuous as functions of βT X .

Condition A4. The bandwidth h = O(n−κ) for (2m)−1 < κ < (2d)−1. This implies m > d.

Technical details

Let f̂ (βT Xi ) = (n − 1)−1
∑

j |= i Kh(X T
jβ − X T

i β) and r̂(βT Xi ) = (n − 1)−1
∑

j |= i Kh(X T
jβ −

X T
i β)a(X j ). Write ηi = βT Xi , η = βT X , η̂i = β̂T Xi .

LEMMA A1. Assume E(ε | η) = 0. Under Conditions A1–A3, we have

1

n

n∑
i=1

εi {Ê(a | ηi ) − E(a | ηi )} = Op{hm/n1/2 + h2m + log2 n/(nhd)}.

Proof of Lemma A1. Recall that r(η) = E(a | η) f (η) from Condition A3, and r̂(η) = Ê(a | η) f̂ (η).
We write

1

n

n∑
i=1

εi {Ê(a | ηi ) − E(a | ηi )} = 1

n

n∑
i=1

εi

{
r̂(ηi )

f̂ (ηi )
− r(ηi )

f (ηi )

}

= 1

n

n∑
i=1

εi

{
r̂(ηi ) − r(ηi )

f (ηi )

}
− 1

n

n∑
i=1

εi

[
r(ηi ){ f̂ (ηi ) − f (ηi )}

f 2(ηi )

]

− 1

n

n∑
i=1

εi

[
{r̂(ηi ) − r(ηi )}{ f̂ (ηi ) − f (ηi )}

f (ηi ) f̂ (ηi )

]

+ 1

n

n∑
i=1

εi

[
r(ηi ){ f̂ (ηi ) − f (ηi )}2

f 2(ηi ) f̂ (ηi )

]
. (A4)

By the uniform convergence of nonparametric regression (Mack & Silverman, 1982), the third and the
fourth summations are order Op{h2m + log2 n/(nhd)}. The first two summations in the right-hand side of
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(A4) have similar structures, thus we explain in detail only the first one. We write n−1
∑n

i=1 r̂(ηi )εi/ f (ηi )

as a second-order U -statistic:

1

n

n∑
i=1

r̂(ηi )

f (ηi )
εi = 1

2n(n − 1)

∑
i |= j

Kh(ηi − η j ){εi a(X j )/ f (ηi ) + ε j a(Xi )/ f (η j }.

By using Lemma 5.2.1.A of Serfling (1980, p. 183), it follows that

1

n

n∑
i=1

εi
r̂(ηi )

f (ηi )
− 1

n

n∑
i=1

εi
E{Kh(ηi − η j )E(a | η j ) | ηi }

f (ηi )
= Op{1/(nhd/2)}, (A5)

because the difference on the left-hand side is a degenerate U -statistic. Next we show that

1

n

n∑
i=1

εi

[
E{Kh(ηi − η j )E(a | η j ) | ηi } − r(ηi )

f (ηi )

]
= Op(n

−1/2hm). (A6)

Following similar arguments in Lemma 3.3 of Zhu & Fang (1996) for calculating the bias term, we easily
have supXi

|E{Kh(ηi − η j )E(a | η j ) | ηi } − r(ηi )| = O(hm) by assuming that the (m − 1)th derivative of
r(η) is locally Lipschitz-continuous. This proves (A6). Combining (A5) and (A6), we obtain

1

n

n∑
i=1

εi

{
r̂(ηi ) − r(ηi )

f (ηi )

}
= Op{1/(nhd/2) + hm/n1/2}.

This result together with (A4) entails the desired result, which completes the proof. �

LEMMA A2. Under Conditions A1–A4, we have

n∑
i=1

E(g | ηi ){E(a | ηi ) − Ê(a | ηi )} =
n∑

i=1

E(g | ηi ){E(a | ηi ) − a(Xi )} + op(n
1/2).

Proof of Lemma A2. Using the definition of the function r(·) in Condition A3, and the bandwidth con-
ditions nh2d → ∞ and nh4m → 0 in Condition A4, we obtain

n∑
i=1

E(g | ηi ){E(a | ηi ) − Ê(a | ηi )}

=
n∑

i=1

E(g | ηi )

[
r(ηi ){ f̂ (ηi ) − f (ηi )}

f 2(ηi )
− {r̂(ηi ) − r(ηi )}

f (ηi )

]
+ op(n

1/2).

Furthermore, since the bandwidth h satisfies nh2m → 0 under Condition A4, Lemma A2 of Zhu & Zhu
(2007) yields

n∑
i=1

E(g | ηi )
r(ηi ){ f̂ (ηi ) − f (ηi )}

f 2(ηi )
=

n∑
i=1

[E(g | ηi )E(a | ηi ) − E{E(g | ηi )E(a | η)}] + op(n
1/2). (A7)

Similarly, invoking Lemma A3 of Zhu & Zhu (2007), we obtain

n∑
i=1

E(g | ηi )
{r̂(ηi ) − r(ηi )}

f (ηi )
=

n∑
i=1

[E(g | ηi )a(Xi ) − E{E(g | η)E(a | η)}] + op(n
1/2). (A8)

Combining (A7) and (A8), we obtain the results of Lemma A2. �
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Proof of Theorem 1. We rewrite the estimating equation
∑n

i=1 g(Yi ){a(Xi ) − Ê(a | η̂i )} = 0 to obtain

−
n∑

i=1

E(g | ηi ){a(Xi ) − Ê(a | η̂i )} =
n∑

i=1

{g(Yi ) − E(g | ηi )}{a(Xi ) − Ê(a | η̂i )}. (A9)

We first study the left-hand side of (A9):

n∑
i=1

E(g | ηi ){a(Xi ) − Ê(a | η̂i )} =
n∑

i=1

E(g | ηi ){a(Xi ) − E(a | ηi )} +
n∑

i=1

E(g | ηi ){E(a | ηi )

− Ê(a | ηi )} +
n∑

i=1

E(g | ηi ){Ê(a | ηi ) − Ê(a | η̂i )}. (A10)

From Lemma A2, the summation of the first two terms on the right-hand side of (A10) is op(n1/2). Using
Taylor’s expansion and the weak law of large numbers, denoting the Kronecker product as ⊗, i.e., M ⊗ B =
(mi j B) for any matrices M and B, we rewrite the vectorized form of the third summation on the right-hand
side of (A10) as

vec

[
n∑

i=1

E(g | ηi ){Ê(a | ηi ) − Ê(a | η̂i )}
]

= −
n∑

i=1

{
∂ Ê(aT | ηi )

∂ vecl(β)T
⊗ E(g | ηi )

}
vecl(β̂ − β) + op(n

1/2)

= −nE

{
∂ E(aT | η)

∂ vecl(β)T
⊗ E(g | η)

}
vecl(β̂ − β) + op(n

1/2).

Using ∂ vec( f gT)/∂ X T = g ⊗ ∂ f/∂ X T + ∂g/∂ X T ⊗ f , we obtain that

A = E

(
∂ vec[{g(Y ) − E(g | η)}{a(X) − E(a | η)}]

∂ vecl(β)T

)

= E

[
{a(X) − E(a | η)}T ⊗ ∂{g(Y ) − E(g | η)}

∂ vecl(β)T

]
+ E

[
∂{a(X) − E(a | η)}T

∂ vecl(β)T
⊗ {g(Y ) − E(g | η)}

]

= −E

[
{a(X) − E(a | η)}T ⊗ ∂ E(g | η)

∂ vecl(β)T

]
− E

[
∂ E(a | η)T

∂ vecl(β)T
⊗ {g(Y ) − E(g | η)}

]

= −E

[
{a(X) − E(a | η)}T ⊗ ∂ E(g | η)

∂ vecl(β)T

]
,

where the last equality is because E(g | X) = E(g | η). Hence

E

{
∂ E(aT | η)

∂ vecl(β)T
⊗ E(g | η)

}
+ A = −E

(
∂ vec[E(g | η){a(X) − E(a | η)}]

∂ vecl(β)T

)
= 0,

since E[E(g | η){a(X) − E(a | η)}] = 0 for all β. Thus, the vectorized form of the left-hand side of (A9)
is −n A vecl(β̂ − β) + op(n1/2). Next we study the right-hand side of (A9). We write

n∑
i=1

{g(Yi ) − E(g | ηi )}{a(Xi ) − Ê(a | η̂i )}

=
n∑

i=1

{g(Yi ) − E(g | ηi )}{a(Xi ) − E(a | ηi )} +
n∑

i=1

{g(Yi ) − E(g | ηi )}{E(a | ηi ) − Ê(a | ηi )}

+
n∑

i=1

{g(Yi ) − E(g | ηi )}{Ê(a | ηi ) − Ê(a | η̂i )}.
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Because E{g(Yi ) − E(g | ηi ) | ηi } = 0, a direct application of Lemma A1 entails that the second term is of
order OP{n1/2hm + nh2m + (log2 n)h−d}, which is op(n1/2) when nh2d → ∞ and nh4m → 0. By Taylor
expansion, the vectorized form of the third term is

vec

[
n∑

i=1

{g(Yi ) − E(g | ηi )}{Ê(a | ηi ) − Ê(a | η̂i )}
]

= −
n∑

i=1

[
∂ Ê(aT | ηi )

∂ vecl(β)T
⊗ {g(Yi ) − E(g | ηi )}

]
vecl(β̂ − β) + op(n

1/2)

= −nE

[
∂ E(aT | η)

∂ vecl(β)T
⊗ {g(Y ) − E(g | η)}

]
vecl(β̂ − β) + op(n

1/2)

= op(n
1/2),

where the last equality is again because E(g | X) = E(g | η). The proof of Theorem 1 is completed by
combining the results concerning the left- and right-hand sides of (A9). �

Proof of Theorem 2. A standard Taylor expansion around β yields

0 = n−1/2
n∑

i=1

vec[g(Yi ){a(Xi ) − h(η̃i , β̃)}]

= n−1/2
n∑

i=1

vec[g(Yi ){a(Xi ) − h(ηi , β)}]

+ n−1
n∑

i=1

−∂[vec{g(Yi )h(ηi , β)}]
∂ vecl(β)T

∣∣∣∣∣
β=β∗

n1/2{vecl(β̃ − β)} + op(1)

= n−1/2
n∑

i=1

vec[g(Yi ){a(Xi ) − E(a | ηi )}] − E

{
E(aT | η)

∂ vecl(β)T
⊗ g(Y )

}
n1/2{vecl(β̃ − β)} + op(1),

where β∗ is on the line connecting β̃ and β. From the proof of Theorem 1, we have

E

{
∂ E(aT | η)

∂ vecl(β)T
⊗ g(Y )

}
= E

{
∂ E(aT | η)

∂ vecl(β)T
⊗ E(g | η)

}
= −A.

Thus, we have

0 = n−1/2
n∑

i=1

vec[g(Yi ){a(Xi ) − E(a | ηi )}] + An1/2{vecl(β̃ − β)} + op(1),

hence the theorem is proven. �

Proof of Proposition 1. From Theorems 1 and 2, we can easily obtain that

B2 − B1 = cov(vec[E(g | η){a(X) − E(a | η)}])
+ cov(vec[{g(Y ) − E(g | η)}{a(X) − E(a | η)}], vec[E(g | η){a(X) − E(a | η)}])
+ cov(vec[E(g | η){a(X) − E(a | η)}], vec[{g(Y ) − E(g | η)}{a(X) − E(a | η)}])

= cov(vec[E(g | η){a(X) − E(a | η)}]),

which is clearly positive definite. The last equality holds because E(g | X) = E(g | η). Hence
cov{vecl(β̃)} − cov{vecl(β̂)} = n−1 A−1(B2 − B1)(A−1)T is positive definite. �
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