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EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION
REDUCTION

BY YANYUAN MA1 AND LIPING ZHU2

Texas A&M University and Shanghai University of Finance and Economics

We develop an efficient estimation procedure for identifying and estimat-
ing the central subspace. Using a new way of parameterization, we convert
the problem of identifying the central subspace to the problem of estimating
a finite dimensional parameter in a semiparametric model. This conversion
allows us to derive an efficient estimator which reaches the optimal semipara-
metric efficiency bound. The resulting efficient estimator can exhaustively es-
timate the central subspace without imposing any distributional assumptions.
Our proposed efficient estimation also provides a possibility for making infer-
ence of parameters that uniquely identify the central subspace. We conduct
simulation studies and a real data analysis to demonstrate the finite sample
performance in comparison with several existing methods.

1. Introduction. Consider a general model in which the univariate response
variable Y is assumed to depend on the p-dimensional covariate vector x only
through a small number of linear combinations βTx, where β is a p × d matrix
with d < p. In this model, how Y depends on βTx is left unspecified. It is not
difficult to see that β is not identifiable. The quantity of general interest is usually
the column space of β , which is termed the central subspace if d is the smallest
possible value to satisfy the model assumption [5].

This general model was proposed by Li [12] and has attracted much attention in
the last two decades. It generated the field of sufficient dimension reduction [5], in
which the main interest is to estimate the central subspace consistently. Influential
works in this area include, but are not limited to, sliced inverse regression [12],
sliced average variance estimation [6], directional regression [10], the generaliza-
tion of the aforementioned methods to nonelliptically distributed predictors [7, 9],
Fourier transformation [30], cumulative slicing estimators [29] and conditional
density based minimum average variance estimation [26], etc.
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Despite the various estimation methods, it is unclear if any of these estimators
are optimal in the sense that they can exhaustively estimate the entire central sub-
space and have the minimum possible asymptotic estimation variance. To the best
of our knowledge, the efficiency issue has never been discussed in the context of
sufficient dimension reduction.

In this paper we study the estimation and inference in sufficient dimension re-
duction. We propose a simple parameterization so that the central subspace is
uniquely identified by a (p − d)d-dimensional parameter that is not subject to
any constraints. Thus we convert the problem of identifying the central subspace
into a problem of estimating a finite dimensional parameter in a semiparametric
model. This allows us to derive the estimation procedures and perform inference
using semiparametric tools. How to make inference about the central subspace is a
challenging issue. This is partially caused by the complexity of estimating a space
rather than a parameter. Our new parameterization overcomes this complexity and
permits a relatively straightforward calculation of the estimation variability.

We further construct an efficient estimator, which reaches the minimum asymp-
totic estimation variance bound among all possible consistent estimators. Effi-
ciency bounds are of fundamental importance to the theoretical consideration.
Such bounds quantify the minimum efficiency loss that results from generalizing
one restrictive model to a more flexible one, and hence they can be important in
making the decision of which model to use. The efficiency bounds also provide a
gold standard by which the asymptotic efficiency of any particular semiparametric
estimator can be measured [22]. Generally speaking, a semiparametric efficient es-
timator is usually the ultimate destination when searching for consistent estimators
or trying to improve existing procedures. When an efficient estimator is obtained,
the procedure of estimation can be considered to have reached certain optimality.

In the literature, vast and significant effort has been devoted to studying the
semiparametric efficiency bounds for consistent estimators in semiparametric
models. The simplest and most familiar examples are the ordinary and weighted
least square estimators in the linear regression setting. Efficiency issues are also
considered in more complex semiparametric problems such as regressions with
missing covariates [23], skewed distribution families [18, 19], measurement error
models [15, 25], partially linear models [16], the Cox model [24], page 113, accel-
erated failure model [27] or other general survival models [28] and latent variable
models [17].

One typical semiparametric tool is to obtain estimators through obtaining the
corresponding influence functions. In deriving the influence function family and
its efficient member, we use the geometric technique illustrated in [2] and [24].
All our derivations are performed without using the linearity or constant variance
condition that is often assumed in the dimension reduction literature. Our analysis
is thus readily applicable when some covariates are discrete or categorical. In sum-
mary, we provide an efficient estimator which can exhaustively estimate the central
subspace without imposing any distributional assumptions on the covariate x.
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The rest of this paper is organized as follows. In Section 2, we propose a sim-
ple parameterization of the central subspace and highlight the semiparametric ap-
proach to estimating the central subspace. We also derive the efficient score func-
tion. In Section 3, we present a class of locally efficient estimators and identify
the efficient member. We illustrate how to implement the efficient estimator to
reach the optimal efficiency bound. Simulation studies are conducted in Section 4
to demonstrate the finite sample performance and the method is implemented in
a real data example in Section 5. We finish the paper with a brief discussion in
Section 6. All the technical derivations are given in a supplementary material [21].

2. The semiparametric formulation.

2.1. Parameterization of central subspace. In the context of sufficient dimen-
sion reduction [5, 12], one often assumes

F(y|x) = F
(
y|βTx

)
for y ∈ R,(2.1)

where F(y|x)
def= Pr(Y ≤ y|x) is the conditional distribution function of the re-

sponse Y given the covariates x, and β is a p × d matrix as defined previously.
The goal of sufficient dimension reduction is to estimate the column space of β ,
which is termed the dimension reduction subspace. Because a dimension reduc-
tion subspace is not necessarily unique, the primary interest is usually the central
subspace SY |x, which is defined as the minimum dimension reduction subspace if
it exists and is unique [5]. The dimension of SY |x, denoted with d , is commonly
referred to as the structural dimension. Similarly to [4], we exclude a pathological
case where there exists a vector α such that αTx is a deterministic function of βTx
while α does not belong to the column space of β .

The central subspace SY |x has a well-known invariance property [5], page 106,
that is, SY |x = DSY |z, where z = DTx + b for any p × p nonsingular matrix D
and any length p vector b. This allows us to assume throughout that the covari-
ate vector x satisfies E(x) = 0 and cov(x) = Ip . Identifying SY |x is the essential
interest of sufficient dimension reduction for model (2.1). Typically, SY |x is iden-
tified through estimating a basis matrix β ∈ Rp×d of minimal dimension that sat-
isfies (2.1). Although SY |x is unique, the basis matrix β is clearly not. In fact, for
any d × d full rank matrix A, βA generates the same column space as β . Thus,
to uniquely map one central subspace SY |x to one basis matrix, we need to focus
on one representative member of all the βA matrices generated by different A’s.
We write β = (βT

u,βT
l )T, where the upper submatrix βu has size d × d and the

lower submatrix β l has size (p − d) × d . Because β has rank d , we can assume
without loss of generality that βu is invertible. The advantage of using ββ−1

u is
that its upper d × d submatrix is the identity matrix, while the lower (p − d) × d

matrix can be any matrix. In addition, two matrices β1β
−1
1u and β2β

−1
2u are dif-

ferent if and only if the column spaces of β1 and β2 are different. Therefore, if
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we consider the set of all the p × d matrices β where the upper d × d subma-
trix is the identity matrix Id , it has a one-to-one mapping with the set of all the
different central subspaces. Thus, as long as we restrict our attention to the set
of all such matrices, the problem of identifying SY |x is converted to the problem
of estimating β l , which contains pt = (p − d)d free parameters. Note that pt is
the dimension of the Grassmann manifold formed by the column spaces of all
different β matrices. Thus, we can view β l as a unique parameterization of the
manifold. Here the subscript “t” stands for total. For notational convenience in
the remainder of the text, for an arbitrary p × d matrix β = (βT

u,βT
l )T, we de-

fine the concatenation of the columns contained in the lower p − d rows of β as
vecl(β) = vec(β l) = (βd+1,1, . . . , βp,1, . . . , βd+1,d , . . . , βp,d)T, where in the no-
tation vecl, “vec” stands for vectorization, and “l” stands for the lower part of the
original matrix. We then can write the concatenation of the parameters in β as
vecl(β). Thus, from now on, we only consider basis matrix of SY |x that has the
form β = (Id,βT

l )T, where β l is a (p − d) × d matrix. Estimating the parame-
ters in β is a typical semiparametric estimation problem, in which the parameter
of interest is vecl(β). Therefore we have converted the problem of estimating the
central space SY |x into a problem of semiparametric estimation.

REMARK 1. The above parameterization of SY |x excludes the pathological
case where one or more of the first d covariates do not contribute to the model or
contribute to the model through a fixed linear combination. When this happens, βu

will be singular. However, because β has rank d , hence if this happens, one can
always rotate the order of the covariates (hence rotate the rows of β) to ensure that
after rotation, the resulting βu has full rank.

2.2. Efficient score. In this section we derive the efficient score for estimating
β under the above parameterization. That is, we now consider model (2.1), where
β = (Id,βT

l )T and x satisfies E(x) = 0 and var(x) = Ip . The general semiparamet-
ric technique we use is originated from [2] and is wonderfully presented in [24].
Using this approach, we obtain the main result of this section, that we can use (2.2)
to obtain an efficient estimation of β .

The likelihood of one random observation (x, Y ) in (2.1) is η1(x)η2(Y,βTx),
where η1 is a probability mass function (p.m.f.) or a probability density function
(p.d.f.) of x, or a mixture, depending on whether x contains discrete variables, and
η2 is the conditional p.m.f./p.d.f. of Y on x. We view η1, η2 as infinite dimensional
nuisance parameters and vecl(β) as the pt -dimensional parameter of interest. Fol-
lowing the semiparametric analysis procedure, we first derive the nuisance tangent
space � = �1 ⊕ �2, where

�1 = {
f(x) :∀f such that E(f) = 0

}
,

�2 = {
f
(
Y,βTx

)
:∀f such that E(f|x) = E

(
f|βTx

) = 0
}
.
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Here, the notation ⊕ means the usual addition of the two spaces �1, �2, while
�1 and �2 have the extra property that they are orthogonal to each other. This
means the inner product of two arbitrary functions from �1 and �2, respectively,
calculated as the covariance between them, is zero. We then obtain its orthogonal
complement

�⊥ = {
f(Y,x) − E

(
f|βTx, Y

)
:E(f|x) = E

(
f|βTx

)
,∀f

}
.

The detailed derivation of � and �⊥ is given in Appendix A.2 of [20]. The form of
�⊥ permits many possibilities for constructing estimating equations. For example,
for arbitrary functions gi and αi , the linear combination

k∑
i=1

{
gi

(
Y,βTx

) − E
(
gi |βTx

)}{
αi (x) − E

(
αi |βTx

)}
will provide a consistent semiparametric estimator since it is a valid element
in �⊥. This form is exploited extensively in [20] to establish links between the
semiparametric approach and various inverse regression methods. Among all el-
ements in �⊥, the most interesting one is the efficient score, defined as the or-
thogonal projection of the score vector Sβ onto �⊥. We write the efficient score
as Seff = �(Sβ |�⊥). Because the efficient score can be normalized to the effi-
cient influence function, it enables us to construct an efficient estimator of vecl(β)

which reaches the optimal semiparametric efficiency bound in the sense of [2]. In
the supplementary document [21], we derive the efficient score function to be

Seff
(
Y,x,βTx, η2

) = vecl
[{

x − E
(
x|βTx

)}∂ log{η2(Y,βTx)}
∂(xTβ)

]
.(2.2)

Hypothetically, the efficient estimator can be obtained through implementing

n∑
i=1

Seff
(
Yi,xi ,β

Txi , η2
) = 0.

However, Seff is not readily implementable because it contains the unknown quan-
tities E(x|xTβ) and ∂ logη2(Y,βTx)/∂(xTβ). For this reason, we first discuss a
simpler alternative in the following section.

3. Locally efficient and efficient estimators.

3.1. Locally efficient estimators. We now discuss how to construct a locally
efficient estimator. This is an estimator that contains some subjectively chosen
components. If the components are “well” chosen, the resulting estimator is ef-
ficient. Otherwise, it is not efficient, but still consistent. The efficient estimator
defined in (2.2) requires one to estimate η2, the conditional p.d.f. of Y on βTx,
and its first derivative with respect to βTx. Although this is feasible, as we will
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describe in detail in Section 3.2, it certainly is not a trivial task as it involves sev-
eral nonparametric estimations. Because of this, a compromise is to consider an
estimator that depends on a posited model of η2. Specifically, we would choose
some favorite form for η2, denoted η∗

2(Y,βTx), and utilize it in place of η2 to con-
struct an estimating equation. If the posited model is correct (i.e., η∗

2 = η2), then
we would have the optimal efficiency using the corresponding S∗

eff. However, even
if the posited model is incorrect (i.e., η∗

2 �= η2), we would still have consistency
using the corresponding S∗

eff. A valid choice of S∗
eff that indeed guarantees such

property is

S∗
eff

(
Yi,xi ,β

Txi , η
∗
2
)

= vecl
({

xi − E
(
xi |βTxi

)}

×
[
∂ log{η∗

2(Yi,β
Txi )}

∂(xT
i β)

− E

{
∂ logη∗

2(Yi,β
Txi )

∂(xT
i β)

∣∣∣βTxi

}])
.

When η∗
2 = η2, E{∂ logη∗

2(Yi,β
Txi )/∂(xT

i β)|βTxi} = 0, hence S∗
eff = Seff. The

construction of a locally efficient estimator is often useful in practice due to its
relative simplicity. S∗

eff is almost readily applicable except that the two expec-
tations E(xi |βTxi ) and E{∂ logη∗

2(Yi,β
Txi )/∂(xT

i β)|βTxi} need to be estimated
nonparametrically. One can use the familiar kernel or local polynomial estimators.
In Theorem 1, we show that under mild conditions, with the two expectations es-
timated via the Nadaraya–Watson kernel estimators, the local efficiency property
indeed holds and estimating the two expectations does not cause any difference
from knowing them in terms of its first order asymptotic property.

We first present the regularity conditions needed for the theoretical develop-
ment.

(A1) (The posited conditional density η∗
2). Denote u = βTx. The posited con-

ditional density η∗
2(Y,u) of Y given u is bounded away from 0 and infinity on its

support Y . The second derivative of logη∗
2(Y,u) with respect to u is continuous,

positive definite and bounded. In addition, there is an open set � ∈ Rpt which
contains the true parameter vecl(β), such that the third derivative of η2(Y,βTx)

satisfies∣∣∂3{
η∗

2
(
Y,βTx

)}
/
(
∂ vecl(β)j ∂ vecl(β)k ∂ vecl(β)l

)∣∣ ≤ M∗
jkl(Y,x)

for all vecl(β) ∈ � and 1 ≤ j, k, l ≤ pt , where M∗
jkl(Y,x) satisfies E{M∗

jkl
2(Y,

x)} < ∞, and βj is the j th component of vecl(β).
(A2) (The nonparametric estimation). E{∂ logη∗

2(Y,βTx)/∂(xTβ)|βTx} and
E(x|βTx) are estimated via the Nadaraya–Watson kernel estimator. For simplic-
ity, a common bandwidth h is used which satisfies nh8 → 0 and nh2d → ∞ as
n → ∞.
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(B1) (The true conditional density η2). The true conditional density η2(Y,u)

of Y given u is bounded away from 0 and infinity on its support Y . The first and
second derivatives of logη2 satisfy

E

[
∂{logη2(Y,βTx)}

∂ vecl(β)

]
= 0

and

E

[
∂{logη2(Y,βTx)}

∂ vecl(β)

∂{logη2(Y,βTx)}
∂ vecl(β)T

]
= −E

[
∂2{logη2(Y,βTx)}
∂ vecl(β) ∂ vecl(β)T

]

is positive definite and bounded. In addition, there is an open set � ∈ Rpt which
contains the true parameter vecl(β), such that the third derivative of η2(Y,βTx)

satisfies∣∣∂3{
η2

(
Y,βTx

)}
/
(
∂ vecl(β)j ∂ vecl(β)k ∂ vecl(β)l

)∣∣ ≤ Mjkl(Y,x)

for all vecl(β) ∈ � and 1 ≤ j, k, l ≤ pt , where Mjkl(Y,x) satisfies E{M2
jkl(Y,

x)} < ∞, and βj is the j th component of vecl(β).
(B2) (The bandwidths). The bandwidths satisfy hy → 0, b → 0 and hx → 0,

and nhd+2
y b → ∞, n1/2{h2

x + (nhd
x)−1/2}{h2

y + b2 + (nhd+2
y b)−1/2} → 0.

(C1) (The density functions of covariates). Let u = βTx. The density functions
of u and x are bounded away from 0 and infinity on their support U and X where
U = {u = βTx : x ∈ X } and X is a compact support set of x. Their second deriva-
tives are finite on their supports.

(C2) (The smoothness). The regression functions E(x|u) has a bounded and
continuous derivative on U .

(C3) (The kernel function). The univariate kernel function K(·) is a bounded
symmetric probability density function, has a bounded derivative and compact
support [−1,1], and satisfies μ2 = ∫

u2K(u)du �= 0. The d-dimensional kernel
function is a product of d univariate kernel functions, that is, K(u) = ∏d

j=1 K(uj ),

and Kh(u) = ∏d
j=1 Kh(uj ) = h−d ∏d

j=1 K(uj/h) for u = (u1, . . . , ud)T and any
bandwidth h.

THEOREM 1. Under conditions (A1)–(A2) and (C1)–(C3), the estimator ob-
tained from the estimating equation

n∑
i=1

S∗
eff

(
Yi,xi ,β

Txi , η
∗
2, Ê

) = 0

is locally efficient. Specifically, the estimator is consistent if η∗
2 �= η2, and is ef-

ficient if η∗
2 = η2. In addition, using the estimated Ê(·|βTx) results in the same

estimation variance for vecl(β) as using the true E(·|βTx). Specifically, the esti-
mate β̂ satisfies

√
n
{
vecl(β̂) − vecl(β)

} → N
{
0,A−1B

(
A−1)T}
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when n → ∞, where

A = E

{
∂S∗

eff(Yi,xi ,β
Txi , η

∗
2)

∂ vecl(β)T

}
, B = E

{
S∗

eff
(
Yi,xi ,β

Txi , η
∗
2
)⊗2}

.

In Theorem 1 and thereafter, we use v⊗2 to denote vvT for any matrix or vec-
tor v, and use Ê to denote the nonparametrically estimated expectation.

We describe how to implement the locally efficient estimator in several specific
cases. For example, when Y is continuous, we can propose a simple conditional
normal model for η2 and hence obtain the locally efficient estimator based on
summing terms of the form

S∗
eff

(
Y,x,βTx, η∗

2
)

(3.1)

= vecl
({

x − E
(
x|βTx

)}[{
Y − E

(
Y |βTx

)}∂E∗(Y |βTx)

∂(xTβ)

])

evaluated at different observations. Here E∗(·|βTx) is computed using the
model η∗

2. When Y is binary, a common model to posit for η2 is a logistic model.
The summation of the terms of form (3.1) evaluated at different observations also
provides a locally efficient estimator. When Y is a counting response variable, the
Poisson model is a popular choice for η2. This choice also yields an identical lo-
cally efficient estimator formed by the sum of (3.1). The benefits of these locally
efficient estimators are two-fold. The first benefit lies in the robustness property,
in that they guarantee the consistency of the resulting estimators regardless of
the proposed model. The second benefit is their computational simplicity gained
through avoiding estimating the conditional density η2 and its derivative. In ad-
dition, if, by luck, the posited model happens to be correct, then the estimator is
efficient.

REMARK 2. We have restricted the posited model η∗
2 to be a completely

known model in order to illustrate the local efficiency concept. In fact, one can
also posit a model η∗

2 that contains an additional unknown parameter vector, say γ .
As long as γ can be estimated at the root-n rate, the resulting estimator with the
estimator γ̂ plugged in is also referred to as a locally efficient estimator. In addi-
tion, if model η∗

2 contains the true η2, say η∗
2(Y,βTx,γ 0) = η2(Y,βTx), and γ 0 is

estimated consistently by γ̂ at the root-n rate, then the resulting estimator S∗
eff with

η∗
2(Y,βTx, γ̂ ) plugged in is efficient.

REMARK 3. Even if efficiency is not sought after and consistency is the sole
purpose, at least one nonparametric operation, such as one that relates to estimat-
ing E(x|βTx), is needed. Thus, to completely avoid nonparametric procedures, the
only option is to impose additional assumptions. The most popular linearity condi-
tion in the literature assumes E(x|βTx) = β(βTβ)−1βTx. Since Theorem 1 allows
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an arbitrary η∗, the most obvious choice in practice is probably the exponential
link functions. For example, if we choose η∗

2 to be the normal link function when
d = 1, then the locally efficient estimator degenerates to a simple form, where

S∗
eff = vecl

[{
x − β

(
βTβ

)−1
βTx

}(
Y − βTx

)]
.

If we are even bolder and decide to replace Y − βTx with Y , which is still valid
given that the first term alone already guarantees consistency under the linearity
condition, then we obtain the ordinary least square estimator [13]. Further connec-
tions to other existing methods are elaborated in [20].

3.2. The efficient estimator. Now we pursue the truly efficient estimator that
reaches the semiparametric efficiency bound. This is important because in terms
of reaching the optimal efficiency, relying on a posited model η∗

2 to be true or to
contain the true η2 is not a satisfying practice. Intuitively, it is easy to imagine
that in constructing the locally efficient estimator, if we posit a larger model η∗

2,
the chance of it containing the true model η2 becomes larger, hence the chance
of reaching the optimal efficiency also increases. Thus, if we can propose the
“largest” possible model for η∗

2, we will guarantee to have η∗
2 containing η2. If

we can also estimate the parameters in η∗
2 “correctly,” we will then guarantee the

efficiency. This “largest” model with a “correctly” estimated parameter turns out
to be what the nonparametric estimation is able to provide. This amounts to esti-
mating E(x|βTx), η2 and its first derivative nonparametrically in (2.2).

We first discuss how to estimate η2 and its first derivative, based on (Yi,β
Txi ),

i = 1, . . . , n. This is a problem of estimating conditional density and its deriva-
tive. We use the idea of the “double-kernel” local linear smoothing method studied
in [8]. Consider Kb(Y − y) = b−1K{(Y − y)/b} with y running through all possi-
ble values, where K(·) is a symmetric density function, and b > 0 is a bandwidth.
Then E{Kb(Y −y)|βTx} converges to η2(y,βTx) as b tends to 0. This observation
motivates us to estimate η2 and its first derivative, evaluated at (y,βTx) through
minimizing the following weighted least squares:

n∑
i=1

{
Kb(Yi − y) − a − bT(

βTxi − βTx
)}2

Khy

(
βTxi − βTx

)
,

where hy is a bandwidth, and Khy is a multivariate kernel function. The minimiz-
ers â and b̂ are the estimators of η2 and ∂η2/∂(βTx). Let the resulting estimators
be η̂2(·) and η̂′

2(·).
It remains to estimate E(x|βTx). Using the Nadaraya–Watson kernel estimator,

we have

Ê
(
x|βTx

) =
∑n

i=1 xiKhx (β
Txi − βTx)∑n

i=1 Khx (β
Txi − βTx)

,

where hx is a bandwidth, and Khx is a multivariate kernel function. The algorithm
for obtaining the efficient estimator is the following:
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• Step 1. Obtain an initial root-n consistent estimator of β , denoted as β̃ , through,
for example, a simple locally efficient estimation procedure from Section 3.1.

• Step 2. Perform nonparametric estimation of η2(Y, β̃
T

x) and its first derivative
∂{η2(Y, β̃

T
x)}/∂(β̃

T
x). Write the resulting estimators as η̂2(·) and η̂′

2(·).
• Step 3. Perform nonparametric estimation of E(x|β̃T

x). Write the resulting es-
timator as Ê(·).

• Step 4. Plug η̂2(Y,βTx), η̂′
2(Y,βTx) and Ê(x|βTx) into Seff and solve the esti-

mating equation

n∑
i=1

Seff
(
Yi,xi ,β

Txi , η̂2, η̂
′
2, Ê

) = 0

to obtain the efficient estimator β̂ .

In performing the various nonparametric estimations in steps 2 and 3, as well
as in obtaining the locally efficient estimator in Section 3.1, bandwidths need to
be selected. Because the final estimator is very insensitive to the bandwidths, as
indicated by conditions (A2), (B2) and Theorems 1, 2, where a range of different
bandwidths all lead to the same asymptotic property of the final estimator, we
suggest that one should select the corresponding bandwidths by taking the sample
size n to its suitable power to satisfy (B2), and then multiply a constant to scale it,
instead of performing a full-scale cross validation procedure. For example, when
d = 1, we let h = n−1/5, hx = n−1/5, hy = n−1/6, b = n−1/7, and when d = 2, we
let h = n−1/6, hx = n−1/6, hy = n−1/7, b = n−1/8, each multiplied by the standard
deviation of the regressors calculated at the current β̂ value.

The estimator from the above algorithm, β̂ , with its upper d × d submatrix
being Id , reaches the optimal semiparametric efficiency bound. We present this
result in Theorem 2.

THEOREM 2. Under conditions (B1)–(B2) and (C1)–(C3), the estimator ob-
tained from the estimating equation

n∑
i=1

Seff
(
Yi,xi ,β

Txi , η̂2, η̂
′
2, Ê

) = 0

is efficient. Specifically, when n → ∞, the estimator of vecl(β) satisfies
√

n
{
vecl(β̂) − vecl(β)

} → N
(
0,

[
E

{
Seff

(
Y,x,βTx, η2

)⊗2}]−1)
in distribution.

REMARK 4. It is discovered that for certain p.d.f. η2, such as when the inverse
mean function E(x|Y) degenerates, some inverse, regression-based methods, such
as SIR, would fail to exhaustively recover SY |x. However, this is not the case for
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the efficient estimator proposed here. That is, our proposed efficient estimator,
similar to dMAVE [26], has the exhaustiveness property [11]. In fact, as it is listed
in the regularity conditions, as long as the asymptotic covariance matrix is not
singular and is bounded away from infinity, our method is always able to produce
the efficient estimator.

REMARK 5. It can be easily verified that the above efficient asymptotic
variance-covariance matrix can be explicitly written out as

E
{
Seff

(
Y,x,βTx, η2

)⊗2}
= E

(
E

[{
∂ logη2(Y,βTx)

∂(βTx)

}⊗2∣∣∣βTx
]

⊗ E
[{

xl − E
(
xl|βTx

)}⊗2|βTx
])

,

where xl is the vector formed by the lower p − d components of x. Thus, the
asymptotic variance of vecl(β̂) is nonsingular as long as both E[{∂ logη2(Y,βTx)/

∂(βTx)}⊗2|βTx] and E[{xl − E(xl |βTx)}⊗2|βTx] are nonsingular. The nonsin-
gularity of the first matrix is a standard requirement on the information matrix
of the true model η2 and is usually satisfied. On the other hand, E(E[{xl −
E(xl|βTx)}⊗2|βTx]) is always guaranteed to be nonsingular. This is because if
it is singular, then there exists a unit vector α with the first d components zero,
such that αTx is a deterministic function of βTx. This violates our assumption that
αTx cannot be a deterministic function of βTx unless α lies within the column
space of β .

4. Simulation study. In this section we conduct simulations to evaluate the
finite sample performance of our efficient and locally efficient estimators and com-
pare them with several existing methods.

We consider the following three examples:

(1) We generate Y from a normal population with mean function xTβ and vari-
ance 1.

(2) We generate Y from a normal population with mean function sin(2xTβ) +
2 exp(2 + xTβ) and variance function log{2 + (xTβ)2}.

(3) We generate Y from a normal population with mean function 2(xTβ1)
2 and

variance function 2 exp(xTβ2).

In the simulated examples 1 and 2, we set β = (1.3,−1.3,1.0,−0.5,0.5,−0.5)T

and generate x = (X1, . . . ,X6)
T as follows. We generate X1, X2, e1 and e2 inde-

pendently from a standard normal distribution, and form X3 = 0.2X1 + 0.2(X2 +
2)2 + 0.2e1, X4 = 0.1 + 0.1(X1 + X2) + 0.3(X1 + 1.5)2 + 0.2e2. We generate
X5 and X6 independently from Bernoulli distributions with success probability
exp(X1)/{1 + exp(X1)} and exp(X2)/{1 + exp(X2)}, respectively.

Example 3 follows the setup of Example 4.2 in [26]. In this example, we set
β1 = (1,2/3,2/3,0,−1/3,2/3)T and β2 = (0.8,0.8,−0.3,0.3,0,0)T. We form
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the covariates x by setting X1 = U1 − U2, X2 = U2 − U3 − U4, X3 = U3 + U4,
X4 = 2U4, X5 = U5 +0.5U6 and X6 = U6, where U1 is generated from a Bernoulli
distribution with probability 0.5 to be 1 or −1, U2 is also generated from Bernoulli
distribution, with probability 0.7 to be

√
3/7 and probability 0.3 to be −√

7/3.
The remaining four components of u are generated from a uniform distribution
between −√

3 and
√

3. The six components of u = (U1, . . . ,U6)
T are independent,

marginally having zero mean and unit variance. We construct x through u in this
way to allow the components of x to be correlated.

For the purpose of comparison, we implement six estimators: “Oracle,” “Eff,”
“Local,” “dMAVE,” “SIR” and “DR.” The names of the estimators suggest the
nature of these estimators, while we briefly explain them in the following:

Oracle: the oracle estimate which correctly specifies η2 in (2.2), but we estimate
E(x|βTx) through kernel regressions. We remark here that the oracle estimator
is not a realistic estimator because η2 is usually unknown. We include the oracle
estimator here to provide a benchmark since this is the best performance one
could hope for.

Eff: the efficient estimator which estimates E(x|βTx), η2 and η′
2 through nonpara-

metric regressions. See Section 3.2 for a description about this efficient estima-
tor.

Local: the locally efficient estimate which mis-specifies the model η2, and esti-
mates E(·|βTx) through nonparametric regression. This is an implementation
of (3.1).

dMAVE: the conditional density based minimum average variance estimation pro-
posed by [26].

SIR: the sliced inverse regression [12] which estimates β as the first d principal
eigenvectors of �−1 cov{E(x|Y)}�−1, where � = cov(x).

DR: the directional regression [10] which estimates β as the first d princi-
pal eigenvectors of the kernel matrix �−1/2E{2Ip − A(Y, Ỹ )}2�−1/2, where
A(Y, Ỹ ) = �−1/2E{(x − x̃)(x − x̃)T|Y, Ỹ }�−1/2, and (̃x, Ỹ ) is an independent
copy of (x, Y ).

We repeat each experiment 1000 times with sample size n = 500. The results
are summarized in Table 1 for example 1, Table 2 for example 2 and Table 3 for
example 3. Because the estimators we propose here use a different parameteri-
zation of the central subspace SY |x from the existing methods such as SIR, DR or
dMAVE, we transform the results from all the estimation procedures to the original
β used to generate the data for a fair and intuitive comparison.

From the results in Table 1, we can see that Oracle, Eff, Local, dMAVE provide
estimators with small bias, while SIR and DR have substantial bias in some of the
elements in β . For example, the average of the second estimated component of β
obtained by DR is −0.2217, in contrast to the true value −1.3. This is because
the covariate x does not satisfy the linearity or the constant variance condition,
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TABLE 1
The average (“ave”) and the sample standard errors (“std”) for various estimates, and the
inference results, respectively, the average of the estimated standard deviation (“ŝtd”) and

the coverage of the estimated 95% confidence interval (“95%”), of the oracle estimator and the
efficient estimator, of β in simulated example 1

β1 β2 β3 β4 β5 β6
1.3 −1.3 1 −0.5 0.5 −0.5

Oracle ave 1.2978 −1.3036 1.0049 −0.4985 0.5033 −0.4943
std 0.1221 0.1477 0.1505 0.1169 0.0966 0.1049
ŝtd 0.1264 0.1510 0.1527 0.1212 0.0983 0.1052

95% 0.9510 0.9540 0.9440 0.9540 0.9520 0.9450

Eff ave 1.2980 −1.3046 1.0064 −0.4990 0.5040 −0.4936
std 0.1280 0.1546 0.1567 0.1221 0.1000 0.1075
ŝtd 0.1317 0.1588 0.1602 0.1264 0.1011 0.1084

95% 0.9480 0.9380 0.9380 0.9440 0.9480 0.9510

Local ave 1.3052 −1.2629 0.9687 −0.4988 0.5023 −0.4897
std 0.1478 0.1736 0.1715 0.1393 0.1069 0.1153

dMAVE ave 1.2599 −1.2933 1.0014 −0.4763 0.4984 −0.4935
std 0.1932 0.1427 0.1550 0.1701 0.1368 0.1378

SIR ave 1.3881 −1.1930 0.9261 −0.5968 0.4793 −0.4724
std 0.1696 0.1522 0.1414 0.1489 0.0976 0.0995

DR ave 0.9935 −0.2217 0.1930 −0.6863 0.1245 −0.1071
std 0.6567 1.2305 1.0107 0.6411 0.3069 0.2999

and hence violates the requirement of SIR and DR. Although Local and dMAVE
both appear consistent, they have much larger variance in some components than
Eff. For example, in estimating β1, the asymptotic variance of dMAVE is 0.1932,
whereas that of Eff is as small as 0.1264. This is not surprising since Eff is asymp-
totically efficient. In fact, for this very simple setting, the estimation variance of Eff
is almost as good as Oracle, which indicates that the asymptotic efficiency already
exhibits for n = 500.

We also provide the average of the estimated standard error using the results in
Theorem 2 and the 95% coverage in Table 1. The numbers show a close approxi-
mation of the sample and estimated standard error and 95% coverage is reasonable
close to the nominal value.

Similar phenomena are observed for the simulated example 2 from Table 2,
where SIR and DR are biased, Local and dMAVE are consistent but have larger
variability than Eff and Oracle. In this more complex model where the mean func-
tion is highly nonlinear and the error is heteroscedastic, we lose the proximity be-
tween the oracle performance and the Eff performance. This is probably because
n = 500 is still too small for this model. The inference results in Table 2, however,
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TABLE 2
The average (“ave”) and the sample standard errors (“std”) for various estimates, and the

inference results, respectively, the average of the estimated standard deviation (“ŝtd”) and the
coverage of the estimated 95% confidence interval (“95%”), of the oracle estimator and

the efficient estimator, of β in simulated example 2

β1 β2 β3 β4 β5 β6
1.3 −1.3 1 −0.5 0.5 −0.5

Oracle ave 1.2999 −1.3001 1.0001 −0.4999 0.5002 −0.4999
std 0.0023 0.0025 0.0028 0.0022 0.0023 0.0024
ŝtd 0.0021 0.0020 0.0026 0.0020 0.0021 0.0023

95% 0.9260 0.9070 0.9270 0.9220 0.9210 0.9380

Eff ave 1.2996 −1.2999 0.9998 −0.4996 0.5002 −0.5000
std 0.0116 0.0116 0.0117 0.0111 0.0068 0.0079
ŝtd 0.0123 0.0124 0.0124 0.0120 0.0075 0.0081

95% 0.9480 0.9550 0.9570 0.9450 0.9630 0.9520

Local ave 1.2992 −1.3010 1.0007 −0.4993 0.5011 −0.5001
std 0.0155 0.0210 0.0209 0.0140 0.0142 0.0147

dMAVE ave 1.2405 −1.3422 1.0303 −0.4490 0.5114 −0.5134
std 0.0229 0.0151 0.0133 0.0153 0.0081 0.0082

SIR ave 0.3064 −1.6387 1.2390 0.2477 0.4697 −0.4743
std 0.1248 0.3965 0.3149 0.1057 0.1135 0.1141

DR ave 0.3424 0.8686 −0.6620 −0.6895 −0.1923 0.1912
std 0.2550 1.2518 0.9653 0.6938 0.3360 0.3410

are still satisfactory, indicating that although we cannot achieve the theoretical op-
timality, inference is still sufficiently reliable.

What we observe in Table 3, for the simulated example 3, tells a completely
different story. For this case with d = 2, both the linearity and the constant vari-
ance condition are violated. In addition, x contains categorical variables. dMAVE,
SIR and DR all fail to provide good estimators in terms of estimation bias. Lo-
cal and Eff remain to be consistent, although like in the simulated example 2, we
can no longer hope to see the optimality as the estimation standard error is much
larger than the Oracle estimator. Inference results presented in Table 3 still show
satisfactory 95% coverage values, while the average estimated estimation standard
error can deviate away from the sample standard error. This is caused by some
numerical instability of a small proportion of the simulation repetitions. In fact, if
we replace the average with the median estimated standard error, the results are
closer.

5. An application. We use the proposed efficient estimator to analyze a
dataset concerning the employees’ salary in the Fifth National Bank of Spring-
field [1]. The aim of the study is to understand how an employee’s salary associates
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TABLE 3
The average (“ave”) and the sample standard errors (“std”) for various estimates, and the inference results, respectively, the average of the estimated
standard deviation (“ŝtd”) and the coverage of the estimated 95% confidence interval (“95%”), of the oracle estimator and the efficient estimator, of β

in simulated example 3

β11 β21 β31 β41 β51 β61 β12 β22 β32 β42 β52 β62
1 0.6667 0.6667 0 −0.3333 0.6667 0.8 0.8 −0.3 0.3 0 0

Oracle ave 1.0009 0.6676 0.6674 0.0002 −0.3339 0.6675 0.8064 0.8064 −0.2905 0.2969 −0.0047 0.0053
std 0.0305 0.0305 0.0325 0.0099 0.0198 0.0314 0.0860 0.0860 0.0902 0.0291 0.0550 0.0854
ŝtd 0.0275 0.0275 0.0295 0.0109 0.0178 0.0276 0.0828 0.0828 0.0876 0.0296 0.0547 0.0826

95% 0.9270 0.9270 0.9300 0.9590 0.9200 0.9110 0.9410 0.9410 0.9320 0.9450 0.9520 0.9430

Eff ave 1.0097 0.6763 0.6764 −0.0000 −0.3384 0.6752 0.8038 0.8038 −0.3067 0.3105 0.0022 −0.0003
std 0.0714 0.0714 0.0745 0.0162 0.0434 0.0740 0.1737 0.1737 0.1993 0.0485 0.1511 0.1895
ŝtd 0.0709 0.0709 0.0734 0.0175 0.0454 0.0702 0.1439 0.1439 0.1490 0.0381 0.0973 0.1439

95% 0.9280 0.9280 0.9350 0.9530 0.9460 0.9430 0.9230 0.9230 0.9240 0.9410 0.9150 0.9080

local ave 1.0633 0.7300 0.7372 −0.0072 −0.3701 0.7468 0.7689 0.7689 −0.3066 0.2754 −0.0116 −0.0042
std 1.8783 1.8783 2.1273 0.2493 1.0694 2.3913 1.1281 1.1281 1.5767 0.4517 0.2192 0.2516

dMAVE ave 0.8884 0.6079 −0.1703 0.2119 −0.2498 0.5065 0.8282 0.7722 −0.0901 0.2371 −0.0153 0.0354
std 0.0748 0.1021 0.0951 0.0569 0.0888 0.1155 0.0379 0.0378 0.1188 0.0731 0.0761 0.0489

SIR ave 0.5443 0.3781 −0.3301 0.1816 −0.0944 0.1976 0.7768 0.6849 −0.4083 0.2908 0.0441 −0.0828
std 0.1514 0.1414 0.0863 0.0586 0.1257 0.2022 0.0650 0.0808 0.1098 0.0748 0.1059 0.0831

DR ave 0.6332 0.2753 −0.2968 0.0939 −0.2701 0.5422 0.7004 0.6823 −0.4512 0.1498 0.0013 −0.0151
std 0.1813 0.2009 0.1003 0.0739 0.1288 0.1567 0.1063 0.1446 0.1688 0.0880 0.1639 0.0945
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FIG. 1. The scatter plot of Y versus β̂
Tx, with β̂ obtained from SIR, DR, dMAVE and Eff, respec-

tively. The fitted cubic regression curves (–) and the adjusted r2 values are shown.

with his/her social characteristics. We regard an employee’s annual salary as the
response variable Y , and several social characteristics as the associated covariates.
These covariates are, specifically, current job level (X1); number of years working
at the bank (X2); age (X3); number of years working at other banks (X4); gender
(X5); whether the job is computer related (X6). After removing an obvious outlier,
the dataset contains 207 observations.

We calculated the Pearson correlation coefficients and found the current job
level (X1) has the largest correlation with his/her annual salary (Y ) [corr(X1, Y ) =
0.614]. This implies that the current job level is possibly an important factor and
thus we fix the coefficient of X1 to be 1 in our subsequent analysis. We applied SIR,
DR, dMAVE and Eff methods to estimate the remaining coefficients. In Figure 1
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TABLE 4
The estimated coefficients and standard errors obtained by Eff

̂β2
̂β3

̂β4
̂β5

̂β6

Eff coef. 0.477 0.265 0.024 0.050 0.146
std. 0.021 0.031 0.030 0.037 0.031

p-value <10−4 <10−4 0.427 0.176 <10−4

we present the scatter plots of Y versus a single linear combination β̂
T

x, where
x = (X1, . . . ,X6)

T and β̂ denote the estimate obtained from the four estimation
procedures. The scatter plots exhibit similar monotone patterns in that the annual
salary increases with the value of β̂

T
x. Except for DR, the data cloud of all other

three proposals looks very compact. To quantify this visual difference, we fit a
cubic model by regressing Y on 1, (β̂

T
x), (β̂

T
x)2 and (β̂

T
x)3. The adjusted r2

values are also reported in Figure 1. The r2 value of DR is much smaller than
that of the other estimators, which suggests worse performance of DR. This is
not a surprise because DR requires the most stringent conditions on the covariate
vector x, which are violated here because of the categorical covariates. The r2

values of all other estimators including Eff are satisfactory, indicating that SY |x
is possibly one dimensional. We would also like to point out that because the r2

value factors in the goodness-of-fit of the cubic model, hence it only provides a
reference.

Table 4 contains the estimated coefficients β̂i ’s, the standard errors and p-values
obtained through Eff. It can be seen that in addition to the current job level (X1),
working experience at the current bank (X2), age (X3) and whether or not the
job is computer related (X6) are also important factors on salary. While it is not
difficult to understand the importance of most of these factors, we believe the
age effect is probably caused by its high correlation with the working experience
[corr(X2,X3) = 0.676].

6. Discussion. We have derived both locally efficient and efficient estimators
which exhaust the entire central subspace without imposing any distributional as-
sumptions. We point out here that if the linearity condition holds, the efficiency
bound does not change. However, the linearity condition will enable a simplifica-
tion of the computation because we can simply plug E(x|βTx) = β(βTβ)−1βTx
into the estimation equation instead of estimating it nonparametrically. However,
the constant variance condition does not seem to contribute to the efficiency bound
or to the computational simplicity. It is therefore a redundant condition in the effi-
cient estimation of the central subspace.

In this paper we did not discuss how to determine d , the structural dimension
of SY |x when an efficient estimation procedure is used, although we agree that this
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is an important issue in the area of dimension reduction. In the real-data example,
we infer the structural dimension through the adjusted r2 values. This seems a
reasonable choice, but the turnout may depend on how to recover the underlying
model structure. How to prescribe a rigorous data-driven procedure is needed in
future works.

Various model extensions have been considered in the dimensional reduction
literature. For example, in partial dimension reduction problems [3], it is assumed
that F(Y |x) = F(Y |βTx1,x2). Here, x1 is a covariate sub-vector of x that the di-
mension reduction procedure focuses on, while x2 is a covariate sub-vector that is
known to directly enter the model based on scientific understanding or convention.
We can see that the semiparametric analysis and the efficient estimation results de-
rived here can be adapted to these models, through changing βTx to (βTx1,x2) in
all the corresponding functions and expectations while everything else remains un-
changed. Another extension is the group-wise dimension reduction [14], where the
model E(Y |x) = ∑k

i=1 mi(Y,xT
i βi ) is considered. The semiparametric analysis in

such models requires separate investigation, and it will be interesting to study the
efficient estimation.

SUPPLEMENTARY MATERIAL

Supplement to “Efficient estimation in sufficient dimension reduction”
(DOI: 10.1214/12-AOS1072SUPP; .pdf). The supplement file aos1072_supp.pdf
is available upon request. It contains derivations of the efficient score for
model (2.1) and an outline of proof for Theorems 1 and 2.
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