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Summary.We investigate the estimation efficiency of the central mean subspace in the frame-
work of sufficient dimension reduction. We derive the semiparametric efficient score and study
its practical applicability. Despite the difficulty caused by the potential high dimension issue in
the variance component, we show that locally efficient estimators can be constructed in practice.
We conduct simulation studies and a real data analysis to demonstrate the finite sample per-
formance and gain in efficiency of the proposed estimators in comparison with several existing
methods.
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1. Introduction

Data arising from modern sciences often contain a large amount of covariates. The estimation
of the central mean subspace is a popular approach of reducing the covariate dimension which
allows us to study the relationship between the response and the covariates without relying on
a correct mean model (Cook and Li, 2002). Specifically, the approach identifies directions that
are represented by the columns of a matrix β, so that the mean of the response Y relates to the
covariate vector x only through βTx. In other words, the conditional mean E.Y |x/ is assumed
to be a function of βTx only, although the function itself is left unspecified. When β contains
only one column, this reduces to the familiar single-index model. When β contains more than
one column, it is sometimes also referred to as a multi-index model (Xia et al., 2002; Xia, 2008).

Most classical dimension reduction methods are based on inverse regression, pioneered by
sliced inverse regression (Li, 1991). For identifying the central mean subspace, Li and Duan
(1989) suggested ordinary least squares methods, and Li (1992) and Cook and Li (2002) pro-
posed the principal Hessian direction (PHD) method. Following the idea of Cook and Ni (2005,
2006), Yoo and Cook (2007) proposed weighted alternating least squares to improve the usual
ordinary least squares estimator when Y is multivariate. These methods assume either the
linearity condition alone, where E.x|βTx/ is a linear function of βTx, or the constant variance
condition in addition, where cov.x|βTx/ is a constant matrix. A second main idea in identifying
the central mean subspace is to estimate the unknown mean function and the central mean
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subspace simultaneously. Methods in this class naturally involve non-parametric regression.
Continuous covariate distributions are typically assumed and iteration procedures are often
used in these methods. The representative work is the minimum average variance estimator
(MAVE) method (Xia et al., 2002). Recently, Ma and Zhu (2012) proposed a third semipara-
metric approach, where they used semiparametric techniques to estimate the central mean sub-
space through solving estimating equations. This approach does not rely on any moment or
distributional conditions on the covariates and hence is applicable in a wider range. However,
Ma and Zhu (2012) did not further study inference or efficiency issues, as are studied here.

The main focus of this paper is to investigate the inference and estimation efficiency issue
in recovering the central mean subspace. The general approach that we take is semiparametric
and geometric, as illustrated in Bickel et al. (1993) and Tsiatis (2006). We benefit from a simple
parameterization that converts the space identification problem into a problem of estimating
a finite dimensional parameter in a semiparametric model. This allows us to derive the semi-
parametric efficient score, which has the potential of reaching the minimum estimation variance
bound among all possible consistent estimators. All the derivations are performed without using
the linearity condition, or the constant variance condition or the continuity of the covariates.
We study the efficient score expression and point out the implementational difficulties as well
as provide strategies to circumvent this difficulty in practice. Efficiency study has also been
carried out in some simpler models (Ma et al., 2006) and under stronger conditions (Delecroix
et al., 2003). As far as we know, this is the first work on estimation inference and efficiency of
the central mean subspace model in its general form without imposing any additional model
assumptions.

The rest of this paper is as follows. In Section 2, we derive the efficient score and the theoretical
form of the efficient estimator. We study the practical difficulty of the implementation of the
efficient estimator in Section 3 and propose several locally efficient estimators and show their
asymptotic properties. Simulation studies are conducted in Section 4 to demonstrate the practical
gain in efficiency and the method is implemented in an example in Section 5. We finish the paper
with a brief discussion in Section 6. All the technical derivations are given in Appendix A and
in an on-line supplement.

2. Semiparametric formulation and efficient score

Let x be a p× 1 covariate vector and Y be a univariate response variable. Cook and Li (2002)
introduced the concept of the central mean subspace where the conditional mean of the response
is assumed to depend on a few linear combinations of the covariates. Specifically, assume that
β satisfies

E.Y |x/=E.Y |βTx/; .1/

then the column space of β is defined as a mean dimension reduction subspace. The central
mean subspace, which is denoted by SE.Y |x/, is subsequently defined as the intersection of all
mean dimension reduction subspaces if the intersection itself is a mean dimension reduction
subspace. The conditional mean model assumes that x contributes to the conditional mean
of Y only through βTx. The main interest for this model is typically in estimating SE.Y |x/ or,
equivalently, a basis matrix β which spans SE.Y |x/. The central mean subspace SE.Y |x/ has a
well-known invariance property (Cook and Li, 2002), which allows us to assume that, without
loss of generality, the covariate vector x satisfies E.x/ = 0 and cov.x/ = Ip. The dimension of
SE.Y |x/, which is denoted by d, is referred to as the structural dimension. Typically, SE.Y |x/ is
identified through estimating a full rank matrix β∈Rp×d that satisfies condition (1) and forming
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its d-dimensional column space. Although the central mean subspace SE.Y |x/ is unique, β is not.
In fact, for any d ×d full rank matrix A, βA generates the same SE.Y |x/ as β.

To avoid the problem that many β-matrices can represent the same central mean subspace
SE.Y |x/, we use the parameterization which requires β to have its upper d ×d submatrix equal
to the identity matrix Id , whereas the lower .p − d/ × d submatrix is not subject to any con-
straints. Ma and Zhu (2013) showed that this parameterization successfully converts the prob-
lem of identifying SE.Y |x/ to the problem of estimating β, which contains pt = .p − d/d free
parameters. Estimating β in equation (1) then becomes a typical semiparametric estimation
problem.

The conditional mean model (1) can be equivalently written as

Y =m.βTx/+ ", .2/

where m is an unspecified smooth function and E."|x/=0. In this formulation, it is easy to see
that the likelihood of one random observation .x, Y/ is

η1.x/η2{Y −m.βTx/, x},

where η1 captures the marginal density of x, m.·/ is the mean function of Y conditional on x
and η2 is the probability density function of the residual " = Y − E.Y |βTx/ conditional on x.
Here, η2 also satisfies E."|x/ = 0. Treating η1, η2 and m as nuisance parameters and β as the
parameter of interest, we view the estimation of β as a semiparametric problem and derive its
corresponding efficient score function. For this, let η′

2".", x/ be the derivative of η2 with respect
to "; the nuisance tangent space of the model (Ma and Zhu, 2012) is Λ=Λ1 ⊕Λ2 +Λm, where

Λ1 ={f.x/ :∀f subject to F.f/=0},

Λ2 ={f.", x/ :∀f subject to E.f |x/=0, E."f |x/=0},

Λm =
{

η′
2".", x/

η2.", x/
h.βTx/ :∀h

}
:

Here, ‘+’ represents the sum of two spaces, i.e. the space formed by the linear combination of
any elements in either of the two spaces, whereas ‘⊕’ represents the sum of two spaces that
are orthogonal to each other. To gain a more helpful form of Λ, we calculate the residual after
projecting a function in Λm to Λ2 to obtain

Λ′
m =Π.Λm|Λ⊥

2 /=
{

"

E."2|x/
h.βTx/ :∀h

}
,

where Π.Λm|Λ⊥
2 / represents the orthogonal projection of Λm to Λ⊥

2 . Thus, Λ=Λ1 ⊕Λ2 ⊕Λ′
m.

It is easy to verify that the orthogonal complement of Λ is

Λ⊥ = .[α.x/−E{α.x/|βTx}]" :∀α.x//

= .{Y −E.Y |βTx/}[α.x/−E{α.x/|βTx}] :∀α.x//:

Let vecl.M/ be the concatenation of the lower .p−d/×d block of a p×d matrix M. Straight-
forward calculation yields the score function

Sβ =−vecl

{
xη′

2".", x/@m.βTx/

η2.", x/@.xTβ/

}
,

which we further decompose into
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Sβ =−vecl
[{

"

E."2|x/
+ η′

2".", x/

η2.", x/

}
x@m.βTx/

@.xTβ/

]

+vecl
[

"

E."2|x/

E{xE."2|x/−1|βTx}
E{E."2|x/−1|βTx}

@m.βTx/

@.xTβ/

]

+vecl
(

"

E."2|x/

[
x − E{xE."2|x/−1|βTx}

E{E."2|x/−1|βTx}

]
@m.βTx/

@.xTβ/

)
:

We can now easily verify that the first component is in Λ2, the second component is in Λ′
m and

the third component is in Λ⊥. Hence we obtain

Seff {x, Y , β, w.x/}=vecl
(

"w.x/

[
x − E{xw.x/|βTx}

E{w.x/|βTx}

]
mT

1 .βTx/

)
, .3/

where w−1.x/ = E."2|x/, m1.βTx/ = @m.βTx/=@.βTx/. Hypothetically, the efficient estimator
can then be obtained from the sample version of E[Seff {x, Y , β, w.x/}]=0.

3. Locally efficient and efficient estimation of SE(Y jx)

Implementing an estimation procedure based on Seff {x, Y , β, w.x/} in equation (3) requires
estimation of m.βTx/, its first derivative m1.βTx/, the inverse of the error variance function
w.x/ and the expectations E{w.x/|βTx} and E{xw.x/|βTx}. At a fixed β, βTx has dimension
d, which, by the very purpose of dimension reduction, is a dimension that can be handled in
practice. This suggests that m.·/, m1.·/ and E.·|βTx/ can be estimated via proper non-parametric
treatment. For example, m̂.βTx/ and m̂1.βTx/ at βTx =βTx0 can be obtained through a local
linear approximation procedure by minimizing

n∑
i=1

{Yi −m.βTx0/−mT
1 .βTx0/.βTxi −βTx0/}2 Kh1.βTxi −βTx0/, .4/

where K is the multiplication of d univariate kernel functions, denoted by K as well for simplicity,
h1 is a bandwidth and

Kh1.β
Txi −βTx0/= K{.βTxi −βTx0/=h1}

h1
d

:

Similarly, to resolve the issue of estimating E{w.x/|βTx} and E{xw.x/|βTx}, we can use, for
example, the kernel estimators

Ê{w.x/|βTx =βTx0}=
n∑

i=1
w.xi/Kh2.βTxi −βTx0/

/
n∑

i=1
Kh2.βTxi −βTx0/,

and

Ê{xw.x/|βTx =βTx0}=
n∑

i=1
xiw.xi/Kh3.βTxi −βTx0/

/
n∑

i=1
Kh3.βTxi −βTx0/: .5/

We point out that, if w.x/ happens to be a constant, then, under the linearity condition that
E.x|βTx =βTx0/ =β.βTβ/−1βTx0, no non-parametric estimation is needed. However, even
with constant weight, performing non-parametric kernel estimation allows us to remove the
linearity condition. The situation is quite different in terms of estimating w.x/. Viewing "2

as a response variable and x as a covariate vector, this is exactly the same mean regression
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problem where the high dimension of the covariates initiated the original central mean subspace
modelling. Thus, its estimation suffers the curse of dimensionality and is to be avoided preferably.
To circumvent this difficulty, a helpful compromise is to consider plausible forms for w.x/,
instead of estimating it as a completely unspecified positive smooth function of x, provided
that consistency is retained. In other words, we seek local efficiency in handling the unknown
w.x/.

3.1. Fixed form of w(x)
The simplest treatment is to replace the unknown w.x/ by a known positive function w1.x/ that is
the best current guess for w.x/. For example, w1.x/ can be a constant, reflecting a homoscedastic
error conjecture. This yields the estimating equation

n∑
i=1

vecl
(

{Yi − m̂.βTxi/}w1.xi/

[
xi − Ê{xi w1.xi/|βTxi}

Ê{w1.xi/|βTxi}

]
m̂T

1 .βTxi/

)
=0: .6/

Of course, without any additional information, it is very unlikely that a guessed w1.x/ can
equal or even resemble the true weight function w.x/. The fortunate fact is that, whether or not
w1.x/=w.x/, solving equation (6) will always result in a consistent estimator of β. If it happens
that w1.x/=w.x/, the estimator is also efficient. We state this result in theorem 1.

Theorem 1. Assume that β̂1 solves equation (6). Under conditions 1–5 in Appendix A when
n→∞,

√
nvecl.β̂1 −β/→N{0, A−1

1 B1.A−1
1 /T}

in distribution, where

A1 =E

[
@Seff {x, Y , β, w1.x/}

@vecl.β/T

]
,

B1 =E[Seff {x, Y , β, w1.x/}ST
eff {x, Y , β, w1.x/}]:

When w1.x/=w.x/, A1 =B1 =E[Seff {x, Y , β, w.x/}ST
eff {x, Y , β, w.x/}], and β̂1 is efficient.

3.2. Parametric modelling for w(x)
A more cautious approach of achieving good efficiency is to propose a model for w.x/. In the
parametric modelling strategy, we use w2.x, ζ/ to approximate w.x/. Here w2 has a prespecified
form andζ is an unspecified parameter vector. In practice, we could estimateζ through regressing
the squared residuals "̃2

i = {Yi − m̂.β̂
T
1 xi/}2 onto xi, for i = 1, : : : , n, where m̂.·/ and β̂1 are

initial estimates obtained from Section 3.1. Write the resulting estimate of ζ as ζ̂. If the family
{w2.x, ζ/ : ∀ζ} is sufficiently flexible that it contains the true weights w.x/, i.e. there exists ζ0
such that w2.x, ζ0/=w.x/, then the resulting estimator for ζ based on solving

n∑
i=1

vecl
(

{Yi − m̂.βTxi/}w2.xi, ζ̂/

[
xi − Ê{xi w2.xi, ζ̂/|βTxi}

Ê{w2.xi, ζ̂/|βTxi}

]
m̂T

1 .βTxi/

)
=0 .7/

will be efficient. Even if the family {w2.x, ζ/ :∀ζ} does not contain w.x/, the resulting estimator
for β remains consistent. We state this result in theorem 2.
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Theorem 2. Assume that β̂2 solves equation (7) and ζ̂ is a root-n-consistent estimate of ζ.
Under conditions 1–5 in Appendix A, when n→∞,

√
nvecl.β̂2 −β/→N{0, A−1

2 B2.A−1
2 /T}

in distribution, where

A2 =E

[
@Seff {x, Y , β, w2.x, ζ/}

@vecl.β/T

]
,

B2 =E[Seff {x, Y , β, w2.x, ζ/}ST
eff {x, Y , β, w2.x, ζ/}]:

When w2.x, ζ/=w.x/, A2 =B2 =E[Seff {x, Y , β, w.x/}ST
eff {x, Y , β, w.x/}], and β̂2 is efficient.

Remark 1. We would like to point out a curious observation that, in estimating β from equ-
ation (7), the variability of estimating ζ does not have an effect on the variability of β̂2. As long
as ζ̂ is root n consistent, using ζ̂ is equally effective as using ζ as far as the asymptotic variance
of β̂2 is concerned. This seems to suggest that one should use a rich model w2.x, ζ/ so that the
chance of capturing the truth w.x/ is large. Although this is so theoretically, in practice, with
a finite sample size, a large model indicates a large length of the parameter vector ζ, and its
estimation could be unstable owing to numerical issues.

Remark 2. When the family {w2.x, ζ/ :∀ζ} contains the truth w.x/, i.e. there exists ζ0 so that
w2.x, ζ0/=w.x/, performing a regression of the residual squares on the covariates for estimation
will yield a root-n-consistent estimator of ζ0. In contrast, when the family does not contain the
truth, the limit of ζ̂ by using the same procedure will be a ζ-value which minimizes the distance
E[{w−1.x/−w2

−1.x, ζ/}2] among all possible ζ-values.

Remark 3. In practice, it is not known whether {w2.x, ζ/ :∀ζ} contains w.x/. Thus, an alter-
native approach is through profiling. We obtain β̂2.ζ/ via solving equation (7), but with ζ left
unspecified, and then we obtain ζ̂ and subsequently β̂2.ζ̂/ through minimizing some measure of
the estimated asymptotic variance, say tr{Â−1

2 B̂2.Â−1
2 /T} as a function of ζ. Because this strat-

egy optimizes the estimated asymptotic variance, hence it is applicable only when the sample size
is sufficiently large that the asymptotic variance is a good approximation of the finite sample per-
formance and Â−1

2 B̂2.Â−1
2 /T approximates well the asymptotic variance A−1

2 B2.A−1
2 /T as well.

3.3. Semiparametric modelling for w(x)
We can also use a semiparametric modelling strategy to approximate w.x/ with an unspecified
function w3{ξ.x/}. Here the functional form of w3 is unknown, and ξ.x/ has a prespecified form
and is of sufficiently low dimension that it is practical to perform a non-parametric smoothing
procedure to estimate w3. For example, a natural choice is ξ.x/ = βTx if we believe that the
same dimension reduction feature for the mean applies to the variance also. This practice was
adopted in Härdle et al. (1993), although they further assumed that the variance as a function
of ξ is known up to a scale, which hence greatly simplifies the problem. A more flexible choice
is to assume that ξ.x/ =γTx, where γ does not have to equal β. Here, γ preferably contains
no more than d columns; thus the estimation of γ and w3, based on "̃2

i and xi, i = 1, : : : , n, is
not more difficult than the original problem of estimating the central mean subspace. We can of
course also adopt other forms for ξ, such as ξ=xTx or ξ= .X1, X2

2/T. When ξ does not contain
unknown parameters, the estimation of w3 can be easily obtained via

ŵ3.ξ/=
n∑

i=1
Kh4.ξi −ξ/

/
n∑

i=1
"̃2

i Kh4.ξi −ξ/: .8/
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Here and in equation (9), K is the multiplication of dim(ξ) univariate kernel functions, where
dim(ξ) is the length of ξ and h4 is a bandwidth. This also applies if ξ=βTx, where we simply
replace ξi in the above display with β̂Txi. When ξ=γTx is adopted, we suggest that γ̂ is obtained
from solving

n∑
i=1

vecl

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

"̂2
i −

n∑
j=1

"̂2
jKb.γTxj −γTxi/

n∑
j=1

Kb.γTxj −γTxi/

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

xixT
i γ

⎤
⎥⎥⎥⎦=0, .9/

and then ŵ3.ξ/ is obtained through equation (8) with ξi replaced by γ̂Txi. Here b is a bandwidth.
The estimation of β is then obtained from solving

n∑
i=1

vecl
(

{Yi − m̂.βTxi/} ŵ3.ξi/

[
xi − Ê{xi ŵ3.ξi/|βTxi}

Ê{ŵ3.ξi/|βTxi}

]
m̂T

1 .βTxi/

)
=0: .10/

Similarly, when w3.ξ/ is a correct model, then the resulting estimator for β is efficient. Otherwise,
it is still consistent. We state this result in theorem 3.

Theorem 3. Assume that β̂3 solves equation (10). Under conditions 1–5 in Appendix A, when
n→∞,

√
nvecl.β̂3 −β/→N{0, A−1

3 B3.A−1
3 /T}

in distribution, where

A3 =E

[
@Seff {x, Y , β, w3.ξ/}

@vecl.β/T

]
,

B3 =E[Seff {x, Y , β, w3.ξ/}ST
eff {x, Y , β, w3.ξ/}]:

When w3.ξ/=w.x/, A3 =B3 =E[Seff {x, Y , β, w.x/}ST
eff {x, Y , β, w.x/}] and β̂3 is efficient.

Remark 4. When the family {w3.ξ/ :∀w3} does not contain the truth w.x/, i.e. w3.ξ/ 
=w.x/

for all w3, ŵ3.ξ/ can be viewed as an estimate of the function that minimizes the distance
E[{w−1

3 .ξ/−w−1.x/}2] among all smooth functions of ξ.

Remark 5. The decision on whether we should use a fixed form, a parametric model or a
semiparametric model of w.x/ relies on what is the priority of the practice. If we are willing to
sacrifice the performance of the estimator to gain a simple and quick answer, a fixed form of w.x/

is a proper choice. However, if estimation efficiency is important and data are sufficiently large,
then a semiparametric model is the most reliable choice. A parametric model is in between the
two decisions and is suitable when a balance between performance and computation is sought.
Generally speaking, modelling w.x/ is not very different from any standard variance modelling
procedure, except that here we have the added security that a wrong model will not harm the
consistency of the estimation of β, and large estimation variability in the variance model does
not cause a loss of efficiency in estimating β.

3.4. Implementation
Although we have the ability to estimate m, m1 and E.·|βTx/, we can also opt not to perform all
of the corresponding non-parametric estimations if merely consistency is needed. Similarly to
the treatment for w.x/, we can also simply propose some models for these quantities and plug
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them into equation (3). However, it is important to estimate at least one of m and E.·|βTx/ to
guarantee the consistency. In other words, to ensure consistency, we are free to replace m1.βTx/

by an arbitrary function of βTx, and to choose either to estimate m faithfully which is required
in forming " or to estimate E{w.·/|βTx} and E{xw.·/|βTx} faithfully. Among all the previous
modelling procedures, the choice of selecting w3.γTx/ as the model for w.x/ is the most complex
in terms of implementation. Hence we outline the implementation details here.

Step 1: we obtain an initial root-n-consistent estimator of β through, say, equation (6) or the
semiparametric PHD method (Ma and Zhu, 2012). Denote this initial estimator β̃.
Step 2: obtain m̂.βTxi/ and m̂1.βTxi/ from minimizing equation (4) with β replaced by β̃.
Step 3: form "̂i = Yi − m̂.β̃Txi/. Obtain γ̂ from solving equation (9). Form ξi = γ̂Txi and
obtain ŵ3 from equation (8) at ξ=ξ1, : : : , ξn.
Step 4: obtain Ê{ŵ3.ξi/|β̃Txi} and Ê{xiŵ3.ξi/|β̃Txi} by using equation (5).
Step 5: form equation (10) and solve it by using the Newton–Raphson algorithm to obtain β̂.

To achieve the asymptotic property that is described in theorem 3, the steps described above
do not need to be iterated. However, in practice, iteration is almost always needed to improve
the finite sample performance. Of course none of the modelling procedures that were mentioned
in Section 3 can guarantee efficiency. The only way to guarantee the efficiency in estimating β
is to estimate w.x/ in a model-free fashion, which is nearly impossible in practice owing to the
curse of dimensionality. Although a higher order multivariate kernel can theoretically resolve
this issue, it is not feasible unless the sample size is very large.

Our final note on implementation concerns selecting the various bandwidths that are as-
sociated with the respective non-parametric regressions. In practice, we have found that the
estimation procedure is not very sensitive to the bandwidth. This is not a surprise given that
the insensitivity to bandwidth is a universal phenomenon in semiparametric problems. See Van
Keilegom and Carroll (2007) for a refined study and Maity et al. (2007) for extensive numerical
experiments on the bandwidth issue in semiparametric models. The insensitivity is also reflected
in the regularity condition 5 in Appendix A, in that a wide range of bandwidths is allowed and
all will yield the same first-order asymptotic properties of β. Because of this insensitivity, we
suggest two ways in practical implementation. The easier is to use the sample size and condition
5 to obtain the right order of the bandwidths, and to use the data or initial estimator information
to scale them properly. For example, in the data analysis, we simply used the bandwidths at the
suitable order by setting h1 = cn−1=.2+d/ and h2 = h3 = h4 = cn−1=.4+d/, where c is the average
standard deviation of x. A slightly more careful procedure is to use a standard procedure such
as cross-validation or to plug in to select the suitable bandwidths. Note that no further scal-
ing is necessary since the classical optimal non-parametric bandwidths automatically satisfy
condition 5.

4. Simulation study

We perform two simulation studies to demonstrate the performance of the various locally effi-
cient estimators and compare them with several existing methods including MAVE (Xia et al.,
2002) and the PHD method (Li, 1992).

In the first simulation, we set p = 6 and d = 1, and let β = .1, 0, 1, 1, 1, 1/T=
√

5. The true
mean function is m.βTx/=βTx.βTx +1/. The error is normal with the true variance function
σ2.x/={.βTx/2 +1}=2.

We consider two scenarios for generating x in this example.
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(a) In scenario 1, we generate x from the multivariate normal distribution, where the covari-
ance between the ith and jth component is 0:5|i−j|.

(b) In scenario 2, we generate five discrete random variables XÅ
1 , : : : XÅ

5 , each with value 1 or
−1 with probability 0.5, and one standard normal random variable XÅ

6 . We then perform a
linear transformation on xÅ = .XÅ

1 , : : : , XÅ
6 /T to obtain x, so that the variance–covariance

structure of x is exactly the same as before. This scenario is designed to demonstrate how
well our methods can handle discrete covariates. Note that, if all the components in x are
binary, the problem is not identifiable (Horowitz and Härdle, 1996).

In the second simulation, we consider d = 2. We set the two columns of β to be β1 =
.1, 1, 1, 1, 1, 1/T=

√
6 and β2 = .1, −1, 1, −1, 1, −1/T=

√
6. We form the covariates x by setting

X1 =U1, X2 =U2 −U1, X3 =U3 −U2, X4 =2U4 +U3 −U2, X5 =U5 and X6 =U5=2+U6, where
U1, : : : , U6 are independent uniform random variables between −√

3 and
√

3. This allows cor-
relation between the covariates. The true mean function is m.βTx/ = exp.xTβ1/ + .xTβ2/2,
and the error is generated from a normal distribution with mean 0 and true variance function
σ2.x/= log{.xTβ1/2 + .xTβ2/2 +2}.

In both simulations, we run 1000 simulations with sample size n=500. We implemented six
different estimators.

(a) The oracle estimator: we obtain the estimator from the score function (3) with a known
weight function w.x/ =σ2.x/−1. This is the optimal estimator and it serves as a bench-
mark.

Table 1. Average of estimators, ave, sample estimation standard deviation, sd, average of the estimated
standard deviation, ̂sd, and 95% coverage, cvg, of various estimators in simulation 1, scenarios 1 and 2

Method Statistic Results for scenario 1 Results for scenario 2

β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

Truth 0.553 1.106 1.032 0.885 0.590 0.553 1.106 1.032 0.885 0.590
Oracle ave 0.563 1.129 1.054 0.902 0.601 0.564 1.128 1.052 0.902 0.601

sd 0.041 0.052 0.048 0.046 0.040 0.043 0.051 0.049 0.047 0.040
̂sd 0.040 0.052 0.050 0.046 0.041 0.041 0.054 0.052 0.048 0.041
cvg 0.938 0.936 0.945 0.939 0.936 0.933 0.954 0.954 0.933 0.954

local1 ave 0.555 1.113 1.040 0.888 0.592 0.557 1.114 1.041 0.891 0.594
sd 0.048 0.063 0.057 0.055 0.048 0.047 0.057 0.057 0.051 0.045
̂sd 0.050 0.065 0.063 0.058 0.051 0.048 0.059 0.057 0.053 0.047
cvg 0.938 0.942 0.953 0.944 0.938 0.945 0.952 0.946 0.947 0.941

local2 ave 0.563 1.131 1.056 0.903 0.602 0.564 1.128 1.054 0.902 0.600
sd 0.041 0.053 0.048 0.047 0.041 0.047 0.064 0.051 0.056 0.045
̂sd 0.040 0.052 0.050 0.047 0.041 0.041 0.054 0.052 0.048 0.041
cvg 0.943 0.926 0.945 0.939 0.945 0.927 0.938 0.935 0.934 0.944

local3 ave 0.564 1.131 1.056 0.903 0.602 0.566 1.133 1.057 0.905 0.603
sd 0.040 0.051 0.047 0.045 0.040 0.041 0.050 0.049 0.045 0.039
̂sd 0.040 0.052 0.051 0.047 0.041 0.041 0.055 0.053 0.048 0.041
cvg 0.951 0.937 0.948 0.949 0.947 0.944 0.952 0.951 0.944 0.955

MAVE ave 0.551 1.104 1.033 0.883 0.590 0.557 1.102 1.033 0.888 0.596
sd 0.043 0.055 0.055 0.048 0.043 0.040 0.053 0.052 0.048 0.042

PHD ave 0.555 1.125 1.042 0.903 0.603 0.613 1.054 1.003 0.927 0.735
sd 0.158 0.212 0.206 0.196 0.162 0.113 0.139 0.130 0.123 0.147

Semi-PHD ave 0.551 1.104 1.033 0.883 0.590 0.575 1.099 1.033 0.893 0.609
sd 0.054 0.069 0.068 0.061 0.054 0.049 0.067 0.064 0.058 0.053
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(b) The first locally efficient estimator, local1: we obtain the estimator from the estimating
equation (6) with w1.x/=1.

(c) The second locally efficient estimator, local2: we obtain the estimator from the estimating
equation (7) with w2.x, ζ/ being a quadratic function of βTx.

(d) The third locally efficient estimator, local3: we obtain the estimator from the estimating
equation (10) with ξ=βTx and w3 is estimated through kernel regression.

(e) The refined MAVE: this is the estimator that was proposed in Xia et al. (2002) and is
considered the currently best available estimator for central mean subspace estimation.

(f) The PHD estimator: this is the estimator that was proposed in Li (1992). It uses the first d

principal eigenvectors of Σ−1Λ where Σ= cov.x/ and Λ=E[{Y −E.Y/}{x−E.x/}{x−
E.x/}T] as the basis of the estimated SE.Y |x/.

(g) The semiparametric extension of the PHD estimator, semi-PHD: this is the estimator
that was proposed in Ma and Zhu (2012). It estimates SE.Y |x/ through solving the sample
version of the estimating equation

E[{Y −E.Y |βTx/}{xxT −E.xxT|βTx/}]=0:

Table 1 summarizes the true parameter values under the parameterization in Section 2 with x
standardized, the average of the estimates the sample standard deviations of the estimates and
the mean of the estimated standard deviations. We also report the empirical coverage probability
of the estimates at the nominal level of 95%. The results of both scenarios for generating x in the
first example carry almost the same messages. Obviously, all the estimates have very small biases,
whereas, when the variance model contains the truth (local2 and local3), the locally efficient
estimators perform competitively in comparison with the oracle estimator. The PHD estimator

Table 2. Average of estimators, ave, sample estimation standard deviation, sd, average of the estimated
standard deviation, ̂sd, and 95% coverage, cvg, of various estimators in simulation 2

Method Statistic β1 β2 β3 β4 β5 β6 β7 β8

Truth −1 −2 −0.5 −1 −2 −2 −1.5 −1
Oracle ave −1.033 −2.076 −0.515 −1.038 −2.054 −2.048 −1.545 −1.023

sd 0.107 0.138 0.081 0.076 0.143 0.164 0.107 0.095
̂sd 0.111 0.144 0.083 0.080 0.142 0.168 0.107 0.095
cvg 0.956 0.930 0.939 0.942 0.949 0.942 0.936 0.944

local1 ave −1.039 −2.090 −0.518 −1.045 −2.061 −2.052 −1.550 −1.026
sd 0.110 0.142 0.083 0.078 0.146 0.168 0.109 0.099
̂sd 0.113 0.147 0.086 0.081 0.141 0.168 0.108 0.094
cvg 0.946 0.924 0.941 0.929 0.932 0.932 0.928 0.927

local2 ave −1.024 −2.051 −0.512 −1.026 −2.044 −2.040 −1.537 −1.020
sd 0.112 0.152 0.083 0.087 0.158 0.178 0.117 0.112
̂sd 0.123 0.162 0.094 0.087 0.184 0.223 0.136 0.112
cvg 0.949 0.940 0.948 0.941 0.941 0.946 0.936 0.928

local3 ave −1.030 −2.072 −0.513 −1.035 −2.049 −2.041 −1.540 −1.020
sd 0.108 0.138 0.081 0.076 0.144 0.164 0.106 0.096
̂sd 0.111 0.144 0.084 0.080 0.143 0.168 0.108 0.095
cvg 0.951 0.940 0.947 0.935 0.952 0.942 0.945 0.943

MAVE ave −1.005 −1.883 −0.518 −1.060 −1.909 −1.859 −1.482 −1.010
sd 0.167 0.195 0.129 0.123 0.224 0.259 0.175 0.163

PHD ave −1.490 −2.012 −0.974 −1.653 −2.560 −1.320 −2.404 −1.410
sd 3.579 2.606 2.689 2.366 5.731 4.396 4.426 3.909

Semi-PHD ave −1.003 −1.923 −0.509 −1.029 −2.025 −1.935 −1.535 −1.044
sd 0.166 0.190 0.117 0.146 0.362 0.344 0.270 0.295
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has very large variability, whereas the variabilities of the semi-PHD estimator and the MAVE
are also slightly larger than the local estimators with parametric (local2) and semiparametric
(local3) models.

The conclusion of simulation 2 in Table 2 is quite different. The bias of the PHD estimator
is quite substantial in this case, possibly because of the violation of the linearity condition
and the constant variance condition that are required by the PHD method. The variability
of the semi-PHD estimator is much larger than all the locally efficient estimators, whereas
the variability of the MAVE is also generally larger than the semiparametric locally efficient
estimator. Surprisingly, although, in this case, the quadratic parametric model (local2) does not
capture the true variance function, the estimation variance does not deteriorate dramatically
in comparison with the oracle estimator and the semiparametric model (local3) which does
capture the true variance function. In fact, even when we set the weight w1 = 1 (local1), its
estimation variability does not increase very much. This kind of insensitivity is specific to some
models and does not generalize, since the property is not shared in the previous simulation
example.

Finally, we would like to point out that, from the results in both Tables 1 and 2, we see a close
approximation between the sample and average estimated standard deviations; this indicates
that, at sample size n = 500, the asymptotic properties can already be used to perform quite
reliable inference in these models. This is also reflected in the 95% coverage, where the sample
coverage is not too far from the nominal level.

5. An application

We further illustrate the performance of the proposed methods in analysing a data set that is
related to a gender discrimination law suit of the Fifth National Bank of Springfield (Albright
et al., 1999). The bank was charged with paying lower salaries to its female employees than
to its male employees. After removing an obvious outlier, the data set contains 207 observa-
tions. The average salary for the male employees is $45505 and the average for the females
is $37262, yielding a p-value less than 10−6 from a two-sample t-test. However, such a naive
comparison may not be suitable because there are many other social characteristics that may
affect an employee’s salary. We study how an employee’s salary associates with his or her social
characteristics.

We regard an employee’s annual salary as the response variable Y . In this data set, there are
four categorical and three continuous covariates. The three continuous covariates are working
experience at the current bank, X1, measured by years since an employee was hired, the
employee’s age, X2, and experience at another bank before working at the Fifth National Bank,
X3, measured by the number of years at another bank. The four categorical covariates include
the gender, X4, a binary variable X5 indicating whether the employee’s job is computer related or
not, a five-level categorical variable .X61, : : : , X64/ representing the employee’s level of education
and a six-level categorical variable denoting the employee’s current job level .X71, : : : , X75/. We
denote the covariate vector by x= .X1, : : : , X5, X61, : : : , X64, X71, : : : , X75/T. We standardize all
the continuous variables to have zero mean and unit variance in our subsequent analysis.

Because we are concerned with how the average salary changes with these social characteris-
tics, the mean function E.Y |x/ is of our primary interest. Observing that the covariate dimension
p is 14, we assume that there is a p-vector β = .β1, : : : , β5, β61, : : : , β64, β71, : : : , β75/T (with the
co-ordinates corresponding to the covariates) which satisfies

E.Y |x/=E.Y |βTx/:
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Table 3. Coefficient estimates and their standard errors for the Fifth National Bank data

Parameter Results for the following methods:

local1 local2 local3 MAVE PHD Semi-PHD
estimate estimate estimate

Estimate ̂sd Estimate ̂sd Estimate ̂sd

β2 0.043 0.059 0.051 0.086 0.073 0.108 −0.110 −0.270 0.177
β3 0.215 0.077 0.218 0.083 0.212 0.096 0.154 0.112 0.087
β4 0.032 0.187 0.058 0.210 0.115 0.177 0.258 0.412 0.362
β5 2.008 0.185 2.086 0.264 2.157 0.352 1.762 0.182 1.671
β6,1 −0.367 0.498 −0.371 0.505 −0.330 0.404 −0.548 −0.924 −0.160
β6,2 −1.068 0.527 −1.057 0.515 −0.996 0.431 −0.813 −0.512 −1.151
β6,3 −0.536 0.409 −0.536 0.381 −0.478 0.309 −0.497 −0.210 −0.525
β6,4 −0.959 0.575 −0.862 0.626 −0.740 0.563 −0.742 −0.425 0.299
β7,1 −9.912 1.025 −10.156 1.064 −10.438 0.902 −7.211 −2.844 −9.992
β7,2 −8.380 0.825 −8.631 0.931 −8.933 0.824 −6.405 −3.017 −8.776
β7,3 −6.318 0.732 −6.455 0.764 −6.683 0.632 −4.736 −3.325 −7.658
β7,4 −4.589 0.665 −4.707 0.671 −4.922 0.663 −2.916 −3.700 −5.841
β7,5 −2.227 0.331 −2.310 0.350 −2.466 0.652 −1.123 −3.883 −3.015

ρY ,Ŷ 0.943 0.960 0.960 0.941 0.806 0.941

This is a problem of estimating the central mean subspace. Ma and Zhu (2012) demonstrated
through a bootstrap procedure that a one-dimensional model is sufficient to describe the regres-
sion relationship of Y given x in this data set. Because an employee’s salary usually depends
on working experience X1, we fix β1 =1 to facilitate the comparison of different inference pro-
cedures. Consequently, there are 13 free parameters in total.

We applied the three locally efficient estimators and report the estimated coefficients β̂ and
the associated estimation standard errors (Table 3). For comparison, we also include the MAVE,
PHD and semi-PHD estimation results. None of the three locally efficient estimates provides
sufficient evidence that there is gender discrimination at the level of significance of 0.05. From
the analysis, the social characteristics that positively affect an employee’s salary include more
working experience (both in the current position and at a previous bank), performing computer-
related work, having finished some college level courses or received higher education. In addition,
an employee’s salary is directly linked to his or her job level. The scatter plots of the salary with
respect to the estimated directions are given in Fig. 1.

Next we fit a local linear regression of Y on β̂
T

x to obtain the fitted values Ŷ = Ê.Y |β̂Tx/. We
then calculate the Pearson correlation coefficient ρŶ ,Y , summarized in the last row of Table 3.
In terms of these correlation coefficients, the PHD method performs the worst, partly because
the linearity and constant variance conditions on x that are required by the PHD method are
violated owing to the presence of categorical covariates. The MAVE method, semi-PHD and
the locally efficient estimates have comparable performance, with the parametric and semipara-
metric locally efficient estimators winning slightly. However, a theoretically justified inference
procedure is not available for the MAVE method; hence the estimation result cannot be used to
draw conclusion about the discrimination issue.

From a visual inspection of Fig. 1, we might suspect that Y could be a linear function of βTx.
To examine whether this is so, we test the null hypothesis

H0 : E.Y |βTx/=a+b.βTx/, for some a and b:
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Fig. 1. Scatter plots of Y against the direction found by (a) the local1, (b) local2, (c) local3, (d) MAVE,
(e) PHD and (f) semi-PHD methods: , local linear approximation; , associated 95% pointwise
confidence interval
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Following Fan et al. (2001), we define a generalized likelihood ratio test statistic

λn = n

2
RSS0 −RSS1

RSS1
,

where

RRS0 =
n∑

i=1
{Yi − â− b̂.β̂

T
xi/}2,

RRS1 =
n∑

i=1
{Yi − m̂.β̂

T
xi/}2:

Here, â and b̂ are estimated from ordinary least squares, m̂.β̂Tx/ is a local linear estimate of
the mean function E.Y |βTx/ and β̂ is an arbitrary root-n-consistent estimator of β. For all the
proposed locally efficient estimators of β, we obtain that the p-values are all less than 10−4.
This indicates that a linear model is not sufficient to capture fully the regression information of
Y onto βTx.

6. Discussion

Throughout the paper, we have not assumed the usual linearity condition or the constant vari-
ance condition. We point out here that, if the linearity condition holds, the efficiency bound
does not change for central mean subspace estimation. However, the linearity condition will
contribute to some computational simplification when we choose to set w.x/ to be a function of
βTx. This is because we can simply plug E.x|βTx/=β.βTβ/−1βx into the estimation equation
instead of estimating it non-parametrically. However, as soon as other choices are taken for
w.x/, the linearity condition has no particular use. In contrast, the constant variance condition
does not contribute to the efficiency bound or to the computational simplicity. It is therefore a
redundant condition in the context of efficient estimation.

Throughout we assume that the structural dimension d of SE.Y |x/ is known a priori. How
to estimate the structural dimension when it is unknown has been extensively studied in the
literature. See for example the sequential test procedure in Cook and Li (2004), the cross-
validation procedure in Xia et al. (2002) and Xia (2007), the Bayesian information criterion
BIC type of criterion in Zhu et al. (2006) and the bootstrap procedure in Ye and Weiss (2003),
Li and Dong (2009), Dong and Li (2010), Ma and Zhu (2012), etc. Thus we do not elaborate
this issue further in this paper.

Various model extensions have been considered in the dimension reduction literature. For
example, in the partial dimension reduction problems (Li et al., 2003), it is assumed that
E.Y |x/ = E.Y |βTx1, x2/. Here, x1 is a covariate subvector of x that the dimension reduction
procedure focuses on, whereas x2 is a covariate subvector that is known on the basis of scientific
understanding or convention to enter the model directly. We can see that the semiparametric
analysis and the efficient estimation results that are derived here can be adapted to these mod-
els, through changing βTx to .βTx1, x2/ in all the corresponding functions and expectations
while everything else remains unchanged. Another extension is groupwise dimension reduction
(Li et al., 2010), where the model E.Y |x/=Σk

i=1 mi.Y , βT
i xi/ is considered. The semiparametric

analysis in such models requires separate investigation and it will be interesting to study efficient
estimation in these problems.
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Appendix A

A.1. Derivation of Seff in model (1)
From Ma and Zhu (2012), we have

Λ⊥ = .[α.x/−E{α.x/|βTx}]" :∀α.x//

= .{Y −E.Y |βTx/}[α.x/−E{α.x/|βTx}] :∀α.x//

and Λ=Λ1 ⊕Λ2 +Λm, where

Λ1 ={f.x/ :∀f subject to F.f/=0},
Λ2 ={f.", x/ :∀f subject to E.f |x/=0, E."f |x/=0},

Λm =
{

η′
2".", x/

η2.", x/
h.βTx/ :∀h

}
:

Here "=Y −m.βTx/ and η′
2".", x/ is the derivative of η2 with respect to ". We calculate the residual after

projecting a function in Λm to Λ2 to obtain

Λ′
m =Π.Λm|Λ⊥

2 /=
{

"

E."2|x/
h.βTx/ :∀h

}
:

Thus, Λ=Λ1 ⊕Λ2 ⊕Λ′
m.

Straightforward calculation yields

Sβ =−vecl
{

xη′
2".", x/@m.βTx/

η2.", x/@.xTβ/

}
:

Since

Sβ =−vecl
[{

"

E."2|x/
+ η′

2".", x/

η2.", x/

}
x @m.βTx/

@.xTβ/

]
+vecl

[
"

E."2|x/

E{xE."2|x/−1|βTx}
E{E."2|x/−1|βTx}

@m.βTx/

@.xTβ/

]

+vecl
(

"

E."2|x/

[
x − E{xE."2|x/−1|βTx}

E{E."2|x/−1|βTx}

]
@m.βTx/

@.xTβ/

)
,

and we can easily verify that the first component is in Λ2, the second component is in Λ′
m and the third

component is in Λ⊥; hence we obtain Seff .

A.2. List of regularity conditions

Condition 1. The univariate kernel function K.·/ is symmetric, has compact support and is Lipschitz
continuous on its support. It satisfies∫

K.u/du=1,∫
uiK.u/du=0, 1� i�m−1,

0 
=
∫

umK.u/du<∞:
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Condition 2. The probability density functions of βTx and γTx, which are denoted respectively by
f1.β

Tx/ and f2.γ
Tx/, and the variance function E."2|x/ are bounded away from 0 and ∞.

Condition 3. Let

r1.β
Tx/=E{a1.x, Y/|βTx}f1.β

Tx/

and

r2.γ
Tx/=E."2|γTx/f2.γ

Tx/,

where a1.x, Y/ can be any of Y , w3.ξ/ or x w3.ξ/. The .m−1/th derivatives of r1.β
Tx/, r2.γ

Tx/, f1.β
Tx/,

f2.γ
Tx/ and m.βTx/ are locally Lipschitz continuous.

Condition 4. E.‖x‖4/<∞, E.Y 4/<∞ and E{‖m1.β
Tx/‖4}<∞.

Condition 5. The bandwidths satisfy nh2m
k h2m

l →0 and nh
2.m−1/
1 h2m

l →0 and nhd
k hd

l →∞ for 1�k<l�4.
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