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SUMMARY

A crucial component of performing sufficient dimension reduction is to determine the struc-
tural dimension of the reduction model. We propose a novel information criterion-based method
for this purpose, a special feature of which is that when examining the goodness-of-fit of the
current model, one needs to perform model evaluation by using an enlarged candidate model.
Although the procedure does not require estimation under the enlarged model of dimension k + 1,
the decision as to how well the current model of dimension k fits relies on the validation provided
by the enlarged model; thus we call this procedure the validated information criterion, VIC(k).
Our method is different from existing information criterion-based model selection methods; it
breaks free from dependence on the connection between dimension reduction models and their
corresponding matrix eigenstructures, which relies heavily on a linearity condition that we no
longer assume. We prove consistency of the proposed method, and its finite-sample performance
is demonstrated numerically.

Some key words: Dimension reduction; Estimating equation; Information criterion; Linearity condition; Model selec-
tion; Penalization; Structural dimension.

1. INTRODUCTION

Consider a p-dimensional covariate vector X and a univariate response variable Y . If the
regression relation between Y and X is unspecified, the curse of dimensionality arises for large
or even moderate p, and impairs the performance of familiar nonparametric methods. Sufficient
dimension reduction alleviates this problem by assuming that Y is linked to X through d lin-
ear combinations of X , denoted by βT X . Here β ∈ R

p×d and d is typically much smaller than
p. For example, in the central space framework, it is assumed that the distribution of Y condi-
tional on X , fY |X (y, x), is a function of y and βTx only. In the central mean space framework
E(Y | X = x) is assumed to be a function of βTx only, and in the central variance space frame-
work var(Y |x) is assumed to be a function of βTx only. Cook (1998) established that except
for some degenerate cases, the smallest dimension reduction space exists and is unique, and
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410 Y. MA AND X. ZHANG

the corresponding smallest d is defined as the structural dimension of the sufficient dimension
reduction space.

An important aspect of dimension reduction is to determine the structural dimension d of
the sufficient dimension reduction space. The most popular approach converts this to a problem
of deciding how many eigenvalues of a matrix are nonzero, but it is applicable only to inverse
regression-based estimation procedures. Methods that have been proposed to determine the num-
ber of nonzero eigenvalues of a matrix include sequential testing (Li, 1991, 1992; Schott, 1994;
Velilla, 1998; Bura & Cook, 2001; Cook & Yin, 2001; Cook & Li, 2002, 2004; Cook & Ni,
2005; Bura & Yang, 2011), bootstrapping (Ye & Weiss, 2003; Zhu & Zeng, 2006; Zeng, 2008),
the Bayesian information criterion, BIC (Zhu et al., 2006; Zhu & Zhu, 2007; Luo et al., 2009), and
sparse eigendecomposition (Zhu et al., 2010). However, the equivalence of dimension reduction
and matrix eigendecomposition relies critically on the linearity condition and/or constant vari-
ance condition (Ma & Zhu, 2012).

Another approach is leave-one-out crossvalidation (Xia et al., 2002), whereby one chooses a
dimension d that minimizes the leave-one-out average prediction error. This approach inevitably
requires estimation of the unspecified regression function, which can be the conditional density,
conditional mean or conditional variance function, depending on the specific problem. Thus, the
method is applicable only to nonparametric estimators in dimension reduction.

In the semiparametric estimation framework, where nonparametric estimation of the regres-
sion function is avoided and the link to matrix eigendecomposition is also given up due to relax-
ation of the conditions on the covariates X , the only existing method to determine the structural
dimension is the bootstrap (Ma & Zhu, 2012). However, its theoretical properties have not been
studied thoroughly and its validity has not yet been established.

The goal of this paper is to develop a method of selecting the structural dimension d with-
out requiring special structures on the covariate vector X and nonparametric estimation proce-
dures other than those needed for the original estimation of the reduction space. Following Ma
& Zhu (2012, 2013), once a fixed parameterization of the dimension reduction space is adopted,
all the root-n-consistent estimators of β can be obtained from an estimating equation. Hence it
is very tempting to add penalty terms to the estimating equations to shrink some components
of β to zero. However, this does not work because of the special structure imposed on β as a
result of the identifiability requirement. For example, in the widely used orthogonal parame-
terization, all the columns of β have unit length, so it is impossible to shrink all the elements
of any column of β to zero, and hence there is no way to modify the working dimension of β

through penalization. Likewise, if we use the parameterization of Ma & Zhu (2013), which fixes
the upper block of β to be the identity, then the working dimension is also fixed even if all the
remaining elements of a column are shrunk to zero. Thus, the parameter structure is rigid, and
the parameterization under a larger model automatically excludes the possibility of a smaller
model. Unless the functional dependence is examined, one cannot evaluate whether a certain
column of β is needed in the model, certainly not by examining the elements in the estimated
β̂ only.

Methods based on classical criteria such as AIC and BIC are also out of the question, since
we do not want to estimate the likelihood. A natural modification of these methods involves
replacing the loglikelihood with a pseudo-loglikelihood, constructed from the weighted square
of the estimating equation. An inherent difficulty with this approach is that it is unclear whether
the value of such a quadratic form really reflects the goodness-of-fit of the underlying model.
To illustrate this point, let us examine the simple case where Y = X1 + X2

2 + ε and the esti-
mating equation is n−1/2∑n

i=1(Yi − β1 X1i − β2 X2
2i )(X1i , X2

2i )
T = 0. Obviously, the ordinary

least-squares estimator (β̂1, β̂2) converges to the true parameter value β1 = β2 = 1 as n → ∞,
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Validated information criterion 411

and the quadratic form

n−1

{
n∑

i=1

(Yi − β̂1 X1i − β̂2 X2
2i )(X1i , X2

2i )

}{
n∑

i=1

(Yi − β̂1 X1i − β̂2 X2
2i )

(
X1i

X2
2i

)}

is always zero regardless of the sample size. Now if we fit an insufficient model Y =
X1β1 + ε and estimate β1 from β̂1 = (

∑n
i=1 X1i Yi )/(

∑n
i=1 X2

1i ), then β̂1 converges to
β1 = E(X1Y )/E(X2

1) as n → ∞, while the corresponding quadratic form n−1{∑n
i=1(Yi −

β̂1 X1i )X1i }2 remains zero for all n. Thus, regardless of which of the two models is used, the
quadratic forms have the same performance. In other words, the quadratic form of the estimating
equations does not reflect how well a model fits the data.

The difficulty with the penalization method arises from the fact that for sufficient dimension
reduction, a model under a smaller structural dimension is not a special case of a general model
under a larger structural dimension that corresponds to having some zero parameters. Whether
or not an additional dimension is needed is influenced by the functional dependence of Y on the
additional direction. The effect of this on the penalization method is that dimension determination
cannot be transformed to evaluation of the number of nonzero coefficients. The difficulty with
using a criterion-based method results from the fact that the estimating equation is adaptive to the
working structural dimension and hence does not reflect the model’s goodness-of-fit. Therefore,
a new method for determining the structural dimension d is needed.

2. VALIDATED INFORMATION CRITERION

Let p be the number of covariates and d the true structural dimension. Let Sk be the estimated
dimension reduction space with working structural dimension k, and let S+1 be a nonstochas-
tic expansion of Sk to a subspace of dimension k + 1, so that Sk ⊂ S+1. In general, S+1 |= Sk+1.
When k + 1 > d, both S+1 and Sk+1 contain Sd , so the additional directions are redundant. How-
ever, when k + 1 � d, all the directions in Sk+1 and S+1 are essential, and the two spaces will
have different properties. We aim to bring out this difference between k + 1 � d and k + 1 > d,
and hence use it to identify d. To avoid unnecessary ambiguity, we use exclusively the parame-
terization of β such that the upper block of β is the identity matrix.

Consider the working structural dimension k, and write β(k) for the corresponding p × k
parameter matrix. Let O = (X, Y ). Following Ma & Zhu (2012), all the estimating functions
in dimension reduction models consist of

f (O, β(k)) = vec
([

a(x) − E
{

a(x) | βT
(k)x
}][

g(Y, βT
(k)x) − E

{
g(Y, βT

(k)x) | βT
(k)x)

}])
(1)

or linear combinations of f (O, β(k)) corresponding to different a and g. Here vec stands for
vectorization.

The practical implementation of (1) involves estimating β(k) via

β̂(k) = arg min
β(k)

n−1

{
n∑

i=1

f̂ (Oi , β(k))

}T

W

{
n∑

i=1

f̂ (Oi , β(k))

}
, (2)

where f̂ (O, β(k)) = vec([a(x) − Ê{a(x) | βT
(k)x}][g(Y, βT

(k)x) − Ê{g(Y, βT
(k)x) | βT

(k)x)}]), with

the Ê(· | βT
(k)x) being nonparametric kernel estimates of the corresponding quantities, and W is

a weight matrix. If one aims to minimize estimation variability, the optimal choice of W is the
inverse of var{ f (O, β(k))}. In the following derivation, we assume that a decision on a suitable

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on July 31, 2015
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


412 Y. MA AND X. ZHANG

W has been made and we treat W as fixed. For simplicity of presentation, we consider only
f (O, β(k)) given in (1); treatment of a linear combination of several such f (O, β(k)), of the
form

∑m
j=1 τ j vec([a j (x) − E{a j (x) | βT

(k)x}][g j (Y, βT
(k)x) − E{g j (Y, βT

(k)x) | βT
(k)x}]) at fixed

τ j , is essentially identical. Let

β0
(k) = arg min

β(k)

E{ f (O, β(k))}T W E{ f (O, β(k))}, (3)

which is the true parameter value when k = d and can be thought of as an optimal parameter
value when k |= d.

We now perform subspace expansion via v. For any k that satisfies 0 < k < p, write

β0
(k) =

⎛
⎜⎜⎝

Ik

β
0,U
(k)

β
0,L
(k)

⎞
⎟⎟⎠ , β̂(k) =

⎛
⎜⎜⎝

Ik

β̂U
(k)

β̂L
(k)

⎞
⎟⎟⎠ ,

where β
0,U
(k) and β̂U

(k) are 1 × k vectors while β
0,L
(k) and β̂L

(k) are (p − 1 − k) × k matrices. For any
(p − 1 − k) × 1 vector v, let

γ 0
(k)(v) =

⎛
⎜⎝

Ik 0k×1

01×k 1

β
0,L
(k) − vβ

0,U
(k) v

⎞
⎟⎠ , γ̃(k)(v) =

⎛
⎜⎝

Ik 0k×1

01×d 1

β̂L
(k) − vβ̂U

(k) v

⎞
⎟⎠ .

It is easy to verify that for any v,

γ 0
(k)(v)

(
Ik

β
0,U
(k)

)
= β0

(k), γ̃(k)(v)

(
Ik

β̂U
(k)

)
= β̂(k),

so the space spanned by the columns of γ 0
(k)(v) or γ̃(k)(v) contains that spanned by the columns

of β0
(k) or β̂(k), respectively. In other words, we can view γ 0

(k)(v) or γ̃(k)(v) as an arbitrary way of

expanding β0
(k) or β̂(k). The expansion is described by v.

We now consider the case where k = d. Ma & Zhu (2012) established that β̂(d) is a root-n-
consistent estimator of the true parameter value β0

(d). If we expand the model to k + 1, we get a
redundant model. Thus, intuitively, we can pick an arbitrary v to form γ̃(k)(v) and we will still
be able to obtain that

n−1
n∑

i=1

f {Oi , γ̃(k)(v)} → E[ f {O, γ 0
(k)(v)}] = 0

in probability as n → ∞. Similar observations apply when k > d. Specifically, having obtained
β̂(k) from an estimating equation under the working structural dimension k, we can arbitrarily
expand β̂(k) to form γ̃(k)(v). Because the expanded model is redundant and the added direc-
tion has no effect, we would always have n−1∑n

i=1 f {Oi , γ̃(k)(v)} → 0 in probability for any
v. The similarity between the observations concerning k = d and k > d indicates that of all the
models corresponding to working structural dimensions k such that k � d, we should select the
simplest one.

However, for a model with working structural dimension k < d, the situation is quite different:
the dimension reduction assumption is not satisfied under the restrictive model. Now consider
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Validated information criterion 413

k + 1. Since k + 1 � d, this assumption may or may not be satisfied under the expanded model,
and even if k + 1 = d and the assumption can be satisfied, it is satisfied only for a specific
γ 0
(k)(v0). Thus, in general, n−1∑n

i=1 f ({Oi , γ̃(k)(v)} will not converge to zero when we insert
an arbitrary v.

The contrast between the above two cases will allow us to determine d via a special information
criterion. We will use the enlarged model of structural dimension k + 1 to provide a validation
of the goodness-of-fit of the current model with structural dimension k. Specifically, let

VIC(k) = 1

2

[∥∥∥n−1/2
n∑

i=1

f̂ {Oi , γ̃(k)(v1)}
∥∥∥2 +

∥∥∥n−1/2
n∑

i=1

f̂ {Oi , γ̃(k)(v2)}
∥∥∥2
]

+ pk log(n). (4)

To form the penalty term in (4), we use pk instead of the true number of parameters in β in
the candidate model (p − k)k. This ensures that the penalty term increases with the model com-
plexity indicated by k. In (4), γ̃(k)(v1) and γ̃(k)(v2) are two matrices from β̂(k) corresponding to
two different choices of the vector v. Because the difference in VIC(k) between using different
v vectors does not change the order of VIC(k) for k < d and does not affect the leading term of
VIC(k) when k � d, as will be shown in § 3, the method is not very sensitive to the choice of
v1 and v2; in practice, we simply set v1 to be the zero vector and v2 to be the vector of ones.
The computation of VIC(k) is not much more difficult than the usual practice, in which all cal-
culations are conducted under the fixed candidate model with working structural dimension k;
this is because, although we need an enlarged model of working structural dimension k + 1 to
calculate the criterion, we never perform estimation in the enlarged model. According to the
above analysis, as n → ∞, when k = d we have VIC(k) = pd log(n) + Op(1); when k > d we
have VIC(k) � pk log(n), which is larger than VIC(d) with probability approaching one. When
k < d, VIC(k) = cn + op(n) + pk log(n) where c is a positive constant, and this is also larger
than VIC(d) with probability approaching one. Thus, VIC(k) is minimized at k = d and so, by
minimizing VIC(k), we can choose d consistently.

3. SELECTION CONSISTENCY

To show consistency, we need some regularity conditions. For any matrix θ , let ν(θ)

denote the number of columns of θ . We assume that the following conditions hold for
θ ∈ {β0

(1), . . . , β
0
(d), γ

0
(1), . . . , γ

0
(d)}.

Condition 1. The univariate kernel function K (·) is Lipschitz, has compact support, and sat-
isfies∫

K (u) du = 1,

∫
ui K (u) du = 0 (1 � i � mθ − 1), 0 |=

∫
umθ K (u) du < ∞,

where mθ is a positive integer such that mθ > ν(θ)/2. The ν(θ)-dimensional kernel function is
a product of ν(θ) univariate kernel functions; that is, Kh(u) = h−ν(θ)K (u/h) =∏ν(θ)

i=1 Kh(ui ) =
h−ν(θ)

∏ν(θ)
i=1 K (ui/h) for u = (u1, . . . , uν(θ))

T.

Condition 2. Let r1(θ
Tx) = E{a(x) | θTx} f (θTx) and r2(θ

Tx) = E{g(Y, θTx) | θTx} f (θTx).
The mθ th derivatives of r1(θ

Tx), r2(θ
Tx) and f (θTx) are locally Lipschitz-continuous.
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414 Y. MA AND X. ZHANG

Condition 3. The probability density or mass functions of x and θTx , denoted by fx (x) and
f (θTx), respectively, are bounded and bounded away from zero; moreover, each entry in the
matrices E{a(x)a(x)T | θTx} and E{g(Y, θTx)gT(Y, θTx) | θTx} is a locally Lipschitz-continuous
and bounded function of θTx .

Condition 4. The bandwidth h is such that h = O(n−κθ ), where κθ is a positive constant that
satisfies (4mθ )

−1 < κθ < {2ν(θ)}−1,

Condition 5. For 0 < k � d, the equation E{ f (O, β(k))} = 0 has at most one solution.

Condition 1 comprises standard requirements on the multivariate kernel function in
nonparametric kernel estimation. Conditions 2 and 3 contain the smoothness and boundedness
requirements on the low-dimensional density functions and regression functions which allow
mathematical operations such as differentiating, exchanging order of operations etc. to be per-
formed. Condition 4 is the minimum requirement for ensuring the root-n convergence rate in
estimating β. Condition 5 is a standard condition on the set of estimating equations to ensure
that the estimation procedure does not degenerate.

THEOREM 1. Let d̂ = arg mink VIC(k), where VIC(k) is as defined in (4). Under Conditions
1–5, as n → ∞, pr(d̂ = d) → 1.

The proof of Theorem 1 is given in the Appendix. Condition 5 can be further relaxed to allow
E{ f (O, β)} = 0 to have finitely many, say r , solutions. When the solution is not unique, we set

VIC(k) = 1

r + 1

r+1∑
j=1

∥∥∥n−1/2
n∑

i=1

f̂ {Oi , γ̃(k)(v j )}
∥∥∥2 + pk log(n),

which still allows us to select the structural dimension consistently.
We expand the directions in β(k) in two different directions, v1 and v2, instead of a single

direction described by v, so that our method remains valid even if the zero-probability event
γ 0
(k)(v) = β0

k+1 occurs. Similarly, when E{ f (O, β)} = 0 has r solutions, say β0
(k),1, . . . , β

0
(k),r ,

we use r + 1 different v j values instead of r values to maintain the validity of our method even
in the case where {γ 0

(k)(v j ) : j = 1, . . . , r} happens to be identical to {β0
(k),1, . . . β

0
(k),r }. If we can

tolerate a zero-probability event, then we can let

VIC(k) =
∥∥∥n−1/2

n∑
i=1

f̂ {Oi , γ̃(k)(v)}
∥∥∥2 + pk log(n).

Whether or not Condition 5 holds, this will still yield VIC(k) > VIC(d) for k |= d with probability
approaching 1 as n → ∞, and usually suffices in practice.

4. NUMERICAL EXPERIMENTS

We performed Monte Carlo simulation studies to assess the finite-sample performance of
the proposed validated information criterion for various estimators. Specifically, we examined
the validated information criterion in combination with four different estimators, namely the
semiparametric sliced inverse regression, semiparametric sliced average variance, semiparamet-
ric directional regression, and semiparametric principal Hessian direction estimators, proposed
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Validated information criterion 415

Table 1. Selection frequencies by VIC(k), multiplied by 100, in simulations with
p = 6

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

n = 200, d = 1 n = 200, d = 2
Semi-SIR 99·4 0·6 0·0 0·0 31·0 68·3 0·6 0·1
Semi-SAVE 94·1 5·2 0·6 0·1 9·9 76·0 12·1 2·0
Semi-DR 85·6 14·0 0·4 0·0 1·4 96·6 1·7 0·3
Semi-PHD 99·9 0·1 0·0 0·0 2·6 97·2 0·2 0·0

n = 400, d = 1 n = 400, d = 2
Semi-SIR 99·7 0·3 0·0 0·0 4·6 94·9 0·5 0·0
Semi-SAVE 94·4 5·5 0·1 0·0 1·7 91·7 5·7 0·9
Semi-DR 86·8 12·8 0·4 0·0 1·6 98·1 0·2 0·1
Semi-PHD 99·9 0·1 0·0 0·0 0·0 99·8 0·2 0·0
Semi-SIR, semiparametric sliced inverse regression; Semi-SAVE, semiparametric sliced average vari-
ance estimation; Semi-DR, semiparametric directional regression; Semi-PHD, semiparametric princi-
pal Hessian directions.

in Ma & Zhu (2012). The validated information criterion structural dimension selection in com-
bination with the four estimation procedures was performed on data generated from the following
four models: Y = (βT

1 X)/{0·5 + (βT
2 X + 1·5)2} + 0·5ε, Y = (βT

1 X)2 + 2|βT
2 X | + 0·6|βT

2 X |ε,
Y = 0·1|βT

1 X | + 0·9|βT
2 X | + 0·2ε and Y = (βT

1 X)2 + (βT
2 X)2 + 3ε, where ε is a standard nor-

mal random variable. Thus the structural dimension d is equal to 2. The covariate vector X has
dimension p = 6, where the vector consisting of the first two components, (X1, X2)

T, has a nor-
mal distribution with mean zero, variance 1 and covariance 0·5. We set X3 = |X1 + X2| + |X1|ε1
and X4 = (X1 + X2)

2 + |X2|ε2, where ε1 and ε2 are standard normal random variables. Finally,
X5 and X6 are Bernoulli random variables with success probabilities exp(X2)/{1 + exp(X2)}
and 	(X2), respectively, where 	(·) denotes the standard normal cumulative distribution func-
tion. We take as true parameter values β = {(1, 0, 0·5, 0·3, 0·6, 0·7)T(0, 1, 0·4, −0·5, 0·8, 0·3)T}.
Under these simulation settings, the signal-to-noise ratios of the above four models are approxi-
mately 5·7, 17·9, 14·9 and 2·3, respectively. We also experimented with the case where the true
structural dimension d is 1, by letting β2 = β1 in the four models. This leads to signal-to-noise
ratios of roughly 4·6, 32·3, 20·5 and 4·7 in the four models. From Table 1, the results of our
method do not seem to show a systematic relationship with the signal-to-noise ratio. In each
case, we set v1 = v2 = 0 and v1 = v2 = 1. We repeated the experiments 1000 times and report the
selection frequencies in Table 1 for sample sizes n = 200 and 400.

Table 1 indicates selection consistency, where the correct selection rates are above 65% at
n = 200 and improve to over 85% at n = 400 for the validated information criterion in combi-
nation with all four estimators. These rates are not inferior to the usual correct selection rates
generally seen in criterion-based methods. Moreover, as the sample size grows, we see a general
trend of improvement in terms of correct selection rates. This trend is especially clear at d = 2,
possibly because at d = 2 the sample size n = 200 is relatively small for the asymptotic properties
to become evident.

We proceed to perform space estimation after determining the structural dimension using the
validated information criterion. The boxplots of the Euclidean distances between the estimated
spaces and the true space are displayed in Fig. 1, along with the estimation results performed
under the true structural dimension. Here, the Euclidean distance is defined as the Frobenius
norm of the matrix β̂(β̂Tβ̂)−1β̂T − β(βTβ)−1βT. When the correct selection rate is high, the
performance based on the estimated structural dimension is very close to that achieved by using
the true dimension. Thus, overall, except for the semiparametric sliced inverse regression and
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Semi-SIR Semi-SAVE Semi-DR Semi-PHD

0

0·5
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1·5
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0·5

1·0

1·5

0

0·5

1·0

1·5

0

0·5

1·0

1·5
(a) (b)

(c) (d)

Semi-SIR Semi-SAVE Semi-DR Semi-PHD

Semi-SIR Semi-SAVE Semi-DR Semi-PHD Semi-SIR Semi-SAVE Semi-DR Semi-PHD

Fig. 1. Boxplots of the Frobenius norm (p = 6), for (a) d = 1, n = 200; (b) d = 2, n = 200;
(c) d = 1, n = 400; (d) d = 2, n = 400. In each boxplot pair, the left plot is the result with
the true d , and the right plot is the result with the selected d . Abbreviations have the same

meanings as in Table 1.

Table 2. Selection frequencies by VIC(k), multiplied by 100, in simulations with
p = 10

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

n = 200, d = 1 n = 200, d = 2
Semi-SIR 98·3 1·7 0·0 0·0 54·3 44·7 1·0 0·0
Semi-SAVE 91·5 5·4 3·1 0·0 20·9 57·8 21·0 0·3
Semi-DR 85·2 13·6 1·2 0·0 0·7 94·3 4·7 0·3
Semi-PHD 100·0 0·0 0·0 0·0 18·4 81·6 0·0 0·0

n = 400, d = 1 n = 400, d = 2
Semi-SIR 99·3 0·7 0·0 0·0 10·3 88·3 1·3 0·1
Semi-SAVE 92·7 5·7 1·6 0·0 6·1 71·2 22·5 0·2
Semi-DR 87·4 12·1 0·5 0·0 2·2 95·2 2·4 0·2
Semi-PHD 100·0 0·0 0·0 0·0 0·0 100·0 0·0 0·0

semiparametric sliced average variance estimators for d = 2 and n = 200, the different proce-
dures yield very similar results.

We also extended the simulation to p = 10. We generated (X1, X2, X7, X8, X9, X10)
T from a

zero-mean multivariate normal distribution. The variance matrix 
 has (i, j) entry 0·5|i− j | for
i, j = 1, . . . , 6. We generated (X3, X4, X5, X6) in the same way as in the p = 6 case, and set
β = {(1, 0, 0·5, 0·3, 0·6, 0·7, 0·5, 0·3, 0·6, 0·7)T(0, 1, 0·4, −0·5, 0·8, 0·3, 0·4, −0·5, 0·8, 0·3)T}.
In this case, the signal-to-noise ratios of the four models are 8·1, 27·5, 25·1 and 5·7 for d = 2,
and 4·5, 40·8, 31·2 and 10·5 for d = 1. The selection results are summarized in Table 2; it can
be seen that results similar to those in Table 1 were obtained.
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Table 3. Analysis of the Fifth National Bank of Springfield data

VIC(k) values
k = 1 k = 2 k = 3 k = 4

Semi-SIR 145·8 169·1 212·0 417·3
Semi-SAVE 501·4 910·8 767·1 724·8
Semi-DR 131·7 277·3 155·8 139·6
Semi-PHD 105·1 249·3 216·8 200·6

Estimates and standard errors
Semi-SIR Semi-SAVE Semi-DR Semi-PHD

X2 0·68 (0·04) 0·93 (0·12) 0·73 (0·18) 0·72 (0·06)
X3 0·29 (0·05) 0·43 (0·10) 0·27 (0·18) 0·26 (0·07)
X4 0·06 (0·05) −0·07 (0·11) 0·04 (0·10) −0·04 (0·05)

X5 0·20 (0·05) 0·16 (0·07) 0·17 (0·10) 0·06 (0·09)
X6 0·21 (0·04) 0·32 (0·06) 0·22 (0·10) 0·20 (0·04)

5. REAL-DATA EXAMPLE

We applied the validated information criterion procedure to an employment dataset for the
Fifth National Bank of Springfield (Albright et al., 1999), which contains a total of 207 observa-
tions. Previous analysis using the bootstrap concluded that d = 1 seems adequate for describing
the relationship between salary and the covariates, which consist of current job level (X1), years
working at the bank (X2), age (X3), years working at other banks (X4), gender (X5) and whether
the job is computer-related (X6). Because salary is certainly related to job level, we denote this
covariate by X1 and take the corresponding coefficient to be β1 = 1.

Using the validated information criterion in combination with the four semiparametric esti-
mators, the structural dimension was determined to be one in all cases; see Table 3. This result
confirms that the previous conclusion of Ma & Zhu (2012) is sensible and that, indeed, the effect
of the six covariates on salary can be summarized by a single direction. We report in Table 3
the results of estimating this single direction, from which it can be seen that the four estimation
results are similar.
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APPENDIX

Proof of Theorem 1

For any p × k matrix B with p > k, we use vecl(B) to denote the vector formed by the concatenation
of the columns of the lower (p − k) × k submatrix of B. We first consider k � d. Using the definition of
f̂ (O, γ̃(k)) and the usual Taylor expansion, we have

n−1/2
n∑

i=1

f̂ {Oi , γ̃
T
(k)(v)xi } = n−1/2

n∑
i=1

[
a(xi ) − Ê{a | γ̃ T

(k)(v)xi }
] [

g{Yi , γ̃
T
(k)(v)xi } − Ê{g | γ̃ T

(k)(v)xi }
]

= n−1/2
n∑

i=1

[
a(xi ) − E{a | γ̃ T

(k)(v)xi }
] [

g{Yi , γ̃
T
(k)(v)xi } − E{g | γ̃ T

(k)(v)xi }
]
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+ n−1/2
n∑

i=1

[
E{a(xi ) | γ̃ T

(k)(v)xi } − Ê{a(xi ) | γ̃ T
(k)(v)xi }

]

× (g(Yi , γ̃
T
(k)(v)xi ) − E

[
g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi

])
+ n−1/2

n∑
i=1

[
a(xi ) − E{a(xi ) | γ̃ T

(k)(v)xi }
]

×
(

E
[
g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi

]− Ê
[
g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi

])

+ n−1/2
n∑

i=1

[
E{a(xi ) | γ̃ T

(k)(v)xi } − Ê{a(xi ) | γ̃ T
(k)(v)xi }

]

×
(

E
[
g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi

]− Ê
[
g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi

])

= n−1/2
n∑

i=1

[
a(xi ) − E{a(xi ) | γ̃ T

(k)(v)xi }
]

× (g{Yi , γ̃
T
(k)(v)xi } − E[g{Yi , γ̃

T
(k)(v)xi } | γ̃ T

(k)(v)xi ]
)+ op(1),

where the last equality follows from Conditions 1–4 with θ = γ(k)(v) and Lemmas 3 and 4 of Ma & Zhu
(2012). Thus,

n−1/2
n∑

i=1

f̂ {Oi , γ̃(k)(v)} = n−1/2
n∑

i=1

f {Oi , γ̃(k)(v)} + op(1). (A1)

For any p × k matrix β with upper k × k submatrix being the identity matrix, we define

A(β) = E

{
∂ f (O, β)

∂ vecl(β)T

}
, Â(β) = n−1

n∑
i=1

∂ f̂ (Oi , β)

∂ vecl(β)T
.

From (2) and (3), we have

ÂT(β̂(k))W
n∑

i=1

f̂ (Oi , β̂(k)) = 0, AT(β0
(k))W E

{
f (O, β0

(k))
}= 0. (A2)

Under Conditions 1–4 with θ = β0
(k), (A1) and the first equality of (A2) lead to

0 = n−1/2
{

AT(β0
(k)) + op(1)

}
W

n∑
i=1

f (Oi , β̂(k)) + op(1)

= n−1/2
{

AT(β0
(k)) + op(1)

}
W

n∑
i=1

f (Oi , β
0
(k))

+ {AT(β0
(k)) + op(1)

}
W
{

A(β0
(k)) + op(1)

}
n1/2vecl(β̂(k) − β0

(k)) + op(1)

= n−1/2 AT(β0
(k)) W

n∑
i=1

f (Oi , β
0
(k)) + op(1)n−1/2

n∑
i=1

f (Oi , β
0
(k))

+ AT(β0
(k))W A(β0

(k))n
1/2vecl(β̂(k) − β0

(k)) + op(1),
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which results in

n1/2vecl(β̂(k) − β0
(k)) = −n−1/2

n∑
i=1

{AT(β0
(k))W A(β0

(k))}−1 AT(β0
(k))W f (Oi , β

0
(k))

+ op(1)n−1/2
n∑

i=1

f (Oi , β
0
(k)) + op(1). (A3)

Because of the definition of γ̃(k)(v) and γ 0
(k)(v), there exists a (p − 1 − k)(k + 1) × (p − k)k

matrix P(k)(v) such that vecl{γ̃(k)(v) − γ 0
(k)(v)} = P(k)(v)vecl(β̂(k) − β0

(k)). By Taylor expansion and
Conditions 1–4 with θ = γ 0

(k), we further write

n−1/2
n∑

i=1

f {Oi , γ̃(k)(v)} = n−1/2
n∑

i=1

f {Oi ; γ 0
(k)(v)} + n1/2 A{γ 0

(k)(v)} vecl{γ̃(k)(v) − γ 0
(k)(v)} + op(1)

= n−1/2
n∑

i=1

f {Oi ; γ 0
(k)(v)} + n1/2 A{γ 0

(k)(v)}P(k)(v) vecl(β̂(k) − β0
(k)) + op(1)

= n−1/2
n∑

i=1

f {Oi ; γ 0
(k)(v)} − n−1/2

n∑
i=1

M(k)(v) f (Oi , β
0
(k))

+ op(1)n−1/2
n∑

i=1

f (Oi , β
0
(k)) + op(1), (A4)

where A{γ 0
(k)(v)} is defined analogously to A(β0

(k)),

M(k)(v) = A{γ 0
(k)(v)}P(k)(v){AT(β0

(k))W A(β0
(k))}−1 AT(β0

(k))W,

and we have used (A3) to obtain the last equality in (A4). Using (A1) and (A4), we have

n−1/2
n∑

i=1

f̂ {Oi , γ̃(k)(v)} = n−1/2
n∑

i=1

f {Oi ; γ 0
(k)(v)} − n−1/2

n∑
i=1

M(k)(v) f (Oi , β
0
(k))

+ op(1)n−1/2
n∑

i=1

f (Oi , β
0
(k)) + op(1)

= n−1/2
n∑

i=1

(
f {Oi ; γ 0

(k)(v)} − E[ f {O; γ 0
(k)(v)}] − M(k)(v) f (Oi , β

0
(k))
)

+ op(1)n−1/2
n∑

i=1

[
f (Oi , β

0
(k)) − E{ f (O, β0

(k))}
]

+ n1/2 E[ f {O; γ 0
(k)(v)}] + op(1)n1/2 E{ f (O, β0

(k))} + op(1). (A5)

From the definition of M(k)(v) and (A2) and using the central limit theorem, the first term in (A5) converges
to a normal variate with mean zero and variance var[ f {O, γ 0

(k)(v)} − M(k)(v) f (O, β0
(k))]; hence it is Op(1).

Similarly, the second term of (A5) is of order op(1).
We now examine the third and fourth terms in (A5). When k = d, to minimize (3), β0

(k) is the true
parameter value and satisfies E{ f (O, β0

(k))} = 0; hence the fourth term equals 0. We also have

E
{[

a(x) − E{a(x) | γ 0 T
(k) (v)x}](g{Y, γ 0 T

(k) (v)x} − E[g{Y, γ 0 T
(k) (v)x} | γ 0 T

(k) (v)x]
)}= 0
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or, equivalently, E{ f (O, γ 0
(k))} = 0. This is because β0 T

(k)x is a linear combination of γ 0 T
(k) (v)x , as we have

pointed out, which gives

E[g{Y, γ 0 T
(k) (v)x} | x] = E[g{Y, γ 0 T

(k) (v)x} | β0 T
(d)x, γ 0 T

(k) (v)x] = E[g{Y, γ 0 T
(k) (v)x} | γ 0 T

(k) (v)x].

This leads directly to the result that VIC(d) = pd log(n) + Op(1). On the other hand, when k < d,

E
{[

a(x) − E{a(x) | γ 0 T
(k) (v)x}](g{Y, γ 0 T

(k) (v)x} − E[g{Y, γ 0 T
(k) (v)x} | γ 0 T

(k) (v)x]
)}

does not vanish unless γ 0
(k)(v) = β0

(k+1), by Condition 5. Thus, for γ 0
(k)(v) |= β0

(k+1), we have that
E[ f {O, γ 0

(k)(v)}] = c(v) |= 0; so the third term in (A5) is of order n1/2. The fourth term is of order op(n1/2).
This leads directly to the result that for k < d,

VIC(k) = 2−1n{c(v1)
Tc(v1) + c(v2)

Tc(v2)} + op(n) + pk log(n),

which is larger than VIC(d) with probability approaching 1 as n → ∞, for any choices of v1 and v2 (with
v1 |= v2). Finally, for k > d, it is easy to see that VIC(k) � pk log(n), which is larger than VIC(d) with
probability approaching 1 as n → ∞.
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