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ABSTRACT
We propose a consistent method for estimating both the finite- and infinite-dimensional parameters of the
proportional odds model when a covariate is subject to measurement error and time-to-events are sub-
ject to right censoring. The proposed method does not rely on the distributional assumption of the true
covariate, which is not observed in the data. In addition, the proposed estimator does not require the mea-
surement error to be normally distributed or to have any other specific distribution, and we do not attempt
to assess the error distribution. Instead, we constructmartingale-based estimators through inversion, using
only the moment properties of the error distribution, estimable frommultiple erroneous measurements of
the true covariate. The theoretical properties of the estimators are established and the finite sample perfor-
mance is demonstrated via simulations. We illustrate the usefulness of the method by analyzing a dataset
from a clinical study on AIDS. Supplementary materials for this article are available online.

1. Introduction

We consider the proportional odds model when the time to
event is subject to right censoring and a covariate is measured
with errors. Proportional odds model is a widely used model
in survival analysis as an alternative to the popular Cox pro-
portional hazard model. In comparison with the Cox model
that assumes that the ratio of the hazards corresponding to dif-
ferent covariate values does not change with time, the propor-
tional odds model allows the hazard ratio to vary over time.
Time-varying hazards ratios can arise frequently in practice.
For example, the relative effect of the stages of a cancer at the
time of diagnosis on survival may change with time. In study-
ing the proportional oddsmodel with right-censored data,Mur-
phy, Rossini, and van der Vaart (1997) proposed a nonparamet-
ric maximum likelihood estimator. Huang (1995) and Rossini
and Tsiatis (1996) constructed consistent estimators for current
status data. Cheng, Wei, and Ying (1995) used an estimating
equation-based approach in the linear transformation model,
which includes the proportional odds model as a special case,
for right-censored data.

Despite of the large literature in proportional odds model
when covariates are measured precisely, relatively few works
are available in this model when covariates are measured with
errors. Cheng and Wang (2001) considered the measurement
error issue in the linear transformationmodel, but their method
requires a parametric model for the pairwise difference between
the true covariate values of any two subjects, a parametricmodel
for the pairwise difference between the measurement errors of
any two subjects, and similar supports of the censoring distri-
bution and the time-to-event distribution. Thus, the method
would fail to produce consistent estimators if any of threemodel
assumptions is violated. For current status data, Wen and Chen
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(2012) proposed a conditional score method for handling errors
in covariate in proportional odds models under the assumption
that the measurement errors follow a normal distribution. This
is in stark contrast with the situation in the Cox model, where
extensive studies of errors in covariate have been conducted,
see, for example, Prentice (1982), Nakamura (1992), Huang and
Wang (2000), Zhou and Wang (2000), Hu and Lin (2002), and
Zucker (2005).

In this article, we propose a semiparametric method to treat
errors in covariates in the proportional odds model when the
events are subject to right censoring. We first construct a class
of estimating equations through designing special martingale
integrals under the error free case. The design of the estimat-
ing equation class further allows us to invert these estimat-
ing equations when covariates are measured with errors. This
type of treatment to measurement error models is commonly
known as the “corrected score” approach. Despite of the name,
the technique is applicable to general estimating functions that
are not necessarily score functions in the error-free cases (Naka-
mura 1990). For example, Huang and Wang (2001) applied
this approach to the logistic regression model. Buzas (1998)
used this approach to correct the partial likelihood score to
estimate regression parameters in the Cox proportional haz-
ard model while assuming the measurement errors follow a
normal distribution. Huang and Wang (2000) further relaxed
the normality assumption on the measurement errors. Using
an empirical process approach, they obtained a consistent and
asymptotically normal estimator while the measurement errors
are assumed to satisfy some minor regularity conditions. Song
and Huang (2005) further refined the parametric and non-
parametric corrected score method of Huang and Wang (2000)
to achieve better finite sample properties. Although all these
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methods are based on the general idea of “corrected scores,” the
implementation of the idea in differentmodels requires very dif-
ferent model-specific treatment and techniques that can be dif-
ficult and by no means straightforward. In addition, the theo-
retical properties in different models can also be quite differ-
ent and need to be studied individually and can be challeng-
ing depending on the specificity of the models. This also applies
to the new method proposed in this article. In other words,
the distinction between our work and the work of Huang and
Wang (2000, 2001) is rooted in the different models that are
considered in these works. Their subsequent estimation proce-
dure, methodological development, theoretical properties, and
numerical implementation are in turn all different from ours.

One advantage of the proposed method is that we do not
make any assumption on the distribution of the errors other than
symmetry, and we do not make any distributional assumptions
on the true covariate prone to errors, hence we work in the func-
tional measurement error framework (Carroll et al. 2006). This
is in stark contrast with Zucker (2005), which requires a correct
model for the unobserved covariate given the observed covari-
ates, hence is essentially a structural model (Carroll et al. 2006).

In summary, the proposed estimator is applicable in rela-
tively weak assumptions, requiring only symmetric error dis-
tribution, making no distributional assumption on the covari-
ate measured with error, allowing censoring dependent of the
covariates and very large censoring proportion. In such general-
ity, this is the only existing consistent estimator for proportional
odds models. The critical idea of the estimator relies on con-
structing amartingale-based estimating equation that is not nat-
urally derived from the standard score function consideration,
but has the key advantage of being invertible whenmeasurement
error presents. The asymptotic analysis of the estimating equa-
tion requires techniques involving martingale, nonparametric,
and semiparametric analysis.

The rest of the article is organized as follows.We describe the
details of the methodology in Section 2 and study the asymp-
totic properties of the estimator in Section 3. In Section 3, we
also provide a method of estimating the asymptotic variance of
the proposed estimator. We evaluate the finite sample perfor-
mance of our estimator via simulation studies in Section 4. To
illustrate the usefulness of the method, in Section 5, we analyze
a dataset from an AIDs clinical trial. Concluding remarks are
given in Section 6 while all technical details are relegated to the
supplementary materials.

2. Methodology

2.1. Model

Suppose that the observed data are independent and identi-
cally distributed (iid) copies of (V,�,W ∗

1 , . . . ,W ∗
m,Z), where

V = min(T,C) is the minimum of the time-to-event T and the
censoring time C, and � = I(T ≤ C). Here Z is a p× 1 vec-
tor of covariates measured precisely, while X is not observed.
Instead ofX ,m repeatedmeasurements of an unbiased surrogate
W ∗ of X are available. We assume that T andC are independent
conditional on (Z,X ). Let T be related to the covariates via the
proportional odds model

pr(T ≤ t|Z,X ) = �(t ) exp(βT
1Z + β2X )

1 +�(t ) exp(β1Z + β2X )
, (1)

where �(t ) is a nondecreasing right-continuous function
with �(0) = 0. Let �(t−) be the left-hand limit of � at t .
Define λ(t ) = ∂�(t )/∂t if� is differentiable, otherwise λ(t ) ≡
�(t )−�(t−). Our interest is in consistent estimation of β =
(βT

1 , β2)
T and �. To this end, we first propose a novel estimat-

ing equation when there is no measurement errors. We then
modify this estimating equations when X is measured with
errors.

2.2. Error Free Estimator

Define η(Xi,Zi,β) = exp(βT
1Zi + β2Xi), Ni(u) = I(Vi ≤ u,

�i = 1), and Yi(u) = I(Vi ≥ u). Without loss of general-
ity, we assume 0 < V1 ≤ V2 ≤ · · · ≤ Vn < τ < ∞, where
τ = inf{t : pr(V > t ) = 0}. Then,

M(t ) = N(t )−
∫ t

0
Y (u)

λ(u)η(X,Z,β)
1 +�(u)η(X,Z,β)

du

is a martingale with respect to filtration {Ft : t ≥ 0}, where
Ft = σ {Y (u),N(u),X,Z, u ≤ t}. Consider the situation thatX
is observed in the data. Then one may consistently estimate β

and� by solving Sβ1 = 0, Sβ2 = 0, and S�(u) = 0 for all u ≥ 0,
where for any function f (�,Z,β,α) predictable with respect
to {Ft : t ≥ 0} with α being possible additional parameters, we
define

Sβ1 =
n∑
i=1

∫ τ

0
Zi{1 +�(u)η(Xi,Zi,β)} f {�(u),Zi,β,α}

×
{
dNi(u)− Yi(u)λ(u)η(Xi,Zi,β)du

1 +�(u)η(Xi,Zi,β)

}

=
n∑
i=1

(
Zi�i{1 +�(Vi)η(Xi,Zi,β)} f {�(Vi),Zi,β,α}

− Ziη(Xi,Zi,β) [F{�(Vi),Zi,β,α} − F(0,Zi,β,α)]) ,
(2)

Sβ2 =
n∑
i=1

(
Xi�i{1 +�(Vi)η(Xi,Zi,β)} f {�(Vi),Zi,β,α}

−Xiη(Xi,Zi,β) [F{�(Vi),Zi,β,α} − F(0,Zi,β,α)]) ,
(3)

S�(u) =
n∑
i=1

{1 +�(u)η(Xi,Zi,β)}

×
{
dNi(u)−Yi(u)

λ(u)η(Xi,Zi,β)du
1 +�(u)η(Xi,Zi,β)

}
=

n∑
i=1

[{1 +�(u)η(Xi,Zi,β)}dNi(u)

−Yi(u)λ(u)η(Xi,Zi,β)du] , for all u > 0. (4)

Here F(�,Z,β,α) satisfies ∂F(�,Z,β,α)/∂� = f (�,Z,
β,α). Assuming that the observed failure times are 0 < tn1
< · · · < tnk , then from (4) we obtain

S�(tn1 ) =
n∑

i=1

{1 +�(tn1 )η(Xi,Zi,β)}dNi(tn1 )

−
n∑

i=1

Yi(tn1 ){�(tn1 )−�(tn1−)}η(Xi,Zi,β),
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S�(tnk ) =
n∑

i=1

{1 +�(tnk )η(Xi,Zi,β)}dNi(tnk )

−
n∑
i=1

Yi(tnk ){�(tnk )−�(tnk−)}η(Xi,Zi,β).

Using�(tn1−) = 0 in S�(tn1 ) = 0, we obtain

�̂(tn1 ) =
∑n

i=1 dNi(tn1 )∑n
i=1 η(Xi,Zi,β){Yi(tn1 )− dNi(tn1 )}

,

and�(tn j )’s can be estimated recursively as

�̂(tn j ) =
∑n

i=1 dNi(tn j )+ �̂(tn( j−1) )
∑n

i=1Yi(tn j )η(Xi,Zi,β)∑n
i=1{Yi(tn j )− dNi(tn j )}η(Xi,Zi,β)

,

for j = 1, . . . , k.

We did not include f {�(u),Z,β,α} in S�(u), which simplifies
the computation in obtaining �̂(t,β). When the last observa-
tion happens to be an event, we replace �̂(tnk)with a large value,
larger than �̂(tnk−1), to facilitate further analysis.

We point out that these estimating equations are the build-
ing blocks of our method, and form one of the important con-
tributions of our work. In addition, the estimating equations
involve both finite- and infinite-dimensional parameters, hence
the derivation of the subsequent asymptotic theory is much
more challenging. This is in contrast with Huang and Wang
(2000), who benefit from the existing partial likelihood score
functions, which do not involve infinite-dimensional parame-
ters, and hence are relatively easy to analyze.

Remark 1. We have left f {�(u),Z,β,α} to be an arbitrary
function in the above description. The flexibility in choosing
f {�(u),Z,β,α} leads to a broad class of consistent estima-
tors. In the regularity condition C1, we specify the require-
ment on f so that the estimating equations will lead to
a unique estimator in large samples. Note that when there
is no measurement error, the score functions for the maxi-
mum likelihood estimator (Murphy, Rossini, and van der Vaart
1997) are obtained if we replace f {�(u),Z,β,α} by 1/{1 +
�(u)η(X,Z,β)}2 and multiply each summand of S� by 1/{1 +
�(u)η(X,Z,β)}. However, the presence of X in the expres-
sion 1/{1 +�(u)η(X,Z,β)}2 will cause difficulties as soon asX
becomes unobservable. To circumvent this issue we shall take f
free fromX , so that the resulting estimating equations are invert-
ible and we can construct “corrected” estimating equations in
the presence of measurement errors. In the next subsection, we
discuss the choices of f when X is unobserved, and discuss the
concept of “corrected” estimating equations.

2.3. Estimator UnderMeasurement Error

Now we consider the case when X is not observed in the data,
and instead, we observe a surrogate variableW ∗ multiple times,
such that

W ∗
i j = Xi +U ∗

i j, j = 1, . . . ,m, i = 1, . . . , n.

Here the U ∗
i j ’s are iid copies of the random variable U ∗ that

is symmetrically distributed. Furthermore, U ∗ is assumed to
be independent of V,�,X,Z, a commonly used assump-
tion (Huang and Wang 2000). Define Wi = m−1∑m

j=1W
∗
i j .

Following Li and Vuong (1998), the pdf of U ∗
i j and Xi are

both identifiable. Thus, the likelihood of a single observation
(Wi1,Zi,Yi,�i) has the form{∫

fY |Z,X (yi, zi, xi) fU (wi1 − xi) fX (xi)dxi
}�i

×
{∫

SY |Z,X (yi, zi, xi) fU (wi1 − xi) fX (xi)dxi
}1−�i

.

This can be viewed as a convolution of fY |Z,X (yi, zi, ·) fX (·)with
fU (·) when �i = 1, or a convolution of SY |Z,X (yi, zi, ·) fX (·)
with fU (·) when �i = 0. Thus, via deconvolution we can
show that the Fourier transform of fY |Z,X (yi, zi, ·) fX (·) or
SY |Z,X (yi, zi, ·) fX (·) is unique, hence fY |Z,X (yi, zi, xi) is unique
if �i = 1, and SY |Z,X (yi, zi, xi) is unique if �i = 0. Thus, we
obtain the identifiability of β and �. Now we propose to esti-
mate β and� by solving

Sme
β1

=
n∑

i=1

(
�iZi{1 +�(Vi)g1(Wi,Zi,β)} f {�(Vi),Zi,β,α}

−Zig1(Wi,Zi,β) [F{�(Vi),Zi,β,α} − F(0,Zi,β,α)]
)

= 0,

Sme
β2

=
n∑

i=1

(
�i{Wi +�(Vi)g2(Wi,Zi,β)} f {�(Vi),Zi,β,α}

−g2(Wi,Zi,β) [F{�(Vi),Zi,β,α} − F(0,Zi,β,α)]
)

= 0, (5)

Sme
� =

n∑
i=1

[{1 +�(u)g1(Wi,Zi,β)}dNi(u)

−Yi(u)λ(u)g1(Wi,Zi,β)du
] = 0,

where

g1(Wi,Zi,β) = η(Wi,Zi,β)

γ1
,

g2(Wi,Zi,β) = η(Wi,Zi,β)

γ 2
1

(γ1W − γ2),

γ1 = E{exp(β2Ui)}, γ2 = E{Ui exp(β2Ui)}, and Ui =∑m
j=1U

∗
i j/m. It is easy to verify that E(g1 | X,Z) =

η(X,Z,β) and E(g2 | X,Z) = Xη(X,Z,β). Consequently,
E(Sme

β1
|V,�,X,Z) = Sβ1 ,E(Sme

β2
|V,�,X,Z) = Sβ2 , and E(Sme

� |
V,�,X,Z) = S�. The last three equalities lead to the notion of
“corrected score,” in the sense that the effect of themeasurement
error is corrected because the original “scores” are recovered
via the intermediate conditional expectation step. As a result,
as long as the original “scores” have mean zero, the “corrected”
ones will also yield a consistent estimator.

Here we take f {�(u),Z,β,α} = 1/{1 +�(u)η(X∗,
Z,β)}2, where X∗ = E∗(X | Z) indicates the expectation of
X conditional on Z calculated using a proposed model for X
given Z, which may contain additional parameters. This is a
logical choice for f {�(u),Z,β,α} and it bears similar spirit as
the regression calibration idea (Carroll et al. 2006, chap. 4). If
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we knew the distribution of X given Z, a natural replacement of
X would be E(X | Z). Since we do not make any distributional
assumption regarding X , we adopt a proposed model, which
may be misspecified, and replace the unobservable X with
the corresponding conditional mean of X under the proposed
model. However, unlike in the classical regression calibra-
tion treatment, our estimator will remain consistent whether
the proposed model is correct or incorrect. This choice of
f {�(u),Z,β,α} is our recommended choice in practice. It is
important to note that the method is consistent for any X∗ that
is a function of Z.

To obtain X∗, one can further bypass the specification of a
model for the distribution of X given Z, and directly assume a
modelX∗ = μ(Z,α), where α is the additional parameter of the
model if necessary. In this case, a natural estimator of α can be
obtained through solving

n∑
i=1

∂μ(Zi,α)

∂α
{Wi − μ(Zi,α)} = 0. (6)

Again, we point out that in fact, any arbitrary choice of α will
lead to a consistent estimator for β and�, hence the procedure
is very robust.

2.4. Estimation of γ1 and γ2

To make use of the estimating equations in (5), we need
to estimate γ1 and γ2. Observe that γ1 = E{exp(β2Ui)} =
{M(β2/m)}m, where M(·) denotes the moment generating
function of U ∗

i j . Due to the symmetry assumption of the
distribution of U ∗

i j , M(β2/m) = (2
∑m

j,k=1, j<k E[exp{(W ∗
i j −

W ∗
ik)β2/m}]/m(m − 1))1/2. Therefore, we estimate γ1 by

γ̂1 =
⎡⎣ 2
nm(m − 1)

m∑
j,k=1, j<k

n∑
i=1

exp{(W ∗
i j −W ∗

ik)β2/m}
⎤⎦m/2

. (7)

Further, since γ2 = E{Ui exp(β2Ui)} = ∂E{exp(β2Ui)}/∂β2, we
can write γ2 as

1
2
E(m/2−1)

⎡⎢⎢⎢⎣
m∑

j,k=1, j<k
2 exp{(W ∗

i j −W ∗
ik)β2/m}

m(m − 1)

⎤⎥⎥⎥⎦

× E

⎡⎢⎢⎢⎣
m∑

j,k=1, j<k
2(W ∗

i j −W ∗
ik) exp{(W ∗

i j −W ∗
ik)β2/m}

m(m − 1)

⎤⎥⎥⎥⎦ ,
and we estimate γ2 by

γ̂2 = (γ̂1)
(m−2)/m × 1

nm(m − 1)

m∑
j,k=1, j<k

n∑
i=1

(W ∗
i j −W ∗

ik)

× exp{(W ∗
i j −W ∗

ik)β2/m}. (8)

A detailed derivation of γ̂2 is given in the supplementary mate-
rials S1. Now we are in the position to describe the steps of esti-
mating the model parameters β and� in detail.

2.5. The Complete Estimation Procedure

Taking into account the above derivations, we propose the com-
plete estimation procedure as the following:
Step 0. Form Wi = m−1∑m

j=1W
∗
i j for i = 1, . . . , n. Obtain α̂

through solving (6).
Step 1. Form γ̂1(β) and γ̂2(β), both are functions ofβ, following

(7) and (8).
Step 2. For fixed β and γ̂1(β), form

�̂{tn1;β, γ̂1(β)} =
∑n

i=1 γ̂1(β)dNi(tn1 )∑n
i=1 η(Wi,Zi,β)

{
Yi(tn1 )− dNi(tn1 )

}
and

�̂{tn j ,β, γ̂1(β)} =∑n
i=1{γ̂1(β)dNi(tn j )+Yi(tn j )�̂{tn j−1 ,β, γ̂1(β)}η(Wi,Zi,β)}∑n

i=1 η(Wi,Zi,β){Yi(tn j )− dNi(tn j )}

as functions of β for j = 2, . . . , k. These are the results
from solving Sme

� {u;β, γ̂1(β)} = 0 sequentially at u =
tn1 , . . . , tnk .

Step 3. We obtain β̂ through solving

n∑
i=1

φ[Oi;β, �̂{Vi;β, γ̂1(β)}, γ̂(β), α̂] = 0,

whereOi = (Wi,Zi,Vi,�i), φ = (φT
1 , φ2)

T, and

φ1{Oi;β,�(Vi), γ,α}
= Zi�i{γ1 +�(Vi)η(Wi,Zi,β)} f {�(Vi),Zi,β,α}

− Ziη(Wi,Zi,β)[F{�(Vi),Zi,β,α}
− F(0,Zi,β,α)],

φ2{Oi;β,�(Vi), γ,α}
= �i{Wiγ

2
1 +�(Vi)(γ1Wi − γ2)η(Wi,Zi,β)}

f {�(Vi),Zi,β,α}
− (γ1Wi − γ2)η(Wi,Zi,β) [F{�(Vi),Zi,β,α}
− F(0,Zi,β,α)] .

Step 4. Go to Steps 1 and 2 to obtain γ1 (̂β) and �̂{u, β̂, γ̂1 (̂β)},
respectively.

In Step 3, γ̂1(β), γ̂2(β), and �̂{tn j ,β, γ̂1(β)} are func-
tions of β, hence the resulting estimating equations∑n

i=1 φ[Oi;β, �̂{Vi;β, γ̂1(β)}, γ̂(β), α̂] = 0 contain β as
the only unknown quantity and are solved to obtain β̂, and
the estimator is referred to as error corrected estimator. This
estimation procedure is a typical profiling procedure, hence
we do not need to iterate the above steps. One can of course
choose to use a backfitting procedure instead of profiling, where
iteratively solving for β at fixed �̂, γ̂1, γ̂2, and solving for γ1, γ2
and� at fixed β̂ will be required.
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To solve the estimating equations in Step 3, we used a stan-
dard Newton–Raphson procedure that requires an initial value
for β. In both the simulation and the data example, we used
the classical regression calibration estimates as the initial value.
We also experimented with using the naive estimator as the ini-
tial value and the results are identical.

3. Asymptotic Properties

3.1. Asymptotic Properties

To present the asymptotic properties of the proposed error
corrected method, we first need to introduce some neces-
sary notations. For any vector or matrix a, we denote aaT by
a⊗2, and we use fβ(�,Z,β,α) and Fβ(�,Z,β,α) to repre-
sent the partial derivative of f and F with respect to β. Define
γ = [γ1(β2), γ2(β2)]T = (γ1, γ2)

T, κ1 = E{exp(2β2U )}, κ2 =
E{U exp(2β2U )} and let fγ = ( fγ ,1, fγ ,2)T with

fγ ,1(W∗
i ,β) = M(m−2)(β2/m)

m − 1

m∑
j,k=1, j<k

[
exp

{
(W ∗

i j −W ∗
ik)β2

m

}

−M2
(
β2

m

)]
,

fγ ,2(W∗
i ,β) =

{
m(m − 2)

4

}
M(m−4)

(
β2

m

)[
2

m(m − 1)

×
m∑

j,k=1, j<k

exp
{
(W ∗

i j −W ∗
ik)β2

m

}

−M2
(
β2

m

)]
∂M2(β2/m)

∂β2
+ M(m−2)

(
β2

m

)

×
⎡⎣ 1
m(m − 1)

m∑
j,k=1, j<k

(W ∗
i j −W ∗

ik)

× exp
{
(W ∗

i j −W ∗
ik)β2

m

}
− m

2
∂M2(β2/m)

∂β2

]
.

Further define C1(s) = E{Y (s)η(W,Z,β)}, C2(s) = E[Y (s)η
(W,Z,β)λ(s)η(X,Z,β)/{1 +�(s)η(X,Z,β)}] = E{η(W,Z,
β)dN(s)/ds}, C3(s) = E{dN(s)/ds}, C4(s) = E{(ZT,W )TY (s)
η(W,Z,β)}, C5(s) = E[(ZT,W )TY (s)η(W,Z,β)λ(s)η(X,Z,
β)/{1 +�(s)η(X,Z,β)}] = E{(ZT,W )TY (s) η (W, Z, β)

dN(s)/ds}, D1(s) = exp[− ∫ s
0 {C2(u)/C1(u)}du], D2(s) = ∫ s

0
[D1(u)C3(u)/{D1(s)C1(u)}]du,D3(s) = ∫ s

0 {D1(u)[�(u,β, γ1)
{C1(u)C5(u)−C2(u)C4(u)} − γ1C3(u) C4(u)]}{D1(s)C2

1
(u)}−1du, φγ = E[∂φ{O;β,�(V ), γ,α}/∂γT], and the ele-
ments of φγ are φγ ,11 = E[Z� f {�(V ),Z,β,α}], φγ ,12 = 0,
φγ ,21 = E(�W f {�(V ),Z,β,α}{2γ1 +�(V )η(W,Z,β)} −
Wη(W,Z,β)× [F{�(V ),Z,β,α} − F(0,Z,β,α)]), φγ ,22 =
E(−η(W,Z,β) [� f {�(V ),Z,β,α}�(V )− F{�(V ),Z,β,
α} + F(0,Z,β,α)]). Also,

γβ = ∂γ(β)

∂βT =
[
0 E{exp(β2U )U }
0 E{exp(β2U )U 2}

]
=
[
0 γ2
0 E{exp(β2U )U 2}

]
,

φβ = E
[
∂φ{O;β,�(V ), γ,α}

∂βT

]
= E

(
[��(V ) f {�(V ),Z,β,α} − F{�(V ),Z,β,α}

+ F(0,Z,β,α)]η(W,Z,β)
(

Z
γ1W − γ2

)(
Z
W

)T
)

+E
[
Z�{γ1 +�(V )η(W,Z,β)} f Tβ {�(V ),Z,β,α}
�{Wγ 2

1 +�(V )(γ1W − γ2)η(W,Z,β)} f Tβ {�(V ),Z,β,α}
]

−E

[
Zη(W,Z,β)[FT

β {�(V ),Z,β,α} − FT
β (0,Z,β,α)]

(γ1W − γ2)η(W,Z,β)
[
FT
β {�(V ),Z,β,α} − FT

β (0,Z,β,α)
]]
,

φ�(O) = ∂φ{O;β,�(V ), γ,α}
∂�(V )

=(
Zη(W,Z,β)[(�−1) f {�(V ),Z,β,α}+ f ′{�(V ),Z,β,α}��(V )]
(γ1W − γ2)η(W,Z,β)[(�−1) f {�(V ),Z,β,α}+ f ′{�(V ),Z,β,α}��(V )]

)
+
[
Z�γ1 f ′{�(V ),Z,β,α}
f ′{�(V ),Z,β,α}�Wγ 2

1

]
,

D4(s) = E
{
Y (s)φ�(O)D1(s)

D1(V )C1(s)

}
,

g(s,W,Z) = D4(s) {γ1(β)+�(s)η(W,Z,β)} ,
ψ1(s, t,Wi,Zi) = I(0 ≤ s ≤ t ){D1(s)/C1(s)D1(t )}{γ1(β)+�(s)η(Wi,Zi,β)}

−{D2(t )(0T, γ2)+ DT
3 (t )}�−1

H g(s,Wi,Zi), ψ2(t,Xi,Ui,W ∗
i ,Zi,Yi)

= D2(t ) fγ ,1(W∗
i ,β)− {D2(t )(0, γ2)+ DT

3 (t )}�−1
H [φ{Oi;β,�(Vi), γ,α}

+φγ fγ (W
∗
i ,β)+ E{φ�(O)D2(V )} fγ ,1(W∗

i ,β)],
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where

�H = φβ + φγ γβ + E
[
φ�(Oi)D3(Vi)

+ {
0(p+1)×p, γ2φ�(Oi)D2(Vi)

}]
.

Finally, define

�M = E
[
φ{Oi;β,�(Vi), γ,α} +

∫ τ

0
g(s,W,Z)dM(s)

+ E
{
φ�(O)D2(V )

}
fγ ,1(W∗,β)+ φγ fγ (W

∗,β)
]⊗2

.

The following theorems establish the consistency and the
asymptotic normality of the estimator in terms of its first-order
asymptotic properties. The regularity conditions and the proofs
are given in the supplementary materials S2, S3, S4, and S5.

Theorem 1. Assume the regularity conditions hold. When
n → ∞, there exists an estimator β̂ from the procedure
described in Section 2.3 so that |̂β − β| → 0 in probability and
supu∈[0,τ ] |�̂{u, β̂, γ̂1 (̂β)} −�(u)| → 0 in probability.

Theorem 2. Assume the regularity conditions hold. When n →
∞,

(i)
√
n(̂β − β) → Normal(0, �−1

H �M�
−T
H ) in distribu-

tion;
(ii)

√
n[�̂{t, β̂, γ̂1 (̂β)} −�(t )] follows a zero-mean Gaus-

sian process with the covariance kernel

�(t, t ′) = E
{∫ τ

0
ψ1(s, t,W,Z)dM(s)

+ ψ2(t,X,U,W ∗,Z,Y )
}⊗2

.

Since the estimating equations in Section 2.3 reduce to (2),
(3), and (4) whenWi = Xi, γ1 = 1, and γ2 = 0, the correspond-
ing variance formula for the error-free case can be directly
derived from the results in these theorems.

3.2. Estimation of The Asymptotic Variance

We now further study how to estimate the asymptotic vari-
ance of β̂. We first write out the relation between X and
Z as X = ϑ1(Z, ζ1)+ ϑ

1/2
2 (Z, ζ2)ex, where ζ1 and ζ2 are

unknown parameters, and E(ex) = 0. Here, for simplic-
ity, we used parametric forms for the mean and variance
function, while nonparametric model can also be used
for increased flexibility. Define two weighted averages
(Hall and Ma 2007) of (W ∗

i1, . . . ,W ∗
im), Wia = ∑m

j=1 a jW ∗
i j ,

and Wib = ∑m
j=1 b jW ∗

i j , where a j = b j = 1/(2[m/2]) for
j = 1, . . . , [m/2], and a j = −b j = 1/(2m − 2[m/2]) for
j = [m/2] + 1, . . . ,m. Here [m/2] denotes the largest

integer ≤ m/2. Note that
∑m

j=1 a j = 1 and
∑m

j=1 b j = 0
and

∑m
j=1 a

2
j = ∑m

j=1 b
2
j . To estimate ζ1 we shall solve∑n

i=1 ∂{ϑ1(Zi, ζ1)/∂ζ1}{Wia − ϑ1(Zi, ζ1)} = 0. To estimate ζ2
we shall solve

∑n
i=1 ∂{ϑ2(Zi, ζ2)/∂ζ2}[{Wia − ϑ1(Zi, ζ̂1)}2 −

σ̂ 2
a − ϑ2(Z, ζ2)] = 0, where σ̂ 2

a = ∑n
i=1W

2
ib/n. Observe that

due to symmetry, the distribution of Uia = ∑m
j=1 a jU ∗

i j is the
same as that ofWib = Uib = ∑m

j=1 b jU ∗
i j , and it is a symmetric

distribution. Thus, the density of Uia can be estimated via
f̂Ua (u) = (1/nh)

∑n
i=1 K{(u −Uib)/h}, where we let K(·) be

a symmetric kernel function and h > 0 be a bandwidth, and
we select the optimal bandwidth via the plug-in bandwidth
selection method given in Sheather and Jones (1991). Next we
estimate ω by maximizing the estimated likelihood ofWia given
Zi, that is,

n∏
i=1

L(n)∑
l=1

ωl
1
nh

n∑
i1=1

K[h−1{(Wia − ϑ1(Zi, ζ̂1)

−ϑ1/2
2 (Zi, ζ̂2)el −Ui1b}],

where we approximate the expectation with respect to ex
through adding the probability masses ω = (ω1, . . . , ωL(n))

T

at points e1 < · · · < eL(n). Define Xil = ϑ1(Zi, ζ̂1)+
ϑ
1/2
2 (Zi, ζ̂2)el , and let ω̂ = (ω̂1, . . . , ω̂L(n))

T ,

κ̂1 =
⎡⎣ 2
nm(m − 1)

m∑
j,k=1, j<k

n∑
i=1

exp{(W ∗
i j −W ∗

ik )2β̂2/m}
⎤⎦m/2

,

κ̂2 =
(
1
2

)(m
2

)
(̂κ1)

(m−2)/m

⎡⎣ 4
nm2(m − 1)

n∑
i=1

∑
j<k

(W ∗
i j −W ∗

ik )

× exp{(W ∗
i j −W ∗

ik )2β̂2/m}
]

be the estimators of ω, κ1, and κ2, respectively. In Section S5 of
the supplementary materials, we express �M as �M = G(1) +
G(2) + G(3) + G(4) + G(5) + (G(4) + G(5))T . This expression
allows us to construct a consistent estimator of the asymptotic
variance of β̂, which we provide in Corollary 1.

Corollary 1. A consistent estimator of the asymptotic vari-
ance of β̂ is n−1�̂−1

H �̂M�̂
−T
H , where �̂H ≡ φ̂β + φ̂γ γ̂β +

n−1∑n
i=1[̂φ�(Oi)D̂3(Vi)+ {0(p+1)×p, γ̂2φ̂�(Oi)D̂2(Vi)}], and

�̂M = Ĝ(1) + Ĝ(2) + Ĝ(3) + Ĝ(4) + Ĝ(5) + (Ĝ(4) + Ĝ(5))T

with Ĝ(1) = n−1∑n
i=1 φ⊗2{Oi; β̂, �̂(Vi), γ̂, α̂}, Ĝ(2) = n−1∑n

i=1�ig⊗2(Vi,Wi,Zi), Ĝ(3) = n−1∑n
i=1[φγ fγ (W

∗
i , β̂)+

E{φ�(O)D̂2(V )} fγ ,1(W∗
i , β̂)]⊗2, Ĝ(4) = n−1∑n

i=1 φ{Oi; β̂,

�̂(Vi), γ̂, α̂}[φγ fγ (W∗
i , β̂)+ E

{
φ�(O)D̂2(V )

}
fγ ,1(W∗

i , β̂)]T,
and

Ĝ(5) = 1
n

n∑
i=1

�iφ{Oi; β̂, �̂(Vi), γ̂, α̂}gT(Vi,Wi,Zi)+ 1
n

n∑
i=1

[
Ziη(Wi,Zi, β̂)

(γ̂1Wi − γ̂2)η(Wi,Zi, β̂)

]

×
∑

Vk :�k=1

f {�̂(Vk),Zi, β̂, α̂}̂λ(Vk)�igT (Vi,Wi,Zi)Yi(Vk)
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+ 1
n

n∑
i=1

L(n)∑
l=1

∑
Vk :�k=1

([
Ziη(Xil,Zi,β){γ̂ 2

1 + �̂(Vk)η(Xil,Zi, β̂ )̂κ1}
γ̂ 3
1 η(Xil,Zi, β̂)Xi + �̂(Vk)η

2(Xil,Zi, β̂)(γ̂1Xil κ̂1 + γ̂1κ̂2 − γ̂2κ̂1)

]

× D̂T
4 (Vk )̂λ(Vk)η(Xil,Zi, β̂)

1 + �̂(Vk)η(Xil,Zi, β̂)

∑
Vj≥Vk

f {�̂(Vj),Zi, β̂, α̂}̂λ(Vj)Yi(Vj)

⎞⎠ ω̂l

− 1
n

n∑
i=1

L(n)∑
l=1

∑
Vk :�k=1

⎛⎜⎝
⎡⎢⎣Zi[γ̂ 2

1 + γ̂ 2
1 {�̂(Vk)+ �̂(Vi)}η(Xil,Zi, β̂)+ �̂(Vk)�̂(Vi)η

2(Xil,Zi, β̂)κ1]
γ̂ 3
1Xil + γ̂ 3

1Xilη(Xil,Zi, β̂)�(Vi)+ γ̂ 2
1 η(Xil,Zi, β̂)�̂(Vk)(γ̂1Xil + γ̂2)

+η2(Xil,Zi, β̂)�̂(Vk)�̂(Vi)(γ̂1κ̂1Xil + γ̂1κ̂2 − γ̂2κ̂1)

⎤⎥⎦

× D̂T
4 (Vk )̂λ(Vk)η(Xil,Zi,β)

1 +�(Vk)η(Xil,Zi,β)
f {�̂(Vi),Zi, β̂, α̂}�iYi(Vk)

⎞⎟⎠ ω̂l .

Note that other than the last two terms of G(5), all other
terms of �M are estimated via empirical averages of observ-
able randomvariables.While the root-n consistency and asymp-
totic normality are established in Theorems 1 and 2, the results
in Corollary 1 further allow us to use these results to perform
inference. All these results are established in the context of
the proportional odds model subject to a symmetric, but oth-
erwise unspecified covariate measurement errors, and without
making any parametric assumption on the distribution of the
unobserved covariate either. Thus, the estimation and inference
are conducted in the functional measurement error framework
(Carroll et al. 2006).

4. Simulation Studies

We now investigate the finite sample performance of the
proposed error corrected method through simulation stud-
ies. We simulated 1000 datasets through generating Z from
Normal(0, 1), and generating X from a two-component
mixture of normal distributions, (1/3)Normal(−0.6, 0.52)+
(2/3)Normal(1.25, 0.52). The purpose of taking such a non-
standard distribution for X is to show that the method can han-
dle any distribution for X . The time-to-event T was generated
from the proportional oddsmodel (1) with�(t ) = t2, and β1 =
β2 = 1. To generate censoring time C independent of X and Z,
we used exp(e1.7) and exp(e0.2), the exponential distributions
with mean e1.7 and e0.2, respectively. This results in an average
of 20% and 50% censoring, respectively. For censoring process
dependent on X and Z, we generated the censoring timeC from
exp(e2.25−X−Z) and exp(e0.75−X−Z), resulting in 20% and 50%
censoring, respectively. The two unbiased surrogate variables
W ∗

1 andW ∗
2 were simulated by adding random noise U ∗ to X .

To show that the proposed error corrected approach can handle
any symmetric error distribution, we considered two different
distributions for U ∗, Normal(0, 1) and Uniform(−1.75, 1.75),
and in both cases the error variances were equal to the variance
of X .

We analyzed the simulated datasets using four methods, the
naivemethod (NV), the regression calibration (RC), themethod
by Cheng and Wang (2001) (referred to as CW), and the error
corrected (COR) method proposed in Section 2.3. For the naive

method, we used the maximum likelihood method of Mur-
phy, Rossini, and van der Vaart (1997) to estimate β and �,
withXi replaced byWi = (W ∗

i1 +W ∗
i2)/2. For the regression cal-

ibration method, we implemented the same maximum likeli-
hood method, but with Xi replaced by X̂i, where X̂i = (1/σ̂ 2 +
1/σ̂ 2

U ){Wi/σ̂
2
U + (ζ̂0 + ζ̂ T1 Zi)/σ̂

2} with σ̂ 2, σ̂ 2
U , ζ̂0, and ζ̂1 being

the estimators of σ 2, σ 2
U = var(U ), ζ0, and ζ1, respectively. Fur-

thermore, ζ0 and ζ1 are the coefficients of the linear regres-
sion of X on Z, whereas σ 2 represents the conditional vari-
ance of X given Z. To implement the method by Cheng and
Wang (2001), we estimated the parameters under the assump-
tion that C is independent of any of T,X,Z, or U ∗, and we
used normal models for both Xi − Xi′ andU ∗

i j −U ∗
i′ j. Finally, in

our error corrected method, we used f {�(t ),Z,β,α} = {1 +
�(t ) exp(Zβ1 + X∗β2)}−2, where X∗ = E(X | Z) was obtained
from the linear model W = X +U = α0 + Zα1 + ε +U , and
the standard errors of the estimator were estimated using the
analytical formula given in Corollary 1 in Section 3. We used
the Newton–Raphson procedure to solve the estimating equa-
tions, with the convergence criterion set to be either the abso-
lute value of the estimating equations are smaller than 10−8 for
each component or the relative difference of the two latest iter-
ations is smaller than 10−8 for each component in the β. Both
convergence criteria are standard in the usual statistical soft-
wares. In estimating standard errors, integrals such as

∫ t
0 f ∗d�̂

are replaced by
∑

k:tk≤t,�k=1 f ∗(tk )̂λ(tk), for any generic func-
tion f ∗.

Tables 1 and 2 contain the simulation results for the normal
and uniform errors, respectively. For both tables we took two
different sample sizes n = 500 and 1000. We presented the bias,
empirical standard error, median absolute deviation. In addi-
tion, for our error corrected method, we also provided the esti-
mated standard error and the Wald-type 95% coverage proba-
bility.

The general trend is the same in both tables. Overall the naive
estimator is very biased. The regression calibration estimator has
smaller bias, but its bias is still substantial compared with our
error corrected estimator. In fact, the finite sample bias, espe-
cially in estimating β2, is greatly reduced in the proposed error
correctedmethod. The variance of the estimators decreases with
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Table . Results of the simulation study with 1000 replications. NV, RC, CW, and COR stand for the naive, regression calibration, Cheng and Wang (), and the error
corrected estimators. SD, ESE, and CP denote the standard deviation of the estimates, estimated standard error based on the formula, and the % coverage probabilities.
The errorsU∗ ∼ Normal(0, 1). All entries are multiplied by 

n = 500 n = 1000

NV RC CW COR NV RC CW COR

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring depends on X and Z Censoring depends on X and Z
20% Censoring 20% Censoring

Bias − . − . − . − . − . − . . . − . − . − . − . − . − . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

50% Censoring 50% Censoring
Bias − . − . − . − . − . − . . . − . − . − . − . − . − . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

Censoring is independent of X and Z Censoring is independent of X and Z
20% Censoring 20% Censoring

Bias − . − . − . − . . . . . − . − . − . − . . . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

50% Censoring 50% Censoring
Bias − . − . − . − . . . . . − . − . − . − . . . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

Table . Results of the simulation study with 1000 replications. NV, RC, CW, and COR stand for the naive, regression calibration, Cheng and Wang (), and the error
corrected estimators. SD, ESE, and CP denote the standard deviation of the estimates, estimated standard error based on the formula, and the % coverage probabilities.
% coverage probabilities are denoted by CP. The errorsU∗ ∼ Uniform(−1.75, 1.75). All entries are multiplied by 

n = 500 n = 1000

NV RC CW COR NV RC CW COR

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring depends on X and Z Censoring depends on X and Z
20% Censoring 20% Censoring

Bias − . − . − . − . − . − . . . − . − . − . − . − . − . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

50% Censoring 50% Censoring
Bias − . − . − . − . − . − . . . − . − . − . − . − . − . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

Censoring is independent of X and Z Censoring is independent of X and Z
20% Censoring 20% Censoring

Bias − . − . − . − . . . . . − . − . − . − . . . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .

50% Censoring 50% Censoring
Bias − . − . − . − . . . . . − . − . − . − . . . . .
SD . . . . . . . . . . . . . . . .
MAD . . . . . . . . . . . . . . . .
ESE . . . .
CP . . . .
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Table. Results of the simulation studywith2000 replications.NV, RC, CW, andCOR
stand for the naive, regression calibration, Cheng and Wang (), and the error
corrected estimators. SD and MSE denote the standard deviation and the mean
squared error, respectively. The errorsU∗ ∼ Uniform(−1.75, 1.75). All entries are
multiplied by 

Case  Case  Case 

Method Bias SD MSE Bias SD MSE Bias SD MSE

NV β1 − . . . − . . . − . . .
β2 − . . . − . . . − . . .

RC β1 − . . . − . . . − . . .
β2 − . . . − . . . − . . .

CW β1 − . . . − . . . − . . .
β2 − . . . − . . . − . . .

COR β1 . . . . . . . . .
β2 . . . . . . . . .

the sample size n. Importantly, the estimated standard error
based on our asymptotic results and the empirical standard error
are quite close, and the coverage probabilities are reasonably
close to the nominal level.

When the censoring timeC is independent of both covariates
and is generated from an exponential distribution, the method
of Cheng and Wang (2001) works surprisingly well (Tables 1
and 2) despite the fact that several model assumptions are vio-
lated in these simulations. However, as soon as the censoring
mechanism depends on X and Z or the censoring rate is high,
their method shows large bias. To further investigate this mat-
ter, in the uniform measurement error scenario with n = 1000,
we generated C in three different cases. In case 1, C followed
exp(0.22). In case 2, C followed Uniform(0, 0.5). In case 3, C
followed exp(e−0.8−X−Z). All three cases have about 85% cen-
soring, roughly the same as in the data example. In case 1, C is
independent of the covariates and the supports of the time-to-
event T and censoring time C are similar. In case 2, C is also
independent of the covariates, but the support of C is shorter
than that of T . This is a common scenario in many clinical stud-
ies and is also the case for our real data example. In case 3, the
censoring mechanism depends on the covariates and the sup-
ports of T andC are similar. These simulation results in Table 3
indicate dramatically large estimation bias and mean squared
error (MSE) of the Cheng andWang (2001) method in compar-
ison with our method for cases 2 and 3. In case 1, although the
bias of CW is comparable with ours, their MSE is larger than
ours. In conclusion, for heavy censoring, regardless of whether
censoring is dependent on the covariates or not, the bias of the
CWmethod is substantial. This study verifies the inconsistency
of the estimating equations of Cheng and Wang (2001), similar
to the inconsistency of Cheng et al. (1995) pointed out by Fine,
Ying, and Wei (1998).

Finally, the computation of the proposed error corrected
estimator is also much simpler and faster than that of the
Cheng and Wang (2001) method. This is mainly because their
method requires numerical integration and is hence very time
consuming.

5. Real Data Analysis

For the purpose of illustration, we now apply the proposed
method to analyze a dataset from the ACTG 175 study, a clinical

Table . Analysis of the ACTG  aids clinical trial data. Est. and SE stand for esti-
mate and standard error, respectively. Z, Z+D, Z+Z, and D stand for zidovudine,
zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine, respec-
tively. Here Est. and SE stand for the estimates and standard errors, respectively.
For theNV, RC, andCWmethods, the standard errorswere calculatedbasedon 
bootstrap samples. For the COR method, the standard errors are based on asymp-
totic results

NV RC CW COR

Covariates Est. SE Est. SE Est. SE Est. SE

Z+D (Ref: Z) − . . − . . − . . − . .
Z+Z (Ref: Z) − . . − . . − . . − . .
D (Ref: Z) − . . − . . − . . − . .
log(CD) − . . − . . − . . − . .

trial of HIV therapy (Hammer et al. 1996). This was a random-
ized double-blinded study to investigate the effect of a single
nucleoside or two nucleosides amongHIV-1 infected adults.We
considered only n = 1036 subjects who did not have antiretro-
viral treatment before this trial, and among them 262 received
600 mg of zidovudine (treatment 1), 257 received 600 mg
of zidovudine plus 400 mg of didanosine (treatment 2), 260
received 600 mg of zidovudine plus 2.25 mg of zalcitabine
(treatment 3), and 257 received 400 mg of didanosine (treat-
ment 4). The primary clinical endpoints were progression to
AIDS and/or death, thus we consider T as the time to AIDs or
death from the date the treatment started. In our data, only 85
subjects experienced the events during an average follow-up
time of 32 months. For all subjects, two (m = 2) baseline CD4
measurements that were taken prior to the treatment started
were available. CD4 cells help to fight infection. Therefore, low
CD4 counts indicate weak immune system and it is used as a
marker of the stage of HIV disease.

We fit model (1) to this dataset, where the logarithm of the
actual CD4 count at the baseline minus 5.89 is considered as
X . The two baseline measurements are considered as two erro-
neous measurements for X . The three dummy variables corre-
sponding to the four treatments are considered to be error-free
covariates Z where treatment 1 is considered as the reference
category. We analyze the dataset using four methods, NV, RC,
CW, and COR described in the simulation section. For the CW
method, T andC are assumed to be independent.

Table 4 contains the estimates and their corresponding stan-
dard errors. Allmethods indicate a statistically significant (at the
5% level) association between X and T . We also find that com-
pared to the monotherapy with zidovudine, other three ther-
apies have statistically significant association (at the 5% level)
with T , in particular, the results indicate that the therapies
tend to delay the time-to-event. Interestingly, after adjusting
for the measurement errors, the CW estimate of the coefficient
for CD4 counts, β2, is substantially different from that of NV,
RC, and COR methods, although the effect of the log(CD4)
still turned out to be statistically significant. Our experience
with the simulation studies indicates that the distinct result
of the CW estimator is likely due to the high censoring per-
centage in the data (around 90%), shorter support of C com-
pared to that of T as the subjects were followed for a maximum
of three and half years, and the possible dependence between
the covariates and the censoring mechanism, which violate the



1310 S. SINHA AND Y. MA

Table . Analysis of the ACTG  aids clinical trial data using the error corrected method with f {�(u),Z,β,α} = 1/{1 +�(u)η(X∗,Z,β,α)}r . Est. and SE stand for
estimate and standard error, respectively. Z, Z+D, Z+Z, and D stand for zidovudine, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively

Covariates r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 10 r = 15

Z+D (Ref: Z) Est. − . − . − . − . − . − . − . − .
SE . . . . . . . .

Z+Z (Ref: Z) Est. − . − . − . − . − . − . − . − .
SE . . . . . . . .

D (Ref: Z) Est. − . − . − . − . − . − . − . − .
SE . . . . . . . .

log(CD) Est. − . − . − . − . − . − . − . − .
SE . . . . . . . .

model assumption required by the CW estimator. The depen-
dence between the covariates and the censoring mechanism is
indicated when we fit the Cox model to the censoring distri-
bution using (Vi, (1 −�i),Zi,W †

i ), i = 1, . . . , n, whereW †
i =

I(Wi < −0.4), with −0.4 being the 15th quantile of Wi. The
results show statistically significant association (at the 1% level)
between C and covariates (Z andW †). So, we also suspect that
C and X are dependent as well.

Inspired by a referee’s suggestion, we further estimated
the parameters using the proposed method with f = 1/{1 +
�(u)η(X∗,Z,β)}r for r = 0, 1, 2, 3, 4, 5, 10, 15. Based on the
results inTable 5, although the estimates differwith r, themagni-
tude of the change is quite small. Our experience in more exten-
sive numerical experiments not reported here also indicates that
the variability in estimating β is somewhat insensitive to the
choice of f .

Following a referee’s request, we also conducted a model
checking for this data example. Because there is no existing
method to check proportional odds assumption when a covari-
ate is measured with errors, we developed the following graph-
ical tools, inspired by the graphical tools developed for the Cox
proportional hazard model without measurement errors (Klein
and Moeschberger 2003, chap. 11.4, p. 363). Note that the pro-
portional odds model has the property pr(T ≤ t|X,Z)/pr(T >
t|X,Z) = log{�(t )} + βT

1 Z + β2X . In the data example, Z is
a nominal categorical variable. Define X† to be zero when X
is less than or equal to r = −0.1 and one otherwise, where
r = −0.1 is the median ofWi. Define prz(T ≤ t|X†) = pr(T ≤
t|X†,Z = z). Then in each category of Z, we plot log{p̂rz(T ≤
t|X†)/p̂rz(T > t|X†)} as a function of time t . If the propor-
tional odds assumption holds, then the two curves correspond-
ing to X† = 0 and X† = 1 will have the same shape and they
will differ only by a constant shift. Here log{p̂rz(T ≤ t|X†)} is
an estimator of log{prz(T ≤ t|X†)}. When X is measured with
error, deterministic classification of the subjects into two groups
X† = 0 and X† = 1 is not possible. Therefore, first we estimate
pr(X†

i = 0|Wia) = pr(Xi ≤ r,Wia)/ f (Wia) through

qi = p̂r(Xi ≤ r,Wia)

f̂ (Wia)

=
∑L(n)

l=1 ωl
∑n

k=1 K[h
−1{(Wia − Xil −Ukb}]I(Xil ≤ r)∑L(n)

l=1 ωl
∑n

k=1 K[h−1{(Wia − Xil −Ukb}]
,

where Xil = ϑ1(Zi, ζ̂1)+ ϑ
1/2
2 (Zi, ζ̂2)el . To estimate the sur-

vival function prz(T > v|X† = k) with uncertain membership,
we use the procedure developed in Ma, Hart, and Carroll

(2011) for estimating a distribution function. Note that
for any v , E{I(Vi > v )} = qiprz(Ti > v|X†

i = 0)prz(Ci >

v|X†
i = 0)+ (1 − qi)prz(Ti > v|X†

i = 1)prz(Ci > v|X†
i = 1)

for i = 1, . . . , n. Thus, using I(Vi > v ) as the observed response
and qi = (qi, 1 − qi)T as the observed predictor for the ith sub-
ject, the least-square solutions of the unknowns are⎧⎨⎩

prz(T > v|X† = 0)prz(C > v|X† = 0)

prz(T > v|X† = 1)prz(C > v|X† = 1)

⎫⎬⎭
=
⎛⎝∑

i:Zi=z

qiq
T
i

⎞⎠−1 ∑
i:Zi=z

qTi I(Vi > v ). (9)

To further handle the censoring issue and to extract the sur-
vival function prz(T > v|X† = k) alone, we consider the fol-
lowing. Let λT0(t ) and λT1(t ) be the hazard of T when Z =
z and X† = 0 and X† = 1, respectively, and the correspond-
ing hazard of the censoring variable are λC0(t ) and λC1(t ),
respectively. Then prz(T > v|X† = k) = exp{− ∫ v

0 λTk(u)du}
and prz(C > v|X† = k) = exp{− ∫ v

0 λCk(u)du} for k = 0 and
1. SinceN(t )− ∫ t

0 Y (s){qλT0(s)+ (1 − q)λT1(s)}ds and I(V ≤
t,� = 0)− ∫ t

0 Y (s){qλC0(s)+ (1 − q)λC1(s)}ds are two mar-
tingale processes, for any v , we consider two sets of estimating
equations

n∑
i=1

dNi(v ) = λT0(v )

n∑
i=1

qiYi(v )+ λT1(v )

n∑
i=1

(1 − qi)Yi(v ),

(10)
n∑

i=1

I(Vi = v,�i = 0) = λC0(v )

n∑
i=1

qiYi(v )

+λC1(v )
n∑

i=1

(1 − qi)Yi(v ). (11)

Therefore, for each v we estimate the hazards from Equations
(9)–(11). Once the hazards are estimated, we obtain p̂rz(T >
v|X† = k) = exp{−∑

i:ui≤v,�i=1 λ̂Tk(ui)} and produce the plots
in Figure 1. None of the four plots indicates any striking viola-
tion of the proportional odds assumption, such as crossing of
the curves. Thus, proportional odds model is a suitable model
for this dataset. Although the method was developed for a dis-
cretized X , the method is useful for detecting any major model
violation.
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Figure . Plot of log{pr(T ≤ t )/pr(T > t )} versus t for each treatment group. The solid anddotted curves correspond to the cases ofX ≤ −0.1 andX > −0.1, respectively,
where X = log(True CD count)− 5.89. Z, Z+D, Z+Z, and D represent zidovudine, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively.

6. Discussion

We have proposed an error correctedmartingale-based estimat-
ing equation to analyze the time-to-event data in the propor-
tional odds model when both covariate measurement error and
right censoring to event time occur. In contrast to the existing
literature, we do not assume or estimate the distribution for the
measurement errors or for the true unobservable covariates. We
have merely required multiple measurements, which is needed
even for identifiability in such models. Our results on the theo-
retical properties of the estimators show that the estimators have
the desired asymptotic properties that facilitate further infer-
ence. Finally, although the estimator is designed for errors in
covariates, it captures the usual error-free covariates case as well
by simply allowing the error distribution to be a point mass at
zero. This provides a new estimator in its own for the usual pro-
portional odds models without measurement errors. As pointed
out by a referee, small sample and large error variance can break
any consistent estimator designed for measurement error prob-
lems. Thus, improving the finite sample performance under
small sample size and large error, such as the one investigated
in Song and Huang (2005), is definitely an important research
question worth investigating.

Compared to the Cox model, other time-to-event models
have received relatively less attentionwhen an important covari-
ate is measured with errors. The present article with nonpara-
metric correction is the first attempt to break such barrier. How-
ever, the problem is far from being completely resolved. For
example, estimation efficiency is not achieved in the estimator.

In fact, our preliminary analysis indicates that even in the Cox
model, efficient estimator can be hard to achieve. The main dif-
ficulties in achieving efficiency include the need to estimate the
measurement error distribution, the need to estimate the dis-
tribution of the covariate subject to error, and the need to esti-
mate the censoring process when covariates are not all observ-
able.We envision that the proposed error correctedmethod and
some of its apparent limitations will help generate new ideas.
In particular, the proposed error corrected method will be use-
ful for developing methods for handling measurement errors in
multiple time-dependent covariates (Song, Davidian, and Tsi-
atis 2002) in the proportional odds model. Also, we believe that
existing variable selection technique in the presence ofmeasure-
ment error (Ma and Li 2010) can be integrated with our pro-
posed error corrected method in the time-to-event model, in
particular in the proportional oddsmodel. Ourmethodwill also
help to develop methodology for handling covariate measure-
ment errors in multivariate failure time model (Greene and Cai
2004).

We acknowledge that the proposed estimating equation-
based method faces the potential difficulty of having multiple
roots in finite samples and even in large samples. Although there
are some available methods for multiple roots of estimating
equations in parametric models (Small and Wang 2003, p.
163), as far as we are aware, in the current literature of
semiparametricmodels like ours, multiple roots issue is handled
through empirical analysis. For example, in the measurement
error problems, one could compare the naive estimator and the
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regression calibration estimatorwith themultiple roots obtained
from the estimating equations, and choose the root that is most
sensible based on the knowledge that regression calibration esti-
mator is an approximately consistent estimator that corrects the
bias inherent in the naive estimator. Alternatively, in the pres-
ence of multiple roots, one may compute an estimated version
of the likelihood

L =
n∏
i=1

{∫
fY |Z,X (Vi|X,Zi) fW,X |Z(Wia,X |Zi)dX

}�i

×
{∫

pr(Ti ≥ Vi|X,Zi) fW,X |Z(Wia,X |Zi)dX
}1−�i

,

via

L̂ =
n∏
i=1

L(n)∑
l=1

n∑
k=1([∑k

j=1{�̂(tn j )− �̂(tn j−1 )}I(tn j ≤ Vi < tn j+1 )η(Xil,Zi, β̂)

{1 + ∑k
j=1 �̂(tn j )I(tn j ≤ Vi < tn j+1 )η(Xil,Zi, β̂)}2

]�i

×
{

1
1 + ∑k

j=1 �̂(tn j )I(tn j ≤ Vi < tn j+1 )η(Xil,Zi, β̂)

}1−�i)
×
(
ω̂l

nh

)
K{h−1(Wia − Xil −Wkb)},

and choose the root that maximizes L̂. The notations ω̂,Xil ,Wia,
Wib, K, and h are defined in Section 3.2.

SupplementaryMaterials

The supplementary materials contain a detailed derivation of whγ2, reg-
ularity conditions, necessary lemmas, and the proof of the Theorems and
Corollary 1.

Acknowledgment

The authors are grateful to the review team for insightful comments that led
to a significant improvement of the article.

Funding

The work was partially supported by the National Science Founda-
tion (DMS-1206693), the National Institute of Neurological Disorders
and Stroke (R01-NS073671), and the National Cancer Institute (R03-
CA176760).

References

Buzas, J. S. (1998), “Unbiased Scores in Proportional Hazards Regression
With CovariateMeasurement Error,” Journal of Statistical Planning and
Inference, 67, 247–257. [1301]

Carroll, R. J., Ruppert, A., Stefanski, L. A., and Crainiceanu, C. (2006),Mea-
surement Error in Nonlinear Models: A Modern Perspective (2nd ed.),
London: CRC Press. [1302,1303,1307]

Cheng, S.-C., and Wang, N. (2001), “Linear Transformation Models for
Failure Time Data With Covariate Measurement Error,” Journal of the
American Statistical Association, 96, 706–716. [1301,1307,1309]

Cheng, S. C., Wei, L. J., and Ying, Z. (1995), “Analysis of Transformation
Models With Censored Data,” Biometrika, 82, 835–845. [1301,1309]

Fine, J., Ying, Z., and Wei, L. J. (1998), “On the Linear Transformation
Model for Censored Data,” Biometrika, 85, 980–986. [1309]

Greene, W. F., and Cai, J. (2004), “Measurement Error in Covariates in the
Marginal Hazards Model for Multivariate Failure Time Data,” Biomet-
rics, 60, 987–996. [1311]

Hall, P., and Ma, Y. (2007), “Measurement Error Models With Unknown
Error Structure,” Journal of Royal Statistical Society, Series B, 69, 429–
446. [1306]

Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schoo-
ley, R. T., Haubrich, R. H., Henry, W., Lederman, M. M., Phair,
J. P., Niu, M., Hirsch, M. S., and Merigan, T. C. (1996), “A Trial
Comparing Nucleoside Monotherapy With Combination Therapy in
HIV-infected Adults With cd4 Cell Counts From 200 to 500 Per
Cubic Millimeter,” The New England Journal of Medicine, 335, 1081–
1090. [1309]

Hu,C., andLin,D. Y. (2002), “CoxRegressionWithCovariateMeasurement
Error,” The Scandinavian Journal of Statistics, 29, 637–655. [1301]

Huang, J. (1995), “Maximum Likelihood Estimation for Proportional
odds Regression Model With Current Status Data,” Analysis of Cen-
sored Data (IMS Lecture Notes Monograph Series), 27, 129–145.
[1301]

Huang, Y., andWang, C. Y. (2000), “Cox RegressionWith Accurate Covari-
atesUnascertainable: ANonparametric-CorrectionApproach,” Journal
of the American Statistical Association, 95, 1209–1219. [1301,1303]

——— (2001), “Consistent Functional Methods for Logistic Regression
With Errors in Covariates,” Journal of the American Statistical Associa-
tion, 96, 1469–1482. [1301]

Klein, J. P., and Moeschberger, M. L. (2003), Survival Analysis, Techniques
for Censored and Truncated Data, New York: Springer. [1310]

Li, T., and Vuong, Q. (1998), “Nonparametric Estimation of the Measure-
ment Error Model Using Multiple Indicators, Journal of Multivariate
Analysis, 65, 139–165. [1303]

Ma, Y., Hart, J. D., and Carroll, R. J. (2011), “Density Estimation in Several
Populations With Uncertain Population Membership,” Journal of the
American Statistical Association, 106, 1180–1192. [1310]

Ma, Y., and Li, R. (2010), “Variable Selection in Measurement Error Mod-
els,” Bernoulli, 16, 274–300. [1311]

Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997), “MLE in the
Proportional Odds Model,” Journal of the American Statistical Associa-
tion, 92, 968–976. [1301,1303,1307]

Nakamura, T. (1990), “Corrected Score Function for Errors-in-variables
Models: Methodology and Application to Generalized LinearModels,”
Biometrika, 77, 127–137. [1301]

——— (1992), “Proportional Hazards Model With Covariates Subject to
Measurement Error,” Biometrics, 48, 829–838. [1301]

Prentice, R. L. (1982), “Covariate Measurement Errors and Parameter Esti-
mation in a Failure Time Regression Model,” Biometrika, 69, 331–342.
[1301]

Rossini, A. J., and Tsiatis, A. A. (1996), “A Semiparametric Proportional
Odds Regression Model for the Analysis of Current Status Data,” Jour-
nal of the American Statistical Association, 91, 713–721. [1301]

Sheather, S. J., and Jones, M. C. (1991), “A Reliable Data-based Bandwidth
Selection Method for Kernel Density Estimation,” Journal of the Royal
Statistical Society, Series B, 53, 683–690. [1306]

Small, C. G., andWang, J. (2003),NumericalMethods for Nonlinear Estimat-
ing Equations, Oxford, UK: Oxford University Press. [1311]

Song, X., Davidian,M., and Tsiatis, A. A. (2002), “An Estimator for the Pro-
portional HazardsModelWithMultiple Longitudinal Covariates Mea-
sured With Error,” Biostatistics, 3, 511–528. [1311]

Song, X., and Huang, Y. (2005), “On Corrected Score Approach for Propor-
tional HazardsModelWith CovariateMeasurement Error,” Biometrics,
61, 702–714. [1301,1311]

Wen,C.C., andChen, Y.-H. (2012), “Conditional ScoreApproach toErrors-
in-variable Current Status Data Under the Proportional Odds Model,”
Scandinavian Journal of Statistics, 39, 635–644. [1301]

Zhou, H., and Wang, C. Y. (2000), “Failure Time Regression With Contin-
uous Covariates Measured With Error,” Journal of the Royal Statistical
Society, Series B, 62, 657–665. [1301]

Zucker, D. (2005), “A Pseudo Partial Likelihood Method for Semi-
parametric Survival Regression With Covariate Errors,” Jour-
nal of the American Statistical Association, 100, 1264–1277.
[1301,1302]


	Abstract
	1.Introduction
	2.Methodology
	2.1.Model
	2.2.Error Free Estimator
	2.3.Estimator Under Measurement Error
	2.4.Estimation of  and 
	2.5.The Complete Estimation Procedure

	3.Asymptotic Properties
	3.1.Asymptotic Properties
	3.2.Estimation of The Asymptotic Variance

	4.Simulation Studies
	5.Real Data Analysis
	6.Discussion
	Supplementary Materials
	Acknowledgment
	Funding
	References

