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S

A class of semiparametric estimators are proposed in the general setting of functional
measurement error models. The estimators follow from estimating equations that are
based on the semiparametric efficient score derived under a possibly incorrect distri-
butional assumption for the unobserved ‘measured with error’ covariates. It is shown that
such estimators are consistent and asymptotically normal even with misspecification and
are efficient if computed under the truth. The methods are demonstrated with a simulation
study of a quadratic logistic regression model with measurement error.
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1. I

A common problem is that of making inference about the relationship of a response
variable Y to predictor variables, some of which may be measured with error. Using the
notation of Carroll et al. (1995), we denote by Z the predictor variables that are measured
precisely and by X those that are not. Instead, variables W , which are related to X, are
observed.

To be specific, we consider parametric models with conditional densities p(y |x, z; b),
where the conditional distribution of Y given X and Z is described through a finite-
dimensional parameter b. For example, with a binary response Y , a popular model is the
logistic regression model that assumes logit{pr(Y=1 |X, Z)}=b0+bT1X+bT2Z, where
logit( p)= log{p/(1−p)}. If the variables (Y , X, Z) were available for a sample of obser-
vations, then an estimator for b can easily be derived using, say, maximum likelihood.
In our problem, the variables X are not measured directly, but rather we measure W ,
a surrogate for X; thus the observed data are (Y , W , Z). The objective of this paper is to
derive estimators for b with a sample of data (Y

i
, W
i
, Z
i
) for i=1, . . . , n.

We denote the conditional density of W given X and Z by p(w |x, z). For example, a
popular model is additive normally-distributed measurement error, where W=X+e
and e, the measurement error, is normally distributed with mean zero and variance s2

e
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independent of (Y , X, Z). For this model, p(w |x, z)= (2ps2
e
)−D exp{−(w−x)2/2s2

e
}. It will

be assumed throughout that p(w |x, z) is known; for example, this would correspond to
the variance s2

e
of the additive normally distributed measurement error being known.

However, this assumption can be weakened to allow for unknown parameters. For
example, with replicate measurements on W, the variance s2

e
can be treated as an

unknown parameter and estimated along with b. We also make the usual assumptions
of surrogacy; that is, Y and W are conditionally independent given X and Z, so that
p(y |w, x, z)=p(y |x, z).

Traditionally, the literature makes the distinction between classical functional models,
where the unobserved true X’s are regarded as a sequence of unknown fixed constants,
and classical structural models, in which the X’s are regarded as random variables
following some parametric model. In this paper, we consider measurement error models
where X is considered a random variable but no restriction is made on the conditional
distribution of X given Z. Using the terminology of Carroll et al. (1995, § 7.2), we refer
to such models as ‘functional’ measurement error models. As such, these functional
measurement error models are semiparametric models with a finite-dimensional parameter
b of interest and an infinite-dimensional nuisance parameter corresponding to the non-
parametric conditional distribution of X given Z. Such functional measurement error
models are also examples of mixture models as summarised by Lindsay & Lesperance
(1995) and van der Vaart (1996).

For some specific situations, semiparametric estimators have been proposed for the
parameter b in functional measurement error models. These generally include models
that admit a statistic, y

b
(Y , W , Z), which is complete and sufficient for the nuisance

parameter corresponding to the nonparametric conditional density p(x |z) given a fixed
value of b. As described by Carroll et al. (1995), complete sufficient statistics occur
naturally for models where the distribution of Y given X and Z is a canonical generalised
linear model and there is additive normally distributed measurement error. A simple
example is the linear logistic regression model with a single covariate X given by
logit{pr(Y=1 |X)}=b0+b1X and additive normal measurement error. Estimators for
such models were studied in detail by Stefanski & Carroll (1985, 1987).

For models where such a complete sufficient statistic exists, semiparametric estimators
have been derived and the efficient estimator has been characterised. For a survey of these
methods see Carroll et al. (1995, § 6). In more general problems where no such complete
sufficient statistic exists, to the best of our knowledge, little is known about how to derive
feasible semiparametric estimators for b. For example, the existing theory could not be
used to derive an estimator for the parameters in a logistic regression model with a single
covariate that includes a quadratic term, i.e.

logit{pr(Y=1 |X)}=b
0
+b
1
X+b

2
X2 , (1)

and normal additive measurement error. This model will be used later to illustrate the
proposed methods.

In this paper, we construct estimators for the parameter b in functional measurement
error models by defining estimating equations using the efficient score derived as the
residual after projecting the score vector with respect to the parameter b on to the nuisance
tangent space for the nonparametric conditional distribution of X given Z. However,
the projection on to the nuisance tangent space involves the unknown distribution of X
given Z. Although the distribution of X given Z can be estimated nonparametrically using
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deconvolution, the rate of convergence may be slow. The innovation of this paper is to
show that the residual, derived under an incorrectly specified model for the distribution
of X given Z, has mean zero. This allows us to compute the residuals from a sample of
data using a simpler, but possibly incorrect, model for the distribution of X given Z to
form estimating equations whose solution will still yield consistent semiparametric esti-
mators of b. Moreover, if the correct model is used to derive the projection to the nuisance
tangent space, then the estimator will be semiparametric efficient. Such an estimator is
referred to as locally efficient.

2. N  

We consider regular asymptotically linear estimators for the q-dimensional parameter
vector b, derived from a sample of data, represented by the independent and identically
distributed random vectors O

i
(i=1, . . . , n), where O

i
= (Y
i
, W
i
, Z
i
); that is, the estimator

minus the estimand can be approximated asymptotically by a sum of independent and
identically distributed zero-mean random vectors. To be specific, an estimator b@

n
for the

parameter b is asymptotically linear if

nD (b@
n
−b)=n−D ∑

n

i=1
w(O
i
)+o
p
(1),

where w(O
i
) (i= 1, . . . , n) are independent and identically distributed zero-mean

q-dimensional random vectors and o
p
(1) denotes a term that converges in probability to

zero. The random vector w(O
i
) is referred to as the ith influence function of the estimator

b@
n
. The restriction to regular estimators is a technical condition imposed to exclude

estimators that have undesirable local properties; for details, see Newey (1990). It is clear
from the representation above that the asymptotic variance of a regular asymptotically
linear estimator is equal to the variance of its influence function. Consequently, the
optimal estimator among a class of regular asymptotically linear estimators is the one
whose influence function has the smallest variance.

A geometric point of view is taken in which influence functions of a single observation
for regular asymptotically linear estimators of b lie in the Hilbert space H of all L 2
q-dimensional zero-mean measurable functions, h(O), of the observed data, with finite
variance, equipped with the inner product �h1 , h2�=E{hT

1
(O)h2 (O)}, where h1 , h2µH

and normdhd={E(hTh)}D . Note that when we refer to functions of a single observation
we often suppress the subscript i. This geometric representation is useful because it will
enable us to identify influence functions of regular asymptotically linear estimators, which,
in turn, will motivate estimating equations that will yield semiparametric estimators
for b. According to the theory of semiparametrics, see for example Bickel et al. (1993),
influence functions for regular asymptotically linear estimators belong to the linear space
orthogonal to the nuisance tangent space, as we now describe.

Consider a parametric model where the density of the data is given by p(o; b, g), where
b is the q-dimensional parameter of interest, and g is an r-dimensional nuisance parameter.
Denote by S

b
(O) and S

g
(O) the score vectors with respect to b and g respectively, where

the score vector is defined as the partial derivative of the loglikelihood with respect to the
indicated parameters. We denote by b0 and g0 the true values of the parameters, and,
unless otherwise stated, the score vectors are evaluated at the true values. For a parametric
model, the nuisance tangent space, denoted by L, is the linear space in H that is spanned
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by the nuisance score vector S
g
(O); that is, L={BS

g
(O) for all q×r matrices B}. For

semiparametric models, in which the nuisance parameter is infinite-dimensional, the
nuisance tangent space L is defined as the mean squared closure of all parametric sub-
model nuisance tangent spaces. Roughly speaking, a parametric submodel is a parametric
model contained in the semiparametric model that contains the truth, i.e. contains (b0 , g0 ).
By the projection theorem for Hilbert spaces (Luenberger, 1969, p. 51), the projection of
hµH on to a closed linear subspace L of H is the unique element in L, denoted by
P (h |L), such that dh−P (h |L)d is minimised and the residual h−P (h |L) is orthogonal
to all lµL; that is, E[{h−P (h |L)}Tl]=0 for all lµL. The efficient score Seff (O) for the
semiparametric model is the residual of the score vector S

b
after projecting it on to

the nuisance tangent space L, denoted by Seff=S
b
−P (S

b
|L), and the efficient influence

function is weff (O)= (E[{Seff (O)STeff (O)}])−1Seff (O). In general, the variance of weff , given
by (E[{Seff (O)STeff (O)}])−1 , achieves the so-called semiparametric efficiency bound, i.e. the
supremum over all parametric submodels of the Cramér–Rao lower bounds for b.

3. T      

3·1. Under the truth

Data from measurement error models can be viewed as coarsened data; that is, if we
denote the full or complete, but possibly unobserved, data for the ith observation by D

i
then the coarsened observed data O

i
are defined by a many-to-one function of D

i
. In our

case the full data are D
i
= (Y
i
, X
i
, W
i
, Z
i
) and the observed data are O

i
= (Y
i
, W
i
, Z
i
). The

probability model for the observed data is induced from the underlying probability model
for the full data. Under the assumptions previously stated, the probability density of the
full data is given by

p(d; b, g
1
, g
2
)=p(y |x, z; b)p(w |x, z)g

1
(x |z)g

2
(z), (2)

where b, the parameter of interest, is q-dimensional, whereas the nuisance parameters
g= (g1 , g2 ) are infinite-dimensional, reflecting the fact that no restriction is put on the
conditional distribution of X given Z or the marginal distribution of Z. Influence functions
of regular asymptotically linear estimators for b, based on the full data D, lie in the Hilbert
space HF corresponding to all q-dimensional zero-mean functions of the full data with
finite variance and inner product �h1 , h2�=E{hT

1
(D)h
2
(D)} for h1 , h2µHF. As a result of

the factorisation given in (2), the nuisance tangent space, LF, is the mean squared closure
of the tangent spaces of parametric submodels g1 (x |z; j1 ) and g2 (z; j1 ) given by the sum
of two subspaces; that is LF=LF

1
CLF
2
, where (Newey, 1990)

LF
1
=[h1 (X, Z)µHF such that E{h

1
(X, Z)|Z}=0],

LF
2
=[h

2
(Z)µHF such that E{h

2
(Z)}=0].

The nuisance tangent space can also be represented as

LF=[h(X, Z)µHF such that E{h(X, Z)}=0].

The full-data score vector SF
b
(Y , X, Z) is the q-dimensional vector ∂/∂b{log p(Y |X, Z; b)}.

Again, because of the factorisation in (2), it is easy to show that LF
1

is orthogonal to LF
2

and that SF
b
(Y , X, Z) is orthogonal to LF

1
CLF
2
.
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Since the score vector S
g
(O) for coarsened data O is equal to E{S

g
(D) |O}, see for

example Rao (1973, p. 330), the observed (coarsened) data nuisance tangent space is given
by L=L1CL2 , where

L=E(LF |Y, W , Z)

=[E{h(X, Z) |Y, W , Z}, where h(X, Z)µLF ; that is E{h(X, Z)}=0], (3)

L1=E(LF
1
|Y, W , Z) and L

2
=LF
2
. Also with coarsened data, the score vector with respect

to b is given by

S
b
(Y , W , Z)=E{SF

b
(Y , X, Z) |Y , W , Z}. (4)

It is important to keep in mind the fact that a Hilbert space depends on the probability
distribution that generates the data, both in terms of identifying the elements of the space
of zero-mean random vectors and of defining the inner product. Consequently, different
probability distributions define different Hilbert spaces. In working with these Hilbert
space representations, it is generally assumed that the Hilbert space is defined with respect
to the true distribution that generated the data, which we denote by p(o; b0 , g10 , g20 ).

3·2. Under misspecification

As we will see shortly, it is useful to explore the consequences of having assumed
parts of the model incorrectly. To be specific, we allow the conditional density g1 (x |z)
to be incorrectly specified and we denote the incorrect conditional density by g*

1
(x |z).

We will continue to assume that the conditional distribution of Y given X and Z is
generated at the truth with conditional density p(y |x, z; b0 ). Consequently, we will con-
sider the Hilbert space H* with respect to the partially misspecified probability distri-
bution for (Y , W , Z) that is induced by the distribution of the full data given by the
density p(y, w, x, z)=p(y |x, z; b0 )p(w |x, z)g*

1
(x |z)g

2
(z). We also use the convention that

expectations or conditional expectations computed under the incorrectly specified distri-
bution are denoted by E* ( . ), and expectations computed under the correctly specified
distribution will be denoted by E0 ( . ) or just E( . ).

Similarly, the incorrectly specified nuisance tangent space will be denoted by
L*=L*

1
CL*
2
, where L*, L*

1
and L*

2
are defined as before but replacing the expectations

E( . ) by E* ( . ). Note that L*
1

is orthogonal to L*
2

in H*. We now demonstrate that, although
the nuisance tangent space L*5H* depends on the possibly incorrectly specified con-
ditional density g*

1
(x |z), the space orthogonal to the nuisance tangent space is invariant,

almost surely, to misspecification.

T 1. For the Hilbert space H* that is induced by a possibly incorrect probability
distribution of the observed data with conditional density g*

1
(x |z), the space orthogonal to

the nuisance tangent space L*5H* is given by

[h(Y , W , Z) such that E{h(Y , W , Z) |X, Z}=0 almost everywhere],

as long as the possibly incorrect conditional density g*
1
(x |z) has the same support as the true

conditional density g10 (x |z).
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Proof. By the definition of L*5H* given by (3), h(Y , W , Z) is orthogonal to L* if

E
*
[hT (Y , W , Z)E

*
{g(X, Z) |Y , W , Z}]=0 (5)

for all g(X, Z) such that E*{g(X, Z)}= 0. Using a series of iterated conditional
expectations, we note that

E
*
[hT (Y , W , Z)E

*
{g(X, Z) |Y , W , Z}]=E

*
[E
*
{hT (Y , W , Z)g(X, Z) |Y , W , Z}]

=E
*
{hT (Y , W , Z)g(X, Z)}

=E
*
[E
*
{hT (Y , W , Z)g(X, Z)|X, Z}]

=E
*
[E
*
{hT (Y , W , Z) |X, Z}g(X, Z)].

Consequently, (5) is equivalent to

E
*
[E
*
{hT (Y , W , Z) |X, Z}g(X, Z)]=0 (6)

for all g(X, Z) such that E*{g(X, Z)}=0, which implies that

E*{h(Y , W , Z) |X, Z}=0, (7)

almost everywhere (1 ) where almost everywhere (1 ) denotes almost everywhere with
respect to the distribution of the observed data induced by the possibly incorrect model
p(o; b

0
, g*
1
, g
2
). Since the conditional distribution of (Y , W , Z) given (X, Z) depends

on the conditional densities p(y |x, z; b0 ) and p(w |x, z), both of which are assumed
correctly specified, then E*{h(Y , W , Z) |X, Z}=0 almost everywhere (1 ) is equivalent to
E0{h(Y , W , Z) |X, Z}=0 almost everywhere (1 ). If, in addition, the possibly incorrect con-
ditional density g*

1
(x |z) has the same support as the true conditional density g10 (x |z), then

(7) is equivalent to E0{h(Y , W , Z) |X, Z}=0 almost everywhere which completes the
proof. %

This result is important because we may start with an incorrectly specified conditional
distribution of X given Z, and the corresponding incorrectly specified Hilbert space H*,
but, as long as we can define a statistic h(Y , W , Z) of the observed data which is orthogonal
to the nuisance tangent space L*, then by Theorem 1 this statistic will have condi-
tional expectation, with respect to the truth, equal to zero almost surely; hence, it will
have unconditional expectation equal to zero, with respect to the truth. We will exploit
this to derive unbiased estimating equations for the parameter b. To be specific, the strategy
we propose is to derive the efficient score, for the possibly incorrectly specified model, by
finding the residual after projecting the observed data score vector S*

b
(Y , W , Z)µH* on

to the nuisance tangent space L*5H* using the possibly incorrect conditional density
g*
1
(x |z). Note that the observed data score vector given by equation (4) may also be

misspecified; therefore, we denote the possibly misspecified score vector by S*
b
(Y , W , Z).

Even though we used the incorrect model, the efficient score derived above will be ortho-
gonal to L*5H* and hence will have mean zero, under the truth. The efficient score
will serve as the basis for constructing unbiased estimating equations whose solution
will be a semiparametric estimator for b. Moreover, if the underlying model is correctly
specified, then the estimator will be semiparametric efficient.
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3·3. T he eYcient score under misspecification

The observed-data score vector S*
b
(Y , W , Z), defined by (4), is given by

∆ SF
b
(Y , x, Z)p(Y |x, Z; b

0
)p(W |x, Z)g*

1
(x |Z)dm(x)

∆ p(Y |x, Z; b
0
)p(W |x, Z)g*

1
(x |Z)dm(x)

, (8)

where, throughout, we use dm( . ) to denote the dominating measure, which in our examples
is either Lebesgue or counting measure for continuous and discrete random variables,
respectively. We showed earlier that the nuisance tangent space can also be written as
L*
1
CL*
2
, where L*

1
is orthogonal to L*

2
. Since S*

b
(Y , W , Z) is a score vector, this implies

that E
*
{S*
b
(Y , W , Z) |Z}=0; hence, S*

b
(Y , W , Z) is orthogonal to L*

2
. Consequently, to

find the projection of S*
b
(Y , W , Z) on to L*, it suffices to project on to L*

1
. The projection

of S*
b
(Y , W , Z) on to L*

1
is the unique element in L*

1
, that is E

*
{a(X, Z) |Y , W , Z}, such

that S*
b
(Y , W , Z)−E

*
{a(X, Z) |Y , W , Z} is orthogonal to L*

1
or, equivalently, orthogonal

to L*. By Theorem 1, the function a(X, Z) must therefore satisfy the integral equation

E[S*
b
(Y , W , Z)−E

*
{a(X, Z) |Y , W , Z}|X, Z]=0,

which implies that

E{S*
b
(Y , W , Z) |X, Z}=E[E

*
{a(X, Z) |Y , W , Z}|X, Z]. (9)

Remark 1. The outer conditional expectations on both sides of equation (9) are functions
of (Y , W , Z) given (X, Z), are hence derived under the truth and are thus denoted by E( . ).

Remark 2. In order that E*{a(X, Z) |Y , W , Z} be the projection on to L*
1
, the function

a(X, Z) must satisfy E*{a(X, Z) |Z}=0. However, if the function a(X, Z) satisfies
equation (9) then it must also satisfy E*{a(X, Z) |Z}=E*{S*b (Y , W , Z) |Z}=0.

Remark 3. Although the projection E*{a(X, Z) |Y , W , Z} is unique, the function a(X, Z)
may not be. However, because of the projection theorem, there must exist at least one
solution to the integral equation (9), and any solution will lead to the same projection.

After we have found a solution a(X, Z) to the integral equation, the efficient score is
given as

S*eff (Y , W , Z)=S*
b
(Y , W , Z)−E

*
{a(X, Z) |Y , W , Z}. (10)

The efficient score, although computed under the incorrect model g*
1
(x |z), has conditional

expectation E{S*eff (Y , W , Z) |X, Z}=0.

Remark 4. In order to ensure that the efficient score is not identically equal to zero, at
the least, we need the space orthogonal to the nuisance tangent space to contain nontrivial
elements, i.e. functions other than zero. In the Appendix, we show this to be the case
for the quadratic logistic regression models (1) with normal and exponential measure-
ment error which are used for illustration in § 5. Depending on the model, it may or
may not be difficult to prove the existence of nontrivial elements. However, in § 4·2 we
describe methods for computing the projection orthogonal to the nuisance tangent space
numerically. Consequently, if the projection, computed numerically, were close to zero,
then this would be an indication that the problem does not have a good semiparametric
estimator.

Remark 5. To take advantage of these results, we need methods for solving, or at least
for finding an approximate numerical solution to, the integral equation (9). A simple
approximation by discretising X is discussed later.
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4. T    

4·1. Asymptotic properties

The observed-data score vector with respect to b, the projection and the efficient score
vector, derived in § 3·3, were computed assuming the correct density for p(y |x, z; b0 ) and
the possibly incorrect density g*

1
(x |z). Consequently, we suppressed the relationship of

these quantities to the unknown parameters in the model. In this section, we need to make
such relationships explicit in order to derive the appropriate estimating equations. We
also consider a parametric model for the possibly misspecified conditional density of X
given Z, given by g*

1
(x |z; j), where j denotes an unknown r-dimensional parameter. The

true conditional density g10 (x |z) may or may not belong to this parametric model, but we
assume that the support is the same. Using the observed data O

i
(i=1, . . . , n), we denote

the observed data score vector (8) by S*
b
(O
i
, b, j), the solution to the integral equation (9)

by a(X
i
, Z
i
, b, j), and the efficient score (10) by S*eff (Oi , b, j), where these quantities are

computed using the conditional densities p(y |x, z; b) and g*
1
(x |z; j).

Based on the theory developed in the previous section, we propose to estimate b by
solving the estimating equation

∑
n

i=1
S*eff (Oi , b, j

@
n
)=0, (11)

where j@
n

is an estimator for j that is root-n consistent; that is, there exists a constant
j* such that nD (j@

n
−j* ) is bounded in probability. We denote the resulting estimator

by b@
n
. Under suitable regularity conditions, we now argue heuristically that the estimator

b@
n
will be consistent and asymptotically normal.
One way to show consistency is by the use of the inverse function theorem

(Foutz, 1977). In this regard, we need to show that E{S*eff (O, b
0
, j*)}=0. We also need

the estimating function n−1 Wn
i=1

S*eff (Oi , b, j) and its expectation E{S*eff (O, b, j)} to be
sufficiently smooth as functions of b and j, in a neighbourhood N of (b0 , j*), so that the
q×q matrix of partial derivatives,

J
n
(b, j)=n−1 ∑

n

i=1

∂S*eff (Oi , b, j)
∂b

,

converges uniformly, in probability, to the matrix B(b, j)=E[∂/∂b{S*eff (O, b, j)}] for (b, j)
in N. The matrix B(b, j) must also be smooth in b and j in N and B(b0 , j*) nonsingular.

That E{S*eff (O, b
0
, j*)}=0 follows from equation (9), which is a direct consequence of

Theorem 1. In the Appendix we show that the expected values of the matrix of partial
derivatives is

B(b
0
, j*)=−E{S*eff (O, b

0
, j*)STeff (O, b

0
, j*)}. (12)

The other technical smoothness conditions, necessary to verify Foutz’s theorem, have to
be considered separately for each model and may be technically challenging. From here
on, we assume that these conditions hold.

To prove asymptotic normality, we first expand the estimating function, given in (11),
as a function of b, about b0 and keeping j@

n
fixed, to obtain

nD (b@
n
−b
0
)={−J

n
(bA
n
, j@
n
)}−1n−D ∑

n

i=1
S*eff (Oi , b0 , j

@
n
), (13)
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where bA
n
is a value between b0 and b@

n
. Another expansion of j@

n
about j*, in the summand

on the right-hand side of equation (13), yields that nD (b@
n
−b0 ) equals

{−J
n
(bA
n
, j@
n
)}−1qn−D ∑n

i=1
S*eff (Oi , b0 , j*)+G

n
(b
0
, jA
n
)nD (j@

n
−j*)r , (14)

where G
n
(b0 , j) is the q×r matrix of partial derivatives

G
n
(b
0
, j)=n−1 ∑

n

i=1

∂S*eff (Oi , b0 , j)
∂j

,

and jA
n

is a value between j* and j@
n
. We now make the additional technical assumption

that the efficient score, S*eff (Oi , b0 , j), is sufficiently smooth in j so that G
n
(b0 , j) converges

to

Eq∂S*eff (Oi , b0 , j)∂j r (15)

uniformly in j in a neighbourhood of j*. In the Appendix we prove that (15) is equal to
zero, which, together with (14), the technical assumptions and the assumption that j@

n
is

root-n consistent, yields

nD (b@
n
−b
0
)={−B(b

0
, j*)}−1n−D ∑

n

i=1
S*eff (Oi , b0 , j*)+o

p
(1). (16)

Since n−D Wn
i=1

S*eff (Oi , b0 , j*) is a normalised sum of zero-mean random vectors, this will
converge in distribution to a multivariate normal with mean zero and covariance matrix

V (b
0
, j*)=E{S*eff (Oi , b0 , j*)S*Teff (Oi , b0 , j*)}.

It then follows immediately from (16) that nD (b@
n
−b0 ) is asymptotically normal with mean

zero and covariance matrix

{−B(b
0
, j*)}−1V (b

0
, j*){−BT (b0 , j*)}−1 . (17)

We suggest estimating the asymptotic covariance matrix (17) using the sandwich
estimator, namely,

{−J
n
(b@
n
, j@
n
)}−1VC

n
(b@
n
, j@
n
){−JT

n
(b@
n
, j@
n
)}−1 , (18)

where J
n
(b@
n
, j@
n
) is computed using numerical derivatives and

VC
n
(b@
n
, j@
n
)=n−1 ∑

n

i=1
S*eff (Oi , b

@
n
, j@
n
)S*Teff (Oi , b

@
n
, j@
n
).

Finally, if the true conditional density for X given Z is contained in the model
g*
1
(x |z; j), g

10
(x |z)=g*

1
(x |z; j

0
) say, and the estimator j@

n
converges in probability to j0 ,

then S*eff (Oi , b0 , j*)} is the efficient score and b@
n

is the semiparametric efficient estimator
for b.

4·2. Solving the integral equation for discrete X

In order to obtain estimators using (11), we need to compute S*eff (Oi , b, j). This
entails solving the integral equation (9). We now give a simple approximation to this
solution by taking X to be discrete with mass at m points, x1 , . . . , xm , spread across the
support of X. This approximation is easily implemented and works well in the examples
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described later. We denote the discrete conditional probability density of X given Z by
g*
1
(x |z)=Wm

j=1
c
j
(z)I(x=x

j
), with Wm

j=1
c
j
(z)=1 for all z in the support of Z. Then

E[E
*
{a(X, Z) |Y , W, Z}|X=x

i
, Z]

=P qWmj=1 aj (Z)q
j
(y, w, Z)c

j
(Z)

Wm
j=1

q
j
(y, w, Z)c

j
(Z) r qi (y, w, Z)dm(y)dm(w),

where q
j
(y, w, Z)=p(y |x

j
, Z)p(w |x

j
, Z) and a

j
(Z)=a(x

j
, Z). Also, by the definition of the

observed score given by (8), we have

E
*
{S*
b
(Y , W , Z) |X=x

i
, Z}

=P qWmj=1 SFb (y, xj , Z)q
j
(y, w, Z)c

j
(Z)

Wm
j=1

q
j
(y, w, Z)c

j
(Z) r ci (y, w, Z)dm(y)dm(w).

(19)

Consequently, the solution to the integral equation reduces to the linear equations,

A(Z)aT (Z)=bT (Z), (20)

where a(Z) is the q×m matrix {a1 (Z), . . . , a
m
(Z)}, corresponding to the solution of the

integral equation, A(Z) is an m×m matrix whose (i, j )th element is given by

A
ij
(Z)=P q q

j
(y, w, Z)c

j
(Z)

Wm
j=1

q
j
(y, w, Z)c

j
(Z)r qi (y, w, Z)dm(y)dm(w), (21)

and b(Z) is an q×m matrix whose ith column is E*{S*b (Y , W , Z) |X=x
i
, Z} defined in (19).

The efficient score is given by

S*eff (Y , W , Z)=
Wm
j=1

{SF
b
(Y , x
j
, Z)−a

j
(Z)}q

j
(Y , W , Z)c

j
(Z)

Wm
j=1

q
j
(Y , W , Z)c

j
(Z)

. (22)

Since we put mass only at points x1 . . . , xm , the theory only guarantees that

E{S*eff (Y , W , Z) |X, Z}=0

when X=x
j

( j=1, . . . , m). However, if E{S*eff (Y , W , Z) |X=x, Z} is a smooth function
of x and if the grid points are sufficiently dense along the support of X, then
|E{S*eff (Y , W , Z) |X=x, Z}| can be made arbitrarily small for all x in the support of X and
the unconditional mean E{S*eff (Y , W , Z)}j0.

5. E      

We illustrate the proposed methods by considering a specific example where a binary
response Y is related to a single covariate X, measured with error, through a quadratic
logistic regression model. In particular, we consider the model logit{pr(Y=1 |X)}=
b0+b1X+b2X2 , where we only observe W=X+e with e independent of Y and X
following a known distribution. We conducted several simulation experiments to evaluate
the properties of the locally efficient estimator for b= (b0 , b1 , b2 ).

We report here on simulations where we took X~N(−1, 1). We considered two
different measurement error models, one with e~N(0, s2

e
) and the other in which e was

taken to have an exponential distribution with mean m
e
. The latter allows investigation
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of the consequences of an asymmetric measurement error model. In both scenarios, there
is no complete sufficient statistic for the nonparametric nuisance parameter g1 (x); con-
sequently, we know of no published method for obtaining semiparametric estimators for b.

We considered the estimator given as the solution to equation (11) using two models
for the possibly incorrect density of X, g*

1
(x; j), both of which depend on a parameter j,

which we took to be the first two moments of X. To be specific, letting m
X

and s2
X

denote
the mean and variance of X, we took g*

1
(x; m
X
, s2
X
) to be the normal density with mean

m
X

and variance s2
X
; in this case, this coincides with the true distribution that was used

to generate X. We also considered g*
1
(x; m
X
, s2
X
) to be the uniform density on m

X
±3s

X
,

to consider the effect of misspecification. Simple moment estimators were used to estimate
m
X

and s2
X
. For example, with normal measurement error, the estimator for m

X
was

m@
X
=W9 =Wn

i=1
W
i
/n, and the estimator for s2

X
was s@2

X
=s2
W
−s2
e
, where s2

W
is the sample

variance for W. Similar estimators were obtained for the exponential error model.
In constructing the estimator for b, we used the discrete approximation given in (22),

based on a grid of 15 points equally spaced between m@
X
±3s@

X
and with probabilities

proportional to the density g*
1
(x; m@
X
, s@2
X
). We found the results to be insensitive to the

number of such grid points as long as that number exceeds 7 for the normal measurement
error model and 15 for the exponential measurement error model. In order to compute
the values a

j
in (22), which are the solution to the linear system of equations in (20), we

computed the integrals in (19) and (21) using Hermite quadrature for normal measurement
error and Laguerre quadrature for exponential measurement error.

For each scenario, we conducted 1000 simulations, each with sample size n=500. The
true values for (b0 , b1 , b2 ) were taken to be (−1, 0·7, 0·7). A substantial amount of measure-
ment error was considered; for the normal measurement error, s

e
=0·40, and for the

exponential measurement error, m
e
=0·40. The covariance matrix of the estimator was

estimated using the sandwich variance (18), and 95% confidence intervals were constructed
using the estimate ±1·96 estimated standard error. For comparison, we also considered
naive and regression calibration estimators. For the naive estimator, the parameters were
estimated using standard logistic regression maximum likelihood where W was used
instead of X in the quadratic logistic regression model with normal measurement error
and W−m

e
was substituted for X with exponential measurement error. For the regression

calibration estimators, we replaced X and X2 by E(X |W ) and E(X2 |W ) when fitting
the quadratic logistic regression model. To compute the conditional expectations for the
regression calibration estimators, one needs the marginal distribution of X as well as
the conditional distribution of W given X. We considered two extremes, one in which the
distribution of X was correctly specified, N(−1, 1), and the other where X was taken to
be Un[−4, 2]. We wanted to consider the consequences of such misspecification for the
distribution of X even though, in practice, the misspecification is unlikely to be as extreme
as this with proper data analysis.

The results of the simulations are summarised in Table 1. As expected, the naive
estimators for b are severely biased whereas the locally efficient estimators all give good
results. These estimators exhibit little bias, the average of the estimated variances closely
approximates the Monte Carlo variance, and the proportion of times that the estimated
95% confidence interval covers the true value is close to the nominal level. Of particular
interest is that the results are insensitive to misspecification of g*

1
(x). The efficiency when

using the misspecified uniform distribution is virtually identical to that when using the
correct normal distribution for the normal measurement error example, and there is only
a slight loss of efficiency for the exponential error example. We found this to be the case
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Table 1: Simulation study. Bias, variance and coverage probabilities of the naive,
regression calibration and locally eYcient semiparametric estimators for the quadratic

logistic regression model with normal and exponential measurement error

Normal errors Exponential errors
Estimator b0 (−1) b1 (0·7) b2 (0·7) b0 (−1) b1 (0·7) b2 (0·7)

naive mean −0·97 0·40 0·48 −0·99 0·37 0·48
emp var 0·021 0·028 0·007 0·022 0·033 0·008
est var 0·020 0·027 0·007 0·020 0·022 0·006
emp cov 0·94 0·53 0·24 0·93 0·40 0·25

reg cal (true X) mean −0·97 0·63 0·64 −0·99 0·64 0·66
emp var 0·023 0·046 0·012 0·022 0·048 0·013
est var 0·022 0·046 0·012 0·022 0·045 0·012
emp cov 0·94 0·94 0·89 0·95 0·93 0·90

reg cal (mis X) mean −1·03 0·44 0·49 −1·07 0·37 0·48
emp var 0·021 0·027 0·007 0·022 0·031 0·008
est var 0·020 0·029 0·007 0·021 0·022 0·006
emp cov 0·94 0·64 0·31 0·92 0·40 0·24

semipar (true X) mean −1·00 0·72 0·72 −1·01 0·69 0·70
emp var 0·026 0·068 0·022 0·024 0·064 0·017
est var 0·026 0·070 0·022 0·026 0·070 0·018
emp cov 0·95 0·96 0·95 0·95 0·94 0·94

semipar (mis X) mean −1·00 0·72 0·72 −1·00 0·68 0·69
emp var 0·027 0·068 0·022 0·023 0·073 0·020
est var 0·026 0·070 0·022 0·024 0·077 0·021
emp cov 0·94 0·96 0·95 0·95 0·94 0·93

reg cal (true X) and reg cal (mis X) denote the regression calibration estimators derived under the true
distribution and misspecified distribution of X, respectively; semipar (true X) and semipar (mis X)
denote the locally efficient semiparametric estimators derived under the true distribution and
misspecified distribution of X, respectively; emp var is the empirical Monte Carlo variance of
the estimators; est var is the average of the estimated variances; emp cov is the proportion of the
simulations whose estimated 95% confidence intervals cover the true value of the parameters.

in all of the many simulations we conducted. When we used the correct distribution for
X, the regression calibration estimators showed a slight bias. However, use of the same
misspecification for the distribution of X as that for the locally efficient estimators resulted
in regression calibration estimators that were severely biased.

6. C 

Throughout, we have assumed that the distribution of the measurement error was
known. However, this can be relaxed to allow the measurement error model to be specified
up to a few parameters. For example, one may assume that the distribution of the measure-
ment error is normal with mean zero and variance s2

e
, left unspecified. In this case, we

would need replicate measurements of W to obtain a reasonable estimate of s2
e
. With such

replicates, one can then easily modify the score equations allowing the parameter s2
e

to
be part of b and then proceed to derive locally efficient estimators for all the parameters.

In the reported simulation experiments, we did not include additional variables Z in
our model that are not measured with error. This simplified the computations in that, for
each dataset, only one system of linear equations (20) needs to be solved. Solution of the
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estimating equations was very fast with 1000 simulations programmed in Fortran taking
about four minutes on a PC with a 2 GHz processor. If we include additional covariates
Z in the model, then we must solve the linear system of equations for each data point.
We conducted several simulations, not shown here, using additional variables Z taken as
linear predictors in the logistic regression model. The results were all similar to those
presented in § 4, but each simulation took about 50 seconds for each dataset with sample
size 500. Finally, the methods outlined above were used for measurement error models,
but we believe that they are more broadly applicable to general mixture models.
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A

T echnical details

Nontrivial elements orthogonal to the nuisance tangent space for the quadratic logistic regression
model. By Theorem 1, if we can find a nonzero function h(Y , W ) such that E{h(Y , W ) |X}=0,
then the orthogonal complement of the nuisance tangent space is nontrivial. We now consider
the examples of quadratic logistic regression models with normal and exponential additive
measurement error that were studied in § 5.

When the conditional distribution of W given X=x is N(x, s2 ), then standard calculations for
normal densities yield that, for any b1 and for b2�−s2/2,

E[exp{c
1
(b
1
, b
2
)W+c

2
(b
2
)W 2}|X]=c(b

1
, b
2
) exp(b

1
X+b

2
X2 ), (A1)

where c2 (b2 )=b2/(1+2b2s2 ), c1 (b1 , b2 )=b1/(1+2b2s2 ) and c(b1 , b2 ) is a positive constant that
depends on b1 and b2 .

Since the response variable Y is binary, any function of Y and W can be written as
h(Y , W )=Y h1 (W )−h2 (W ). As a result of the surrogacy assumption, i.e. that Y and W are
conditionally independent given X, we have E{h(Y , W ) |X}=E(Y |X)E{h1 (W ) |X}−E{h2 (W ) |X}.
Consequently, when the distribution of Y given X follows the quadratic logistic regression model
(1), the conditional expectation,

E{h(Y , W ) |X}={1+exp− (b0+b1X+b2X2 )}−1E{h1 (W ) |X}−E{h2 (W ) |X},

is equal to zero if E{h1 (W ) |X}=E{h2 (W ) |X}{1+exp− (b0+b1X+b2X2 )}. If we use (A1) and if
b2∏0, then a nontrivial solution exists by choosing h2 (W )=1 and

h1 (W )=1+exp(−b0 ){c(−b1 ,−b2 )}−1 exp{c1 (−b1 ,−b2 )W+c2 (−b2 )W 2}.

On the other hand, if b2�0, then a nontrivial solution exists by choosing

h2 (W )=exp(b0 ){c(b1 , b2 )}−1 exp{c1 (b1 , b2 )W+c2 (b2 )W 2}, h1 (W )=h2 (W )+1.

When the conditional distribution of W given X=x follows an exponential distribution
with density l exp−{l(w−x)}, for w>x, then E{h(W ) |X=x}=l ∆2

x
h(w) exp−{l(w−x)}dw.

Consequently, to find the solution to the equation E{h(W ) |X}=q(X), or

l P2
x

h(w) exp−{l(w−x)}dw=q(x), (A2)

where q(x) is differentiable in x with derivative q∞(x), we differentiate both sides of (A2), and, after
solving, we find that h(w)=q(w)−q∞(w)/l. If we let q(x)={1+exp− (b0+b1x+b2x2 )}−1, then
E{Y−h(W ) |X}=0 when h(W )=q(W )−q∞(W )/l.
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Proof of (12). As a result of Theorem 1, the conditional expectation of the efficient score
S*eff (O, b, j*), given X and Z, is equal to zero when computed with respect to p(y |x, z; b) and
p(w |x, z); that is,

P S*eff (O, b, j*)p(y |X, Z; b)p(w |X, Z)dm(y)dm(w)=0 (A3)

for all b. Taking the derivative of (A3) with respect to b, interchanging integration and
differentiation and evaluating at b0 , we obtain

Eq∂S*eff (O, b
0
, j*)

∂b KX, Zr+E{S*eff (O, b
0
, j*)SFT

b
(Y , X, Z, b

0
, j*) |X, Z}=0. (A4)

Computing the unconditional expectation of (A4), under the true distribution, we obtain

Eq∂S*eff (O, b
0
, j*)

∂b r+E{S*eff (O, b
0
, j*)ST

b
(Y , X, Z, b

0
, j*)}=0. (A5)

Evaluating the second term in (A5) using iterated conditional expectations, first conditioning on O,
we obtain

Eq∂S*eff (O, b
0
, j*)

∂b r+E{S*eff (O, b
0
, j*)ST

b
(O, b
0
, j*)}=0.

Since S*eff (O, b
0
, j*) is orthogonal to the nuisance tangent space L in H, it follows that

Eq∂S*eff (O, b
0
, j*)

∂b r+E{S*eff (O, b
0
, j*)STeff (O, b

0
, j*)}=0,

leading to (12).

Proof that (15) equals zero. Since the efficient score S*eff (O, b
0
, j), computed under the

correct distributions for p(y |x, z; b0 ) and p(w |x, z) but for the possibly incorrect distribution for
g*
1
(x |z, j), has mean zero, as long as the support for g*

1
(x |z, j) is the same as that for the truth

g10 (x |z), this implies that

E{S*eff (O, b
0
, j)}=0 (A6)

for all j. Taking the derivative of (A6) with respect to j and interchanging expectation and
differentiation gives us the desired result.
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