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SUMMARY

We propose a multiple imputation estimator for parameter estimation in a quantile regression
model when some covariates are missing at random. The estimation procedure fully utilizes the
entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n
consistent and asymptotically normal. To protect against possible model misspecification, we
further propose a shrinkage estimator, which automatically adjusts for possible bias. The finite
sample performance of our estimator is investigated in a simulation study. Finally, we apply our
methodology to part of the Eating at American’s Table Study data, investigating the association
between two measures of dietary intake.

Some key words: Missing data; Multiple imputation; Quantile regression; Regression quantile; Shrinkage estimation.

1. INTRODUCTION

In many regression-type applications, some observations are missing. Ignoring the missing
data will undermine study efficiency, and sometimes introduce substantial bias. There is a large
literature dealing with missing data; see Little & Rubin (1987) for an early and still fundamental
treatment. Quantile regression (Koenker & Bassett, 1978) has been an increasingly important
modelling tool, due to its flexibility in exploring how covariates affect the distribution of the
response. However, combining quantile regression with missing data is not a well-developed
topic. In this paper, we consider a linear quantile regression model, where for τ ∈ (0, 1),

Qτ (y)= xTβ1,τ + zTβ2,τ . (1)

Here (x, z) are both covariate vectors, but x may be missing, while z is always observed. We
assume that z contains the constant 1, so the intercept term is not written out separately. We
use n for the total sample size, and assume that n1 of these n observations are complete,
while the remaining n0 of them have x missing. Thus, observations can be summarized as
{(yi , xi , zi ) : i = 1, . . . , n1} and {(y j , ·, z j ) : j = n1 + 1, . . . , n}. To avoid trivial situations, we
assume 0< limn→∞ n0/n1 = λ<∞. We make a missing at random assumption that condi-
tional on z, missingness and x are independent. The main interest of this paper is in estimating
the regression parameter βτ = (βT

1,τ , β
T
2,τ )

T given the assumed missing data mechanism. This
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research is motivated by the Eating at American’s Table Study (Subar et al., 2001), an important
study in nutritional epidemiology. In § 5, we describe how this study fits our model framework.

It is not difficult to see that since missingness depends only upon the observed covariates z,
using the complete data only yields a consistent estimate of βτ . However, since a part of the data
is completely excluded from the analysis, this practice can be highly inefficient. The main goal
of this paper is to propose a multiple imputation method to include the incomplete data, so as to
improve estimation efficiency. Since additional assumptions on (x, z) are needed to facilitate the
imputation procedure, the method risks being inconsistent and we propose a shrinkage estimator
to attenuate this risk. The final estimator has an automatic data-driven shrinkage parameter, which
guarantees that the resulting estimator is consistent regardless of the correctness of the additional
assumptions, and at the same time is more efficient than using the complete data only.

Most existing methods handling missing data are likelihood-based, and hence cannot be
applied to quantile regression directly, since there is no likelihood function for quantile regres-
sion. Lipsitz et al. (1997) considered an inverse probability approach for longitudinal data with
drop-outs. For the same type of data, Yi & He (2009) extended the inverse probability weighted
generalized estimating equations proposed by Robins et al. (1995) to correct for the bias from
longitudinal drop-out. Our setting is different from those methods, since we are dealing with
missing covariates, rather than missing outcomes.

Throughout the paper, we write Qτ (y) as the τ th quantile of a random variable y. We write
β(τ) as the quantile coefficient process for τ ∈ (0, 1), and βτ as the quantile coefficient specif-
ically at the τ th quantile. In addition, we use ‖x‖ to mean Euclidean norm, and write g′(x)
as the first derivative of an arbitrary function g(x). If x and y are two random variables, then
E(x,y){g(x, y)} stands for the expectation of g(x, y) over the joint distribution of (x, y).

2. ESTIMATION WITH MULTIPLE IMPUTATION

2·1. Method

In this section, we propose a multiple imputation estimator of the quantile coefficient
βτ = (βT

1,τ , β
T
2,τ )

T in the linear quantile model (1). The method has the following steps.

Step 1. Perform quantile regression with the complete data only. Run a quantile regression
using the complete data only and write the resulting coefficients as β̂τ . That is, for a set of τ
values in (0, 1), obtain β̂τ = arg minβ

∑n1
i=1 ρτ {yi − (xT

i , zT
i )β}, where ρτ (r)= r{τ − I (r < 0)}

is an asymmetric L1 loss function. In practice, τ is typically chosen to be evenly spread and
sufficiently dense grid points on (0, 1).

Step 2. Impute the missing x based on f (x | y, z). The main challenge is to estimate the con-
ditional density of f (x | y, z). The density f (x | y, z)∝ f (y | x, z) f (x | z), so it can be deter-
mined uniquely from the two densities f (y | x, z) and f (x | z).

Step 2a: Estimate the conditional density f (y | x, z). Under the assumption that the linear
quantile model (1) holds for all quantile levels τ , we can write the conditional density f (y | x, z)
as a function of the quantile coefficient process, that is, f {y | x, z;β0(τ )} = F ′{y | x, z;β0(τ )},
where F{y | x, z;β0(τ )} = inf{τ ∈ (0, 1) : (xT, zT)β0(τ ) > y} and β0(τ ) is the true quantile coef-
ficient process. We write the conditional density f (y | x, z) as f {y | x, z;β0(τ )} to indicate its
dependence on the quantile coefficient function β0(τ ).

Although the unknown coefficient function β0(τ ) is of infinite dimension, it can be well-
approximated by a natural linear spline expanding from a series of estimated β̂τk at a fine grid
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of quantile levels (τk). Specifically, we choose quantile levels τk = k/(Kn + 1) (k = 1, . . . , Kn),
where Kn is the number of quantile levels. We then define β̂(τ ) as a p-dimensional piecewise
linear function on [0,1], which satisfies β̂(τk)= β̂τk and β̂ ′(0)= β̂ ′(1)= 0. Under the conditions
in Wei & Carroll (2009), β̂(τ ) converges uniformly to the true quantile coefficient process in
probability. The quantile function is the inverse distribution function, so the density function can
be expressed as the reciprocal of the first derivative of the quantile function at the corresponding
quantile level. Consequently, we can approximate the conditional density function by

f̂ {y | x, z, β̂(τ )} =
Kn∑

k=1

τk+1 − τk

(xT, zT)β̂τk+1 − (xT, zT)β̂τk

I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}.

Here f {y | x, z, β̂(τ )} is the previously defined density function that is induced from the esti-
mated conditional quantile function (xT, zT)β̂(τ ).

Step 2b: Estimate the conditional density f (x | z). The remaining problem is to estimate
f (x | z). We model x given z parametrically as f (x | z, η). The missing-at-random assumption
facilitates the estimation of η based on the complete data. We write the estimate as η̂, and the
estimated conditional density of x given z as f (x | z, η̂).

Step 2c: Estimate the conditional density f (x | y, z) and impute the missing x accordingly.
The estimated conditional density function is f̂ (x | y j , z j )∝ f̂ {y j | x, z j , β̂(τ )} f (x | z j , η̂). For
each j = n1 + 1, . . . , n, we simulate the missing x j from f̂ (x | y j , z j ) by randomly drawing a
Un(0,1) random variable, and inserting it into the quantile function F̂−1(u | y j , z j ), for u ∈ (0, 1)
that is derived from the estimated f̂ (x | y j , z j ). Let u� be the �th generated Un(0,1) random
variable. We then define x̃ j (�) = F−1(u� | y j , z j ), the �th imputed x associated with (y j , z j ).
Consequently, x̃ j (�) ∼ f̂ (x | y j , z j ).

Step 3. Re-estimate β including the imputed data. We assemble a new objective function
including the completely observed data and the �th imputed dataset as

Sn(�)(β)=
n1∑

i=1

ρτ {yi − (xT
i , zT

i )β} +
n∑

j=n1+1

ρτ {y j − (x̃T
j (�), zT

j )β},

and define β̂∗(�) = arg minβ Sn(�)(β) as the estimated coefficient using the �th assembled com-
plete data. We repeat this imputation-estimation step m times, and the multiple imputation esti-
mator is β̃τ = m−1∑m

�=1 β̂∗(�).

2·2. Large-sample properties of the multiple imputation estimator

In this section, we establish the consistency and asymptotic normality of the multiple imputa-
tion estimator β̃τ . Let δ = 0 when x is missing and δ = 1 otherwise. We first reiterate the assump-
tion on the missingness mechanism.

Assumption 1. For all z, pr(δ = 1 | x, y, z)= pr(δ = 1 | z) > 0.

Assumption 1 ensures that, conditioning on z, the event that x is missing is independent of x
and the response y. We then introduce two identifiability conditions.

Assumption 2. There exists a β0,τ ∈ R
p such that β0,τ uniquely minimizes the objective func-

tion S0(β)= E(y,x,z)[ρτ {y − (xT, zT)β}].
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Define S̃0(β)= E(y,x̃,z)[ρτ {y − (x̃T, zT)β}], where, given (y, z), x̃ follows the conditional

distribution f̂ (x | y, z). Since f̂ is estimated from completely observed data, this expectation is
also conditional on the n1 completely observed data. We then make the following assumptions.

Assumption 3. There exists a compact set 	 ∈ R p, and β∗
τ ∈	, such that β∗

τ =
arg minβ S̃0(β).

Assumption 4. The covariate x has bounded support X . The true conditional density f (x |
z)= f (x | z, η= η0), where f (x | z, η) is a continuous function of η uniformly for (x, z) in a
neighbourhood of η0 and is bounded away from zero and infinity for all (x, z).

Recall that for any x and z, (xT, zT)β0(τ ) defines the conditional quantile function of y given
x and z. We further define a functional h(τ ; x, z)= 1/{(xT, zT)β ′

0(τ )}, which is the density of
y given x and z at the τ th quantile. We call this the conditional quantile density function. Its
reciprocal is known as the sparsity function (Welsh, 1988; Koenker & Xiao, 2004). With these
definitions, we now introduce the smoothness conditions on β0(τ ).

Assumption 5. The true coefficient functions β0(τ ) are smooth functions on (0, 1), and for
any x ∈X and z,

(i) 0< h(τ ; x, z) <∞, and limτ→0 h(τ ; x, z)= limτ→1 h(τ ; x, z)= 0;
(ii) there exist constants M and ν1, ν2 >−1 such that the first derivative of h(·) satisfies

sup
x

|h′(τ ; x, z)|< Mτ ν1(1 − τ)ν2 . (2)

Assumption 5 is similar to Assumption 3 in Wei & Carroll (2009). Assumption 5(i) implies
that the conditional density f (y | x, z) is continuous, bounded away from zero and infinity and
diminishes to zero as τ converges to 0 and 1, while Assumption 5(ii) is on the tail behaviour
of f (y | x, z), since h′(τ ; x, z) determines how smoothly the density function diminishes as the
quantile level converges to 0 or 1. Smaller ν1 and ν2 indicate heavier tails of the conditional distri-
bution of y given x and z. Assumption 5(ii) covers a wide range of distributions, such as the expo-
nential, Gaussian and the Student t-distributions. Assumption 5, together with Assumptions 2 and
4, ensures the uniform convergence of β̂(τ ) over the intervals [1/(kn + 1), kn/(kn + 1)], which
in turn ensures consistent estimation of f (y | x, z).

Assumption 6. The matrix �τ = (∂/∂β0,τ )E[ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T], is positive def-

inite, where ϕτ (r)= τ − I {r < 0}.

In addition, we also make the definitions

V1 = var[ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T],

V0 = lim
n→∞ var[ϕτ {y j − (x̃T

j (�), zT
j )β0,τ }(x̃T

j (�), zT
j )

T],

U0 = lim
n→∞ cov[ϕτ {y j − (x̃T

j (�), zT
j )β0,τ }(x̃T

j (�), zT
j )

T, ϕτ {y j − (x̃T
j (�′), zT

j )β0,τ }(x̃T
j (�′), zT

j )
T].

With these assumptions and notation, we now present the asymptotic behaviour of β̃τ . Recall
that 0< limn→∞ n0/n1 = λ<∞.
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Multiple imputation in quantile regression 427

THEOREM 1. Under Assumptions 1–6, for Kn → ∞ and Knn−1 → 0, the multiple imputation
estimator n1/2(β̃τ − β0,τ )→ N (0, �−1

τ ��−1
τ ) in distribution, where� = (λ+ 1)−1V1 + (1 +

1/λ)−1[m−1V0 + {(m − 1)/m}U0].

The proof of Theorem 1 is provided in Appendix A1, while estimates of�τ and� are provided
in Appendix A2.

Remark 1. Throughout, we use the phrase complete-data analysis to mean an analysis based
only on the completely observed data. The asymptotic variance of the estimator using the
completely observed data only is n−1

1 �−1
τ V1�

−1
τ . Comparing with the estimation variance

n−1�−1
τ ��−1

τ of the imputed estimator, we see two sources of difference. First, the multi-
ple imputation estimator has an effective sample size n, larger than that for the complete-data
analysis, which helps to improve its efficiency. Second, the multiple imputation estimator has
additional sources of variability, including the sampling variability from multiple imputation,
the inherited variability from using the complete-data estimated parameters and their correla-
tions. Hence, the multiple imputation estimators might be less efficient than the complete-data
estimator. Such phenomena are common for multiple imputation estimators; see Tsiatis (2006,
Ch. 14). In practice, one could assess the variabilities of both estimators to decide which to use;
see Appendix A2.

3. SHRINKAGE ESTIMATION

The estimator β̂τ using the complete data only is consistent, but has a potential loss of effi-
ciency. The multiple imputation estimator β̃τ is generally more efficient, as will be demonstrated
via simulations in § 4. However, imputation may cause bias when the parametric likelihood for x
given z is misspecified. There are many ways to balance the two estimators, including test-pretest
estimation after testing for the parametric model, but a simple and general strategy that we adopt
is a shrinkage estimator, as follows. Let θ̂τ = β̂τ − β̃τ be the componentwise differences of the
multiple imputation and complete-data estimators, respectively, with elements (θ̂1,τ , . . . , θ̂p,τ )

T.
Let V be the covariance matrix of θ̂τ with diagonal elements (v11, . . . , vpp). Then Chen et al.
(2009) suggest the estimator

β̂(s)τ = β̂τ + K (β̃τ − β̂τ ), (3)

where K is a diagonal matrix with j th diagonal element = v j j/(v j j + θ̂2
j,τ ). Recall that the

asymptotic variances v j j ( j = 1, . . . , p) are quantities of order n−1. The idea behind this method
is that if there is no bias, then θ̂2

j,τ = Op(n−1) and the shrinkage factor K is between 0 and I ,
so that the multiple imputation estimator and the complete-data estimator both receive weight,
although emphasis is on the former. Conversely, if there is a bias, then θ̂2

j,τ = O(1), and the
elements of K → 0, so that the complete-data estimator asymptotically has weight 1.

Details of implementing the shrinkage estimator are given in Appendix A2. In Appendix A1,
we show that the complete-data estimator and the multiple imputation estimator have linear
expansions, based on which we outline in Appendix A2 estimation of the joint covariance matrix
of (β̂τ , β̃τ ). The results enable us to estimate V easily and also mean that the formulae in
Chen et al. (2009) are applicable, so that we can construct an estimator of cov(β̂(s)τ ). The general
theory for such shrinkage estimators is given by Chen et al. (2009), although constructing the
estimate of � is nontrivial because of our context.
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4. SIMULATIONS

Here we investigate the performance of our multiple imputation estimator β̃τ and shrinkage
estimator β̂(s)τ based on Monte-Carlo simulations. We first consider two models.

yi = 1 + xi + zi + ei2, (4)

yi = 1 + xi + zi + (0·5xi + 0·5zi )ei1, (5)

where the errors ei1 and ei2 are independent and standard normal, and the covariates (xi , zi ) are
jointly normal with mean vector (4, 4)T, variances (1, 1)T and correlation 0·5. In model (4), the
true intercept at the τ th quantile is 1+Qτ (z), where z is a random variable with a standard normal
distribution, and both coefficients associated with xi and zi equal 1 at every quantile. In model
(5), the true intercept equals 1 at every quantile level, but the two slope coefficients vary across the
quantiles, both equal to 1 + 0·5Qτ (z) at quantile level τ . In both models, we further assume that
xi is missing with probability pr(xi is missing | zi )= max[0, {(zi − 3)/10}1/20], which results in
approximately 25% missing xi s. We then apply the multiple imputation estimation and shrinkage
estimation procedures to the simulated data from the two models above. In both settings, the den-
sity f (x | z) is estimated by maximum likelihood estimation correctly assuming a joint normal
distribution. When the covariates x and z are negative, there is an identifiability issue in model
(5) since the distribution of ei1 is symmetric around 0. To avoid this trivial situation, we only kept
the pairs (x, z) satisfying x + z > 0 in model (5). Because the probability of x + z < 0 is very
small, the resulting true joint probability density function of (x; z) is very close to the joint nor-
mal distribution which we used in the imputation procedure. We choose m = 10 in the multiple
imputation estimation algorithm. The sample size was n = n0 + n1 = 200. The shrinkage factor
is estimated following Appendix A2.

Table 1 displays the means and the standard errors of the estimated quantile coefficients in
models (4) and (5) from 500 simulations at τ = 0·1, 0·5 and 0·9, using the three estimation
approaches. The upper half of Table 1 displays the coefficients from model (4), while the bottom
half shows those from model (5). All three methods are nearly unbiased. However, as expected
from the theory, the variances of the multiple imputation estimators are smaller than the complete-
data estimators, especially in the coefficient associated with zi . Such efficiency improvement is
more evident for the heteroscedastic model (2). For example, for estimating the zi slope at the
0·9th quantile, the relative efficiency of multiple imputation estimation compared with using the
complete data only, i.e., the ratio of their variances, is 217%, and that of shrinkage estimation is
149%. To investigate the performance of our methods in various model settings, we also allowed
higher missing proportions, and weaker or stronger correlation between the covariates x and z.
The resulting estimated coefficients and their standard errors are included in the Supplementary
Material. On the basis of those tables, the proposed estimators performed well across various
model specifications.

The results in Table 1 are obtained when f (x | z) is estimated from the correct model. To inves-
tigate the potential bias that could be induced from misspecified f (x | z), we simulate covariates
(xi , zi ) as xi = (0·18ui,1 + 0·68ui,2)+ 3·14, and zi = (0·68ui,1 + 0·18ui,2)+ 3·14, where ui,1
and ui,2 are two independent χ2

1 random variables. We choose the constants, 0·18, 0·68 and 3·14,
such that (xi , zi ) have mean 4, variance 1 and correlation of approximately 0·5, as in the ear-
lier simulation. After simulating the nonnormally distributed covariates, we then generate the
responses from model (2). For each generated sample, we allow xi to be missing completely at
random with probability 0·25. We apply the same estimation procedures as above, pretending
that (xi , zi ) is jointly normal. Table 2 presents the mean squared errors and standard errors for
the resulting estimated coefficients at τ = 0·1, 0·5 and 0·9. As a comparison, we also re-estimate
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Table 1. Means and standard errors of the estimated coefficients at quantile levels 0·1, 0·5 and
0·9 from 500 simulations in models (4) and (5)

τ = 0·1 τ = 0·5 τ = 0·9
Intercept True Mean SE True Mean SE True Mean SE

Model (4)
β̂ −0·28 −0·27 0·29 1·00 1·00 0·21 2·28 2·28 0·28
β̃ −0·28 −0·25 0·23 1·00 1·03 0·17 2·28 2·29 0·24
β̂(s) −0·28 −0·27 0·25 1·00 1·01 0·19 2·28 2·29 0·25

x β̂ 1·00 0·99 0·16 1·00 1·00 0·12 1·00 1·00 0·16
β̃ 1·00 0·94 0·16 1·00 0·98 0·11 1·00 0·96 0·16
β̂(s) 1·00 0·98 0·16 1·00 0·99 0·12 1·00 0·99 0·16

z β̂ 1·00 1·01 0·20 1·00 1·00 0·14 1·00 1·00 0·19
β̃ 1·00 1·03 0·18 1·00 1·01 0·12 1·00 1·03 0·16
β̂(s) 1·00 1·02 0·19 1·00 1·01 0·13 1·00 1·01 0·17

Model (5)
β̂ 1·00 0·69 3·88 1·00 0·61 2·68 1·00 1·00 3·16
β̃ 1·00 0·93 2·04 1·00 0·84 1·59 1·00 1·56 2·11
β̂(s) 1·00 0·58 3·22 1·00 0·69 2·24 1·00 1·37 2·64

x β̂ 0·36 0·43 0·62 1·00 1·01 0·51 1·64 1·68 0·62
β̃ 0·36 0·39 0·52 1·00 0·92 0·46 1·64 1·45 0·53
β̂(s) 0·36 0·42 0·58 1·00 0·98 0·49 1·64 1·62 0·60

z β̂ 0·36 0·39 0·92 1·00 1·08 0·64 1·64 1·59 0·77
β̃ 0·36 0·36 0·52 1·00 1·11 0·41 1·64 1·68 0·52
β̂(s) 0·36 0·41 0·78 1·00 1·09 0·54 1·64 1·60 0·64

β̂, the estimated coefficient using the completely observed data only; β̃, the multiple imputation estimator with 10
imputations; β̂(s), the shrinkage estimator; True, the true coefficients; SE, standard errors.

the coefficients using the imputation method, but use the exact density f (x | z) in the algorithm.
On the basis of Table 2, the mean squared errors from the multiple imputation estimators with
the exact f (x | z) are the smallest. As expected, when f (x | z) is misspecified, the mean squared
errors are inflated, and the shrinkage estimates have smaller mean squared errors due to the bias
correction. Since the complete-data approach only uses part of the data for estimation, its mean
squared errors are even larger than the multiple imputation estimator with misspecified f (x | z).
Finally, the difference between the multiple imputation estimators using exact and misspecified
densities are small relative to their standard errors, indicating that the multiple imputation esti-
mator is also fairly robust against the misspecification of f (x | z).

5. APPLICATION

We illustrate the performance of our methods using part of the Eating at American’s Table
Study (Subar et al., 2001). The dataset consists of 1418 subjects who participated in this study
from September 1997 to August 1998. They were required to complete a 24-hour recall on their
dietary intakes, and they also completed a dietary history questionnaire. It is commonly thought
that the 24-hour recall is an unbiased measure of dietary intake, but is expensive in cohort studies
because it must be administered multiple times, and thus costs far more than the dietary history
questionnaire. In measurement error modelling of diet and disease, the regression calibration
method (Carroll et al., 2006) is to regress the 24-hour recall on the dietary history questionnaire.
Since the distributions of nutrition intakes are commonly skewed, quantile regression is a desir-
able tool for this modelling.
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Table 2. Mean squared errors of the estimated coefficients at quantile levels
0·1, 0·5 and 0·9 from 500 simulations in model (2) when f (x | z) is misspecified

τ = 0·1 τ = 0·5 τ = 0·9
MSE SE MSE SE MSE SE

β̂ 1·58 0·09 0·76 0·05 1·33 0·08
β̃ 1·49 0·08 0·70 0·04 1·14 0·06
β̂(s) 1·36 0·08 0·72 0·04 1·07 0·07
β̃∗ 1·31 0·07 0·68 0·04 1·02 0·06

β̂, the estimated coefficient using the completely observed data only; β̃, the multiple imputation
estimator with 10 imputations; β̂(s), the shrinkage estimator; β̃∗, the multiple imputation estimator
using the exact f (x | z); SE, the standard error of the mean squared error; MSE, mean squared
errors.

Here we model carbohydrate intake, with yi being the 24-hour recall for the i th person, xi1 the
dietary history questionnaire measurement, xi2 body mass index, xi3 the participant’s age, xi4 an
indicator of Caucasian ethnic status and xi5 the gender. The model can be written as

yi = β0,τ + β1,τ xi,1 + β2,τ xi,2 + β3,τ xi,3 + β4,τ xi,4 + β5,τ xi,5 + ei . (6)

There are 453 randomly selected subjects among the 1418 who do not have measurements of
body mass index and did not complete the dietary history questionnaire, because the study
was a designed experiment with some participants randomly assigned to complete an alterna-
tive questionnaire. Therefore, those covariates are missing completely at random. Here we apply
our multiple imputation estimation methodology to obtain the estimate of the βs, with x as the
carbohydrate intake in the dietary history questionnaire and body mass index, and z as gender,
ethnicity and age.

In these data, we found that the carbohydrate intake measured in the dietary history ques-
tionnaire and body mass index are essentially uncorrelated, with partial correlation 0·0084
conditional on the subject’s age and gender. We can thus estimate the conditional density of
carbohydrate intakes in the dietary history questionnaire and body mass index separately based
on the two Box–Cox transformation models

�(xi1, λ1)= γ10 + γ11xi3 + γ12xi4 + γ13xi5 + ei1, ei1 ∼ N (0, σ 2
1 ),

�(xi2, λ2)= γ20 + γ21xi3 + γ22xi4 + γ23xi5 + ei2, ei2 ∼ N (0, σ 2
2 ).

Here �(u, λ) is the Box–Cox transformation function, i.e., �(u, λ)= log(u) if λ= 0, and
�(u, λ)= (uλ − 1)/λ for λ |= 0. We used maximum likelihood estimates of the transformation
parameters, these being close to 0 and −1, respectively, which suggests that logarithm and recip-
rocal transformations are needed for carbohydrate intake in the dietary history questionnaire and
body mass index, respectively. In the Supplementary Material, we present the quantile-quantile
plot of the residuals from the above two models with their respective best fitted powers, which
shows that the transformed variables are approximately normally distributed.

On the basis of the estimated models, the conditional density of the untransformed carbohy-
drate intake in the dietary history questionnaire is f̂c(v)= (vσ̂1)

−1φ[{log(v)− γ̂10 − γ̂11x3 −
γ̂12x4 − γ̂13x5}/σ̂1], where φ is the density function of standard normal. The conditional density
of body mass index is f̂b(v)= (v2σ̂2)

−1φ[{1/v − γ̂20 − γ̂21x3 − γ̂22x4 − γ̂23x5}/σ̂2].
Following our multiple imputation algorithm, we estimated model (6) at 50 evenly spaced

quantile levels using the completely observed data only in the first step. On the basis of the

 at T
exas A

&
M

 C
ollege Station on July 17, 2012

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Multiple imputation in quantile regression 431

Table 3. Estimated coefficients in the Eating at American’s Table Study

τ Raw Multiple imputation Shrinkage

Covariates β̂ ŝe β̃ ŝe r̂e(%) β̂(s) ŝe r̂e(%)

0·1 0·08 0·06 0·04 0·06 99 0·06 0·06 104
Carbohydrate intake 0·5 0·27 0·04 0·24 0·03 109 0·27 0·03 102

0·9 0·60 0·07 0·48 0·07 112 0·59 0·07 101

0·1 −0·94 0·88 −0·84 0·91 94 −0·85 0·90 96
Body mass index 0·5 −1·68 0·54 −1·63 0·54 99 −1·63 0·54 100

0·9 −0·70 1·20 −0·35 1·21 98 −0·51 1·19 101

0·1 −0·53 0·36 −0·39 0·35 108 −0·42 0·33 117
Age 0·5 −0·86 0·28 −1·00 0·24 136 −0·95 0·25 132

0·9 −1·38 0·62 −1·71 0·51 147 −1·54 0·55 126

0·1 5·95 14·43 14·95 12·57 132 11·61 12·02 144
Caucasian 0·5 4·67 10·87 6·22 8·38 168 6·16 8·37 169

0·9 −38·45 41·02 −1·39 25·57 257 −27·91 35·76 132

0·1 −47·34 11·03 −38·34 10·25 116 −43·20 10·11 119
Gender 0·5 −73·48 8·27 −66·90 7·05 137 −70·77 7·57 119

0·9 −108·07 15·58 −114·92 12·96 145 −113·41 13·59 131

ŝe, standard errors following the estimation method described in Appendix A2; r̂e, relative efficiency, which
is defined as the ratio between the estimated variance of the complete-data estimator and that of the multiple
imputation/shrinkage estimates.

resulting quantile coefficient process, and the estimated conditional densities f (x | z) using the
models above, we imputed the missing carbohydrate intakes and body mass index m = 10 times.
In Table 3, we listed the multiple imputation estimators at τ = 0·1, 0·5 and 0·9, as well as their
standard errors. To illustrate the improved efficiency from multiple imputation, we calculated the
relative efficiency. In addition, we also constructed the shrinkage estimator following (3). The
shrinkage factors are estimated following Appendix A2.

Table 3 shows that the multiple imputation estimators are fairly consistent with those using the
complete data only, but have much smaller standard errors for the estimates associated with age,
ethnicity and gender. Those variables are completely observed when the dietary history question-
naire carbohydrate intakes and body mass index are missing. The multiple imputation estimators
make full use of those observations, which improves their efficiency. The shrinkage estimator is
generally consistent with the complete-data and multiple imputation estimators; while its stan-
dard errors are slightly larger than the multiple imputation estimators, they are still much smaller
than those of the complete-data estimators.

6. DISCUSSION

The validity of our multiple imputation method relies on a correct specification of the con-
ditional density f (x | z), which we model parametrically. To further protect against the possible
misspecification of f (x | z), a shrinkage estimator was proposed. One could also opt to estimate
f (x | z) nonparametrically, which will automatically yield a consistent estimator without an addi-
tional shrinkage step. However, nonparametric conditional density estimation is very complex,
especially when z is multivariate, and the slow rates of convergence would undermine the use-
fulness of such an approach.

The missing covariate problem in the quantile regression context is challenging, because the
conditional density of y given the covariates is unspecified under a typical quantile regression
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setting. Consequently, classical likelihood-based approaches cannot be applied directly. Here, we
adopted a joint modelling approach similar to Wei & Carroll (2009) to circumvent this difficulty.
However, the proposed method is different from Wei & Carroll (2009) in many aspects. First,
the objectives are different. This paper handles missing covariates, while Wei & Carroll (2009)
handle mismeasured covariates. Second, the estimation approaches are different. Wei & Carroll
(2009) is based on constructing unbiased estimating equations; while this paper uses a multiple
imputation approach. Consequently, the estimation algorithms are different; the former involves
iterative estimation, while the estimation procedure in this paper does not. Finally, the asymptotic
properties are obtained in a very different fashion.

We assumed the conditional quantile functions to be linear at all quantile levels. This assump-
tion holds for location-scale models, i.e., Y = X Tβ + X Tγ e, where e is a random error with
Qτ (e | X)= 0. If needed, one can easily relax the linear quantile function to an arbitrary nonlin-
ear or even nonparametric function. The algorithm remains largely unchanged, with the minimal
adaptation of setting the linear function to be the new regression function in the check function
ρτ . Although the method is presented for an independent sample, it can also be extended to lon-
gitudinal data using the so-called working independence construction. For a longitudinal sample
(yi, j , xi, j , zi, j ), if the quantiles of yi, j is linear in (xi, j , zi, j ), then we can estimate the quantile
coefficients using a similar algorithm with the longitudinal quantile regression objective function∑

i

∑
j ρτ (yi, j − xT

i, jβ − zT
i, jγ ). The estimation of the conditional density f (x | z) also needs

to be adapted for the longitudinal data. The resulting estimators would still be consistent, but the
limiting distribution would need to be derived separately.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional simulation results
with higher rates of missing data and stronger and weaker covariate correlations. Also included
are the quantile-quantile plots for the transformed covariates in the data analysis.

APPENDIX

A1. Technical arguments

Recall that x̃ j (�) is the �th imputed x associated with (y j , z j ), based on the estimated density f̂ (x |
y j , z j ). We define a partial objective function with the imputed proportion of the data

S̃(�)n0
(β)=

n∑
j=n1+1

ρτ {y j − (x̃T
j (�), zT

j )β},

and define its minimizer β̂0,(�) = arg minβ S̃(�)n0
(β).

We say that β̂0,(�) is the estimated coefficient using the �th imputed portion of the data only. In later
steps, we show that the multiple imputation estimator β̃τ can be written as a linear combination of β̂τ and
β̂0,(�)s. Hence, to find the asymptotic distribution of β̃τ , a key step is to find the asymptotic distribution of

 at T
exas A

&
M

 C
ollege Station on July 17, 2012

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Multiple imputation in quantile regression 433

β̂0,(�) as n = n0 + n1 → ∞, and 0< limn n0/n1 = λ<∞. To do that, we first show that

sup
β∈	

|S̃0(β)− S0(β)| → 0 (A1)

in probability as n1 → ∞. Here S̃0(β) and S0(β) are the two expected objective functions defined before
Assumptions 2 and 3.

Recall that f̂ {y | x, z, β̂(τ )} is the estimated conditional density of y given x and z using the complete
data only. We first decompose the difference between the estimated density f̂ {y | x, z, β̂(τ )} and its true
value as

sup
x

| f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}

= sup
x

∣∣∣∣∣
Kn∑

k=1

[ f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}]I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}

− f {y | x, z, β0(τ )}I {y < (xT, zT)β̂τ1} − f {y | x, z, β0(τ )}I {y > (xT, zT)β̂τKn
}
∣∣∣∣∣

� sup
x

A1 + sup
x

h(τ1, x, z)+ sup
x

h(τKn , x, z),

where

sup
x

A1 = sup
x

Kn∑
k=1

| f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}|I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}.

Following the definition of f̂ {y | x, z, β̂(τ )}, and since for any given value of y, it can only be contained
in one of those subintervals {(xT, zT)β̂τk , (x

T, zT)β̂τk+1}, we have

sup
x

A1 � sup
x

max
k

∣∣∣∣∣ τk+1 − τk

(xT, zT)(β̂τk+1 − β̂τk )
− f {y | x, z, β0(τ )}

∣∣∣∣∣ I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}.

Following the uniform convergence of β̂τ , readily available from the result in Wei & Carroll (2009) by
considering in their context a special case where the measurement error variance is zero, the convergence
(xT, zT)(β̂τk − β0,τk )= op(K 1/2

n n−1/2
1 ) holds uniformly for any k. Consequently, we can rewrite the upper

bound as

sup
x

A1 � sup
x

max
k

∣∣∣∣∣ τk+1 − τk

(xT, zT)(β0,τk+1 − β0,τk )+ op(K
1/2
n n−1/2

1 )
− f {y | x, z, β0(τ )}

∣∣∣∣∣
× I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}

= sup
x

max
k

∣∣∣∣ τk+1 − τk

(xT, zT)(β0,τk+1 − β0,τk )
− f {y | x, z, β0(τ )} + op(K

1/2
n n−1/2

1 )

∣∣∣∣
× I {(xT, zT)β̂τk � y < (xT, zT)β̂τk+1}.

By the mean value theorem, there exists a τ ∗ ∈ (τk, τk+1) such that (τk+1 − τk)/{(xT, zT)(β0,τk+1 − β0,τk )} =
h(τ ∗, x, z). On the other hand, let τy be the quantile level of y with respect to true quantile function
(xT, zT)β0(τ ) for y ∈ [(xT, zT)β̂τk , (x

T, zT)β̂τk+1), then f {y | x, z, β0(τ )} = h(τy, x, z) by definition. Since
the true quantile function (xT, zT)β0(τ ) is a continuous function that satisfies the Lipschitz condition, the
quantile level of (xT, zT)β̂τk+1 with respect to the true quantile function is τk+1 + op(K 1/2

n n−1/2
1 ). Moreover,

due to the uniform convergence of β̂(τ ), the quantile level of (xT, zT)β̂τk is τk + op(K 1/2
n n−1/2

1 ), for any
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k. Therefore, together with the monotonicity of quantile function, we have τk + op(K 1/2
n n−1/2

1 ) < τy <

τk+1 + op(K 1/2
n n−1/2

1 ). Following these arguments, we have

sup
x

A1 = sup
x

max
k

|h(τ ∗, x, z)− h(τy, x, z)+ op(n
−1/2
1 )|I {τk + op(n

−1/2
1 )� τ ∗, τy � τk+1

+ op(K
1/2
n n−1/2

1 )}
� sup

x
max

k
[|h′(τk, x, z)|{O(K −1

n )+ op(K
1/2
n n−1/2

1 )} + op(K
1/2
n n−1/2

1 )]

= O(K −v1∧v2−1
n )+ op(K

1/2
n n−1/2

1 )= op(1).

The last step follows from Assumption 5(i) and the fact that Kn/n → 0. Consequently, for any given values
of y and z, as n1 → ∞ and Kn → ∞, we have

sup
x

‖ f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}‖ � Op(K
−v1∧v2−1
n )+ op(n

−1/2
1 )+ sup

x
h(τ1, x, z)

+ sup
x

h(τKn , x, z)= op(1). (A2)

Let D0(y, z)= ∫x f {y | x, z, β0(τ )} f (x) dx , and Dn1(y, z)= ∫x f̂ {y | z, x, β̂(τ )} f (x) dx . Since f (x | z)
is an integrable function, the convergence (A2) also implies that

|Dn1(y, z)− D0(y, z)| =
∫

x
| f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}| f (x | z) dx = op(1). (A3)

It follows that, for any y and z,

sup
x

| f̂ (x | y, z)− f (x | y, z)|

= sup
x

∣∣∣∣∣ f̂ {y | x, z, β̂(τ )} f (x)

Dn1(y, z)
− f {y | x, z, β0(τ )} f (x | z)

D0(y, z)

∣∣∣∣∣
= sup

x

∣∣∣∣∣ f̂ {y | x, z, β̂(τ )} f (x)

D0(y, z)
− f {y | x, z, β0(τ )} f (x | z)

D0(y, z)

∣∣∣∣∣+ Op{|Dn1(y, z)− D0(y, z)|}

= sup
x

∣∣∣∣∣ [ f̂ {y | x, z, β̂(τ )} − f {y | x, z, β0(τ )}] f (x | z)

D0(y, z)

∣∣∣∣∣+ Op{|Dn1(y, z)− D0(y, z)|}

= op(1). (A4)

The last step is implied by (A2), (A3), together with the facts that D0(y, z) > 0 for any (y, z), and the
density f (x) is bounded away from infinity under Assumption 4. Moreover, the distance between the two
objective functions can be written as

sup
β∈	

|S̃0(β)− S0(β)| = sup
β∈	

|E(y,x̃,z)[ρτ {y − (x̃T, zT)β}] − E(y,x̃,z)[ρτ {y − (xT, zT)β}]|

=
∫
(y,x,z)

sup
β∈	

ρτ {y − (xT, zT)β} f (y, z)| f̂ (x | y, z)− f (x | y, z)| d(y, x, z)

=̂
∫
(y,x,z)

g(y, x, z)| f̂ (x | y, z)− f (x | y, z)| d(y, x, z),

where g(y, x, z)= supβ∈	 ρτ {y − (xT, zT)β} f (y, z). Since x has bounded support, and 	 is a compact
set, under the assumptions that E(y) <∞ and E(z) <∞, the function g(y, x, z) is integrable, i.e.,∫

(y,x,z)
g(y, x, z) d(y, x, z) <∞. (A5)
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On the other hand, due to the uniform convergence of β̂(τ ), there exists a constant C1, such that for large
enough n1, f̂ {y | x, z, β̂(τ )} � h(τy, x, z)+ C1. Following Assumption 5(i), the quantile density function
h(τ, x, z) is bounded for any τ , x and z, it follows that f̂ {y | x, z, β̂(τ )} is bounded for any (y, x, z). More-
over, since f (x) is bounded with bounded support, Dn1(y, z) is also bounded. Consequently, the estimated
density f̂ (x | y, z) is bounded for any (y, x, z). Following the dominated convergence theorem, the con-
vergence (A4), the integrability (A5) and the boundedness of f̂ (x | y, z) together imply the convergence
supβ∈	 |S̃0(β)− S0(β)| = 0p(1) as n1 and Kn → ∞.

Since S0(β) is a continuous function, and uniquely minimized in β0,τ , following the arguments in
Amemiya (1985, pp. 106–8), the convergence (A1) suffices for ‖β∗

τ − β0,τ‖ = op(1), where β∗
τ is the

minimizer of S̃0(β). Recall that S̃(�)n0
(β)=∑n

j=n1+1 ρτ {y j − (x̃T
j (�), zT

j )β} is the objective function which

is minimized at β̂0(�). Of course,

n−1
0 E{S̃(�)n0

(β)} = n−1
0

n∑
j=n1+1

E(y j ,x̃ j (�),z j )[ρτ {y j − (x̃T
j (�), zT

j )β}] = S̃0(β).

Then, following standard arguments for M-estimation (van der Vaart, 1998, 44–7), the estimator β̂0(�) con-
verges to β∗

τ in probability, conditioning on the completely observed data. Therefore,

‖β̂0(�) − β0,τ‖ � ‖β̂0(�) − β∗
τ ‖ + ‖β∗

τ − β0,τ‖ = op(1) (A6)

as n0 + n1 → ∞. Thus, we have shown the consistency of β̂0(�).
We now use a Taylor expansion to derive the asymptotic normality of β̂0(�). Define the directional

derivative function of S̃(�)n0
(β) as S̃′(�)

n0
(β)=∑n

j=n1+1 ϕτ {y j − (x̃T
j (�), zT

j )β}(x̃T
j (�), zT

j )
T.

Arguments similar to those used in proving He & Shao (1996, Lemma 4.6) yield the uniform conver-
gence result

sup
‖β−β0,τ ‖<δn↓0

n−1/2
0 ‖S̃′(�)

n0
(β)− S̃′(�)

n0
(β0,τ )− E{S̃′(�)

n0
(β)} + E{S̃′(�)

n0
(β0,τ )}‖ = op(1), (A7)

for any descending sequence δn . Combining (A6) and (A7), we have

n−1/2
0 ‖S̃′(�)

n0
(β̂0(�))− S̃′(�)

n0
(β0,τ )− E S̃′(�)

n0
(β̂0(�))+ E S̃′(�)

n0
(β0,τ )‖ = op(1). (A8)

Since S̃′(�)
n0
(β̂0(�))≈ 0, we Taylor expand E{S̃′(�)

n0
(β̂0(�))} in (A8) around β0,τ , so that

0 ≈ n−1/2
0

n∑
j=n1+1

ϕτ {y j − (x̃T
j (�), zT

j )β̂0(�)}(x̃T
j (�), zT

j )
T

= n−1/2
0

n∑
j=n1+1

ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T

+ n−1
0

∂
∑n

j=n1+1 E{ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T}

∂βT
0,τ

n1/2
0 (β̂0(�) − β0,τ )+ op(1),

and thus β̂0(�) has Bahadur representation

n1/2
0 (β̂0(�) − β0,τ )= −(�n0,τ /n0)

−1n−1/2
0

n0∑
i=1

ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T + op(1), (A9)

where �n0,τ = (∂/∂β0,τ )
∑n

j=n1+1 E
[
ϕτ {y j − (x̃T

j (�), zT
j )β0,τ }(x̃T

j (�), zT
j )

T
]
. Since the conditional density

of f̂ (x | y j , z j ) converges to the true density f (x | y j , z j ) as n1 → ∞ for any x , the joint distribution of
(y j , x̃ j (�), z j ) converges to the joint distribution of (yi , x̃i , zi ) as n1 → ∞. Consequently, using Assump-
tion 1 and the dominated convergence theorem, we have that n−1

0 �n0,τ converges to �τ in probability as
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n1 → ∞, and var[ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T] converges to V0 as n1 → ∞. It follows that β̂0(�) is

asymptotically normally distributed with mean β0,τ and covariance matrix �−1
τ V0�

−1
τ . This finishes our

analysis of β̂0(�).
We now define

β̂∗(�) = arg min
τ

⎡
⎣ n1∑

i=1

ρτ {yi − (xT
i , zT

i )β} +
n∑

j=n1+1

ρτ {y j − (x̃T
j (�), zT

j )β}
⎤
⎦

as the estimated coefficient using the �th assembled complete data. Following similar lines in proving (A9)
by treating the observed xi as an imputed value using the true density function f (x | z, η0), we have

n1/2(β̂∗(�) − β0,τ )= −n(�n1,τ ,+�n0,τ )
−1

[
n−1/2

n1∑
i=1

ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T

+ n−1/2
n∑

j=n1+1

ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T

⎤
⎦+ op(1), (A10)

where �n1,τ = (∂/∂β0,τ )
∑n1

i=1 E[ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T]. Using the law of large numbers, the

matrix �n1,τ converges to �τ in probability. On the other hand, recall that β̂τ is the estimated coeffi-
cient based on n1 complete data only. For any τ , β̂τ has the Bahadur representation (Koenker, 2005,
Equation (4.4)),

n1/2
1 (β̂τ − β0,τ )= −(�n1,τ /n1)

−1n−1/2
1

n1∑
i=1

ψτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T + op(n

−1/2
1 ). (A11)

Combining (A9)–(A11), and using n1/2(β̃ − β0,τ )= m−1
∑m

�=1 n1/2(β̂∗(�) − β0,τ ), we obtain

n1/2(β̃ − β0,τ )

= −{(λ+ 1)−1n−1
1 �n1,τ + (1 + 1/λ)−1n−1

0 �n0,τ }−1

×
(
(λ+ 1)−1/2n−1/2

1

n1∑
i=1

ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T

+
⎡
⎣(1 + 1/λ)−1/2m−1

m∑
�=1

n−1/2
0

n∑
j=n1+1

ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T

⎤
⎦
⎞
⎠

= −{(λ+ 1)−1n−1
1 �n1,τ + (1 + 1/λ)−1n−1

0 �n0,τ }−1

×
(
(λ+ 1)−1/2(n−1

1 �n1,τ ){n1/2
1 (β̂τ − β0,τ )}

+
[
(1 + 1/λ)−1/2m−1

m∑
�=1

(�n0,τ /n0){n1/2
0 (β̂0(�) − β0,τ )}

])

= −{(λ+ 1)−1n−1
1 �n1,τ + (1 + 1/λ)−1n−1

0 �n0,τ }−1

×
{
(λ+ 1)−1/2Un + (1 + 1/λ)−1/2m−1

m∑
�=1

Vn(�)

}
, (A12)
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where

Un = n−1/2
1

n1∑
i=1

ϕτ {yi − (xT
i , zT

i )β0,τ }(xT
i , zT

i )
T,Vn(�) = n−1/2

0

n∑
j=n1+1

ϕτ {y j − (x̃T
j (�), zT

j )β0,τ }(x̃T
j (�), zT

j )
T.

It follows immediately from the central limit theorem that Un → N (0, V1) in distribution. On the other
hand, conditioning on the complete data, Vn(�) converges to N (0, Vn) in distribution, where Vn =
var[ϕτ {y j − (x̃T

j (�), zT
j )β0,τ }(x̃T

j (�), zT
j )

T]. Since Vn converges to V0 with the increase of the total sample size,
Vn(�) converges to N (0, V0) in distribution as n goes to infinity by Slutsky’s theorem. Because N (0, V0)

does not depend on the complete data, this is also the limit of the marginal distribution of Vn(�). More-
over, it is easy to show that E(UnVn(�))→ 0 and cov(Vn(�),Vn(�′))→ U0. It follows that n1/2(β̃ − β0,τ )→
N (0, �−1

τ ��−1
τ ), where � = (λ+ 1)−1V1 + (1 + 1/λ)−1[m−1V0 + {(m − 1)/m}U0], as claimed.

A2. Implementing the shrinkage estimator

Define B̂ = (β̃T
τ , β̂

T
τ )

T. Let �̂ be the estimated covariance matrix of B̂, which is derived on a case-by-
case basis. Then θ̂τ = (θ̂1,τ , . . . , θ̂p,τ )

T = β̃τ − β̂τ . Let V̂ be the estimated covariance matrix of θ̂τ , with
diagonal elements (v̂1, . . . , v̂p). Define

K = diag

(
v̂1

v̂1 + ψ̂2
1

, . . . ,
v̂p

v̂p + ψ̂2
p

)
;

and define G = (K , Ip − K ). Then the shrinkage estimator is β̂s(τ )= GB̂. Its estimated covariance matrix
is ˆcov{β̂s(τ )} = G�̂GT.

We estimate the covariance matrixes of β̃τ and β̂τ based on their Bahadur representations (A11) and
(A12), respectively. That requires the estimation of the variance component matrices,�n1,τ ,�n0,τ , the vari-
ances of Un and Vn(�) and the covariance of Vn(�) and Vn(�′). In what follows, we provide sample estimation
of those variance component matrices. First, �̂n1,τ = n−1

1

∑n1
i=1 − f̂i (τ )(xT

i , zT
i )

T(xT
i , zT

i ), where

f̂i (τ )= 2hτ

(xT
i , zT

i ){β̂(τ+hτ ) − β̂(τ−hτ )}
.

Here hτ is the bandwidth chosen by the method of Hall & Sheather (1988). Compared with the density esti-
mator that we used in the estimation procedure, here we incorporated a bandwidth selection hτ to improve
the stability of f̂i (τ ). Of course, �n0,τ = limn0→∞ n−1

0

∑
j ∂E{ϕτ (y j − (x̃T

j (�), zT
j )β0,τ )(x̃T

j (�), zT
j )

T}/∂βT.
Following similar lines, we approximate this last term by

�̂n0,τ ≈ n−1
0

n∑
j=n1+1

1

m

m∑
�=1

− f̂ j (�)(τ )(x̃
T
j (�), zT

j )
T(x̃T

j (�), zT
j ),

where the estimated density function is

f̂ j (�)(τ )= 2h

(x̃T
j (�), zT

j ){β̂(τ+hτ ) − β̂(τ−hτ )}
.

Following the linear expansions of β̃τ and β̂τ , we first estimate var(Un) and var(Vn(�)), and
cov(Vn(�),Vn(�′)) using sample variances, i.e., we define the estimator

V̂1 = ˆvar(Un)= n−1
1

n1∑
i=1

ϕ2
τ {yi − (xT

i , zT
i )β̂τ }(xT

i , zT
i )

T(xT
i , zT

i ).
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Let Q� be sample covariance matrix of [ϕτ {y j − (x̃T
j,(l), zT

j )β̂τ }(x̃T
j,(l), zT

j )
T]n

j=n1+1. The variance component
matrix var(Vn(�)), for any �, can be estimated by

V̂0 = ˆvar(Vn(�))= m−1
m∑
�=1

Q�.

For any � |= �′, we define Q(�, �′) as the sample covariance matrix between

[ϕτ {y j − (x̃T
j (�), zT

j )β̂τ }(x̃T
j (�), bzT

j )
T]n

j=n1+1 and [ϕτ {y j − (x̃T
j (�′), zT

j )β̂τ }(x̃T
j (�′), bzT

j )
T]n

j=n1+1.

We define
Û = cov(Vn(�),Vn(�′))= {m(m − 1)}−1

∑
�

∑
�′ �=�

Q(�, �′),

for any (�, �′). With the considerations above, we have

M̂ = (λ̂+ 1)−1�̂n1,τ + (1 + 1/λ̂)−1�̂n0,τ ,

�̂ = (λ̂+ 1)−1V̂1 + (1 + 1/λ̂)−1[m−1V̂0 + (m − 1)/mÛ0],

where λ̂= n0/n1. Consequently, the estimated covariance matrix of β̃τ is ˆvar(β̃τ )= n−1 M̂−1�̂M̂−1, and
the estimated covariance matrix of β̂τ is ˆvar(β̂τ )= n−1(1 + λ̂)�̂−1

n1,τ
V̂1�̂

−1
n1,τ
. Since Un and Vn(l) are asymp-

totically independent and have means zero, we have that E(UnVn(�))= o(1). We can estimate the covariance
between β̃τ and β̂τ by ˆcov(β̃τ , β̂τ )= n−1 M̂−1V̂1�̂

−1
n1,τ
. Assembling these components together, we obtain

�̂ = n−1

(
M̂−1�̂M̂−1 M̂−1V̂1�̂

−1
n1,τ

(M̂−1V̂1�̂
−1
n1,τ
)T (1 + λ)�̂−1

n1,τ
V̂1�̂

−1
n1,τ

)
.
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