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Nonparametric Estimation for Censored Mixture Data
With Application to the Cooperative Huntington’s

Observational Research Trial
Yuanjia WANG, Tanya P. GARCIA, and Yanyuan MA

This work presents methods for estimating genotype-specific outcome distributions from genetic epidemiology studies where the event
times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful
subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing
censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs; Type I and Type II) that do not make
parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is
inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators that
do not assume parametric density models and are easy to implement. They are based on inverse probability weighting (IPW), augmented IPW
(AIPW), and nonparametric imputation (IMP). AIPW achieves the efficiency bound without additional modeling assumptions. Extensive
simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these
estimators to the Cooperative Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates of the effect of
mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated noncarrier
survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an
elevated risk of death in Huntington gene mutation carriers compared with that in noncarriers for a wide age range, and suggest that the
mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines
on interpreting the risk of death associated with a positive genetic test, and in helping future subjects at risk to make informed decisions on
whether to undergo genetic mutation testing. Technical details and additional numerical results are provided in the online supplementary
materials.

KEY WORDS: Censored data; Finite mixture model; Huntington’s disease; Kin-cohort design; Quantitative trait locus.

1. INTRODUCTION

In some genetic epidemiology studies, a research goal is to es-
timate genotype-specific cumulative distributions of an outcome
from mixture data of scientifically meaningful subpopulations
where genotypes are not directly observed. Examples of such
studies include kin-cohort studies (Struewing et al. 1997; Wa-
cholder et al. 1998; Wang et al. 2008; Mai et al. 2009) and quan-
titative trait locus (QTL) studies (Lander and Botstein 1989;
Wu, Ma, and Casella 2007). In kin-cohort studies, scientists
sample and genotype an initial cohort of subjects (probands),
possibly enriched with mutation carriers. They then collect fam-
ily history of the disease (phenotype) from family members of
the probands through systematic and validated interviews of
the probands (Marder et al. 2003). While it is impractical and
costly to interview family members in-person to collect their
blood samples and obtain genotypes, it is possible to calculate
the probability of each relative having a certain genotype based
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on the relationship with the proband and the proband’s genotype.
Thus, kin-cohort studies differ from other types of case–control
family studies (Li, Yang, and Schwartz 1998) in that genetic
information in family members is not readily available. Distri-
butions of the observed phenotypes in the relatives are therefore
a mixture of genotype-specific distributions.

In the interval mapping of quantitative traits (Lander and
Botstein 1989), the genotype of a QTL is not observed, so trait
distributions are mixtures of the QTL genotype-specific distri-
butions. The mixing proportions are computed based on the ob-
served flanking marker genotypes and recombination fractions
between the marker and the putative QTL. In many controlled
QTL experiments such as backcross or intercross, the mixing
proportions can be easily obtained, and interest is in estimating
the genotype-specific distributions.

The unobserved genotype information in both kin-cohort and
QTL studies makes inference of genotype-specific distributions
difficult. Inference is further complicated by right censoring as
patients in the study may drop out or become lost to follow-
up. The focus of the current article is to develop simple, ro-
bust, and efficient estimators to improve upon the available
methods in the literature for analyzing such censored mixture
data.

Many statistical methods have been developed for modeling
and analyzing censored mixture data in QTL mappings and kin-
cohort studies. Sometimes, the biological underpinning of the
development of a disease trait suggests a suitable parametric
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function that offers meaningful interpretation of the biologi-
cal structure (Wu et al. 2000). In these cases, it is reasonable
to use maximum likelihood-based parametric methods (Lander
and Botstein 1989; Wu et al. 2002). In some QTL experiments,
a semiparametric Cox proportional hazards model may also be
suitable (Diao and Lin 2005; Zeng and Lin 2007), but a pro-
portional hazards assumption is not always valid, such as in
some applications with Huntington’s disease (HD) data (Lang-
behn et al. 2004). In fact, in many situations, there may not
be sufficient biological knowledge to warrant particular para-
metric or semiparametric models; hence, concerns of model
misspecification naturally arise. To alleviate these issues, more
flexible nonparametric estimation of the distribution functions
becomes essential (Yu and Lin 2008; Zhao and Wu 2008).
Throughout this work, the term “nonparametric” refers to leav-
ing the probability density (or hazard) functions completely
unspecified.

For QTL data, Fine, Zhou, and Yandell (2004) developed a
nonparametric method that exploits the property of indepen-
dence between the censoring and the event of interest. Wang
et al. (2007) proposed a nonparametric method for kin-cohort
data when the censoring times are observed for all subjects.
When censoring times are random and are not observed for
all subjects, Wacholder et al. (1998) proposed a nonparamet-
ric maximum likelihood estimator (Type I NPMLE) consist-
ing of a combination of several NPMLEs and a linear trans-
formation. Chatterjee and Wacholder (2001) proposed a di-
rect maximization of the nonparametric likelihood (Type II
NPMLE) with respect to the conditional distributions and used
an expectation–maximization (EM) algorithm to find the max-
imizer. Although in many situations, NPMLEs are consistent
and even efficient, we demonstrate the surprising result that the
Type I is highly inefficient and the Type II is inconsistent.

To overcome the shortcomings of the aforementioned meth-
ods, we provide several consistent and efficient nonparametric
estimators by casting this problem in a missing-data framework.
Given a complete-data influence function when there is no cen-
soring (see the Appendix; Ma and Wang 2012), we propose
an inverse probability weighting (IPW) estimator and derive
an optimal augmentation term to obtain the optimal estimator.
We demonstrate that the optimal augmented IPW (AIPW) es-
timator achieves the efficiency bound without extra modeling
assumptions or complicated computational procedures. We also
propose an imputation (IMP) estimator that is easy to implement
and does not require additional modeling assumptions for the
imputation step.

The rest of the article is organized as follows. Section 1.1
presents a large collaborative study of HD to which we apply
our proposed estimators. Section 2 describes the inefficiency
and inconsistency of the two existing NPMLE methods. To
improve upon these methods, we propose several nonparamet-
ric estimators in Section 3 that are consistent, efficient, and
easy to implement. We demonstrate the asymptotic properties
of these estimators and examine their finite-sample performance
through comprehensive simulation studies in Section 4. The
methods are applied to the HD study in Section 5, and Sec-
tion 6 concludes the article with some discussion. The technical
details and additional numerical results are provided in the Ap-
pendix and in the online supplementary materials, with tables

and figures in the supplementary materials indicated with a
preceding “S.”

1.1 The Cooperative Huntington’s Observational
Research Trial (COHORT)

Huntington’s disease is a degenerative, genetic disorder that
targets nerve cells in the brain and leads to cognitive de-
cline, involuntary muscle spasms, and psychological problems.
Affected individuals typically begin to see neurological and
physical symptoms around 30–50 years of age, and eventu-
ally die from pneumonia, heart failure, or other complica-
tions 15–20 years after the disease onset (Foroud et al. 1999).
The severity of the disease has prompted the development of
several organizations, such as the Huntington Study Group
(http://www.huntington-study-group.org/), which are devoted to
studying the causes, effects, and possible treatments for HD.
A particular study organized by roughly 42 Huntington Study
Group research centers in North America and Australia is the
Cooperative Huntington’s Observational Research Trial (CO-
HORT; Dorsey et al. 2008). Since 2005, the principal investi-
gators of COHORT have been collecting ongoing information
from affected or at-risk adults and their family members 15 years
of age and older.

Huntington’s disease is caused by unstable CAG repeats ex-
pansion in the Huntington gene (Huntington’s Disease Collab-
orative Research Group 1993). In a genetic counseling setting,
CAG repeats ≥ 36 is defined as positive for HD gene mutation,
or carrier, and CAG < 36 is defined as negative, or noncarrier
(Rubinsztein et al. 1996). Proband participants in COHORT un-
dergo a clinical evaluation where blood samples are genotyped
for being a carrier or noncarrier of HD mutation. While the
HD mutation status is ascertained in probands, high costs of
in-person interviews of family members prevents collection of
their blood samples. Family members’ morbidity and mortality
information, such as age at death, is obtained through a system-
atic interview of the probands. Although a relative’s HD gene
mutation status is unavailable, the probability of carrying a mu-
tation can still be obtained based on the relative’s relationship
with the proband and the proband’s mutation status (Khoury,
Beaty, and Cohen 1993, sec. 8.4). The distribution of the rela-
tive’s age at death is therefore a mixture of the genotype-specific
distributions with known, subject-specific mixing proportions.

Despite the identification of the causative gene, there is
currently no effective treatment that modifies HD progression.
One of the goals of COHORT is to estimate the risks of adverse
events, such as disease onset or death, associated with carrying
a mutation, and to use these parameters to design future clinical
trials for intervention or treatment of HD. For example, the
power calculation of a trial with survival as the primary endpoint
will depend on parameters such as risk ratio in carriers and
noncarriers. The proposed methods here can aid in estimating
these important parameters, and also has benefits in genetic
counseling for patients and their family members. The estimated
survival function in HD mutation carriers provides guidelines on
interpreting the risk of death associated with a positive genetic
mutation test, and facilitates subjects at risk to make important
life decisions, such as marriage or having children. We show
some examples of the utilities of the survival estimates in
Section 5.
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2. SOME EXISTING NONPARAMETRIC ESTIMATORS
FOR CENSORED MIXTURE DATA

We consider censored mixture data denoted as triplets ( Qi =
qi , Xi = xi,�i = δi), which are independent and identically
distributed. For the ith subject, Qi is a p-dimensional vector of
the random mixture proportions computed from available geno-
type data on the proband in kin-cohort studies or from flanking
markers in QTL studies. In a kin-cohort study, Qi may be a
two-dimensional vector, where Qi1 represents the probability
of being a mutation carrier, and Qi2 a noncarrier. To illustrate
the computation of Qi , let Li denote the unobserved genotype
in a relative, and let Li0 denote the observed genotype in a
proband. Let pA denote the population frequency of the muta-
tion allele A, and let a denote the wild type. Consider a heterozy-
gous carrier proband with genotype Aa. Assuming Mendelian
transmission, the probability of a parent of a proband being
a carrier is Qi1 = Pr(Li = AA or Aa|Li0 = Aa) = 1

2 (1 + pA).
The probability for a sibling of a proband to be a carrier
is Qi1 = Pr(Li = AA or Aa|Li0 = Aa) = − 1

4p2
A + 3

4pA + 1
2 .

When pA ≈ 0, the two Qi1’s are both 1
2 . The Qi for other types

of relatives and other types of probands (homozygous or non-
carrier probands) are computed similarly; see Khoury, Beaty,
and Cohen (1993, sec. 8.4) for details.

In general, for both QTL and kin-cohort studies, Qi has a
discrete distribution with a finite support, say u1, . . . , um. Its
probability mass function, denoted as pQ , is determined by the
experimental design. For example, in a backcross QTL study,
Qi is a two-dimensional vector that will take four possible val-
ues (1, 0)T , (θ, 1 − θ )T , (1 − θ, θ )T , and (0, 1)T , where θ is the
known recombination fraction between the putative QTL and
the flanking marker. The probability of Qi taking these four
values is determined by the marker genotype frequencies com-
puted from the observed marker data (e.g., Wu, Ma, and Casella
2007, table 10.4). In kin-cohort studies, the distribution of Qi

is determined by the type of relatives collected (e.g., parents,
siblings, and children) and the distribution of the probands’
genotypes (e.g., number of noncarrier probands, heterozygote
probands, and homozygous probands).

Last, Xi = min(Ti, Ci), where Ti is a subject’s event time and
Ci is a random continuous censoring time independent of Ti ; and
�i = I (Ti ≤ Ci) is the censoring indicator. We let f (·) denote
the p-dimensional unspecified conditional probability density
function of T , given genotypes in p genotype groups, and let
F(·) denote the corresponding cumulative distribution function.
Interest lies in estimating F(t) for any fixed time t. In the CO-
HORT study, we have p = 2, with F1(t) and F2(t) corresponding
to the age-at-death distribution for HD gene mutation carriers
and noncarriers, respectively. Throughout, except when specif-
ically pointed out, we assume that the event times x1, . . . , xn

have no ties, and that the censoring distribution is common for
all subjects. Then, letting G(·) denote the survival function of
C and g(·) its corresponding density, the log-likelihood of n
observations is

n∑
i=1

log
(
pQ(qi)

{
qT

i f (xi)G(xi)
}δi

[{
1 − qT

i F(xi)}g(xi)
}]1−δi

)
,

(1)

where we use the fact that qT
i 1p = 1, with 1p being a p-

dimensional vector of 1’s.

2.1 The Type I NPMLE and Its Inefficiency

The Type I NPMLE was proposed in the literature to analyze
kin-cohort data (Wacholder et al. 1998). It first maximizes (1)
with respect to qT

i f (xi)’s, then recovers F(t) through a linear
transformation. Although an NPMLE-based estimator is usually
efficient, it is not so for mixture data, and the magnitude of
efficiency loss can be large.

To describe the Type I NPMLE, we reformulate the max-
imization problem by evoking the assumption that Q has fi-
nite support u1, . . . , um and by letting sj (xk) = uT

j f (xk) and
Sj (xk) = 1 − uT

j F(xk). Throughout this work, we refer to the p
different genotype populations as p subpopulations, and the m
different uj values as m subgroups. In the literature, the Type I
NPMLE assumes random censoring, and hence, the censoring
distribution does not contribute information to the parameter of
interest. Therefore, ignoring G(·) and g(·) in Equation (1), it
maximizes the equivalent target function

m∑
j=1

n∑
i=1

log
{
sj (xi)

δi Sj (xi)
1−δi

}
I (qi = uj ) (2)

with respect to sj (xi)’s and subject to
∑n

i=1 sj (xi)I (qi = uj ) ≤
1, sj (xi) ≥ 0 for j = 1, . . . , m. This is equivalent to m separate
maximization problems, each concerning sj (·) and Sj (·) only,
so the maximizers are the classical Kaplan–Meier estimators.
That is,

Ŝj (a) =
∏

xi≤a,qi=uj

{
1 − δi∑

qk=uj
I (xk ≥ xi)

}

and sj (a) = Sj (a−) − Sj (a) for all a. Using the linear relation
uT

j F(t) = 1 − Sj (t) for j = 1, . . . , m, we then recover the Type
I NPMLE estimator as

F̃(t) = (
UT U

)−1
UT {1m − Ŝ(t)},

where Ŝ(t) = {Ŝ1(t), . . . , Ŝm(t)}T and U = (u1, . . . , um)T . In
this notation, S(t) = 1m − UF(t). The consistency of the
Kaplan–Meier estimator of S(t) ensures the consistency of
F̃(t). The inefficiency of F̃(t), however, is evident, consid-
ering that F̃w(t) = (UT �−1U)−1UT �−1{1m − Ŝ(t)}, with �

denoting the variance-covariance matrix of Ŝ(t), yields a more
efficient estimator. In this case, � is a diagonal matrix because
each of the m components of Ŝ(t) is estimated using a distinct
subset of the observations. Hence, F̃w(t) is a weighted version of
the Type I NPMLE, and this simple weighting scheme improves
the estimation efficiency.

2.2 The Type II NPMLE and Its Inconsistency

The Type II NPMLE is considered an improvement over the
Type I NPMLE (Chatterjee and Wacholder 2001). It maximizes
the same log-likelihood (1), but with respect to f (xi)’s sub-
ject to

∑n
i=1 f (xi) ≤ 1p and f (xi) ≥ 0 componentwise. Like

the Type I NPMLE, the Type II NPMLE also assumes ran-
dom censoring and ignores G(·) and g(·) in Equation (1).
In general, no closed-form solution exists, and the EM al-
gorithm is implemented to obtain the F (xi)’s. Specifically,
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we regard the genotypes Li = 1, . . . , p as missing data and
derive the complete-data log-likelihood of the observations
oi = (Li = li , Xi = xi,�i = δi), i = 1, . . . , n, as

Lcomp
TypeII{o1, . . . , on; f (xi), F(xi), i = 1, . . . , n}

=
n∑

i=1

p∑
k=1

I (li = k)log
[
fk(xi)

δi {1 − Fk(xi)}1−δi
]
.

The EM algorithm is an iterative procedure. At the bth itera-
tion, we take the conditional expectation of the complete-data
log-likelihood given the observed data (e.g., {(Xi = xi,�i =
δi), i = 1, . . . , n}), and update the E-step via

E
[Lcomp

TypeII{o1, . . . , on; f (xi), F(xi), i = 1, . . . , n}
| f (b)(xi), F(b)(xi), i = 1 . . . , n

]
=

p∑
k=1

n∑
i=1

[
δiqikf

(b)
k (xi)∑p

k=1 qikf
(b)
k (xi)

logfk(xi)

+ (1 − δi)qik

{
1 − F

(b)
k (xi)

}∑p

k=1 qik{1 − F
(b)
k (xi)}

log{1 − Fk(xi)}
]
.

The M-step maximizes the above expression with respect to
f (xi) and F(xi)’s subject to f (xi) ≥ 0 and 1 ≥ F(xi) ≥ 0. To
this end, let

c
(b)
ik = δi

qikf
(b)
k (xi)∑p

k=1 qikf
(b)
k (xi)

+ (1 − δi)
qik

{
1 − F

(b)
k (xi)

}∑p

k=1 qik

{
1 − F

(b)
k (xi)

}
denote the known quantity based on the bth iteration. Then, the
M-step reduces to p separate maximization problems of the form

n∑
i=1

c
(b)
ik

[
δi logfk(xi) + (1 − δi)log{1 − Fk(xi)}

]
,

for k = 1, . . . , p. Viewing this as the log-likelihood of weighted
observations, where the ith observation represents c

(b)
ik ob-

servations of the same value, the maximizer is a modified
Kaplan–Meier estimator:

1 − F̌
(b+1)
k (t) =

∏
xi≤t,δi=1

{
1 −

∑n
j=1 I (xj = xi, δj = 1)c(b)

jk∑n
j=1 c

(b)
jk I (xj ≥ xi)

}

=
∏

xi≤t,δi=1

{
1 − c

(b)
ik∑n

j=1 c
(b)
jk I (xj ≥ xi)

}
.

Iterating the E- and the M-step until convergence leads to the
Type II estimator.

As natural as the Type II NPMLE appears, we show in Section
S.1 of the online supplementary materials the surprising result
that it is an inconsistent estimator of F (t).

3. PROPOSED NONPARAMETRIC ESTIMATORS FOR
CENSORED MIXTURE DATA

3.1 The IPW and the Optimal AIPW Estimators

To compensate for the deficiencies of the NPMLEs, we pro-
pose a class of nonparametric estimators based on IPW and its
augmented version that are consistent and easy to implement.
We describe these estimators in terms of their corresponding
influence functions.

3.1.1 Inverse Probability Weighting. The notion of IPW
was first introduced by Horvitz and Thompson (1952) in the
context of survey sampling, and later by Robins, Rotnitzky,
and Zhao (1994) in the context of missing data as a means
for upweighting subjects who are underrepresented because of
missingness. Bang and Tsiatis (2000, 2002) used the IPW to
estimate the mean and median medical costs by capturing infor-
mation from patients whose medical costs were subject to right
censoring. In this spirit, we elicit information from the cen-
sored observations in the mixture data with an IPW estimator.
Specifically, our IPW estimator solves

n−1
n∑

i=1

δiφ(qi , xi)

Ĝ(xi)
= 0, (3)

where φ denotes a general influence function for noncensored
mixture data corresponding to δi = 1 (i = 1, . . . , n) in Equation
(1) (see the Appendix for elaborations on φ) and Ĝ(t) is the
Kaplan–Meier estimator of G(t):

Ĝ(t) =
∏
xi≤t

{
1 − 1 − δi∑n

j=1 I (xj ≥ xi)

}
.

The intuition behind Equation (3) is that for any subject ran-
domly selected from the population with Xi = xi , the probabil-
ity that such a subject will not be censored is G(xi). There-
fore, any uncensored subject with Xi = xi can be regarded
as representing 1/G(xi) subjects from the population. By in-
versely weighting all uncensored subjects with their correspond-
ing probabilities of not being censored, we obtain a consistent
estimating equation in (3).

We now characterize the asymptotic behavior of the IPW
estimator in terms of its influence function. Let Yi(u) = I (Xi ≥
u), Y (u) = ∑n

i=1 Yi(u), Nc
i (u) = I (Xi ≤ u,�i = 0), and λc(·)

be the hazard function for the censoring distribution. Also, let

Mc
i (u) = Nc

i (u) −
∫ u

0
I (Xi ≥ s)λc(s)ds

denote the censoring martingale, and define

B(h, u) = E {h(·)|Ti ≥ u} = E{h(·)I (Ti ≥ u)}
S(u)

,

where h is any p-length function. Then, as derived in Section
S.2 of the supplementary materials, the ith influence function
for the IPW estimator is

φipw(qi , xi, δi) = φ(qi, ti) −
∫

dMc
i (u)

G(u)
{φ(qi , ti) − B (φ, u)}.

The two terms in φipw are uncorrelated, given that φ(qi , xi)
is F(0) measurable, where F(u) is a filtration defined by the
set of σ -algebras generated by σ {qi , I (Ci ≤ r), r ≤ u; I (Ti ≤
x), 0 ≤ x < ∞, i = 1, . . . , n}. Hence, the estimation variance
of the IPW estimator is

V ipw = cov{φ( Qi , Ti)}

+E

{∫ B(φ⊗2, u) − B(φ, u)⊗2

G2(u)
λc(u)Yi(u)du

}
,
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and a consistent estimator is

V̂ ipw = n−1
n∑

i=1

δiφ(qi , xi)φ
T (qi , xi)

Ĝ(xi)

+ n−1
n∑

i=1

∫ B̂1(φ⊗2, u) − B̂1(φ, u)⊗2

Ĝ2(u)
dNc

i (u),

where B̂1(h, u) = 1
nŜ(u)

∑n
i=1

δi h(qi ,xi ,δi )I (xi≥u)
Ĝ(xi )

for an arbitrary
function h(qi , xi, δi).

3.1.2 Augmented Inverse Probability Weighting. Although
intuitive and easy to implement, the IPW estimator is ineffi-
cient. Instead, using a modification motivated by Robins and
Rotnitzky (1992), one may adjust the IPW estimator to improve
its efficiency. With φ as the complete-data influence function,
Robins and Rotnitzky (1992) provided the following general
class of influence functions for censored data:

φ(qi , ti) −
∫

dMc
i (u)

G(u)
{φ(qi , ti) − B(φ, u)}

+
∫

dMc
i (u)

G(u)
[h{āi(u), u} − B(h, u)] . (4)

For our mixture-data problem, ai(u) = {qi , I (u < Ti)} and
āi(u) contains the functions ai(ũ) for all ũ ≤ u. Compared with
the influence function for the IPW estimator, the estimator from
(4) contains an augmentation term that may improve the estima-
tion efficiency, and is thus, termed the AIPW estimator. Among
all the choices for h, Robins, Rotnitzky, and Zhou (1994) and
van der Laan and Hubbard (1998) showed that

h∗
eff{āi(u), u} = E{φ( Qi , Ti)|Ti ≥ u, āi(u)}
= {I (u < Xi)+I (u = Xi, δi = 0)}E{φ( Qi , Ti)|qi , Ti ≥u}

+ I (u = Xi)δiφ(qi , u),

with u ≤ Xi , yields the optimal efficiency. Denoting heff,i(u) =
E{φ( Qi , Ti)|qi , Ti ≥ u}, we have that h∗

eff{āi(u), u} and
heff,i(u) are identical except when u = Xi and δi = 1. The
functional h∗

eff only appears in the censoring martingale inte-
gral, so using heff,i(u) instead of h∗

eff{āi(u), u} yields the same
influence function. This simplification is of great importance
because otherwise, the optimal h∗

eff is only an interesting but
impractical theoretical result. For most problems, computing
h∗

eff is nearly impossible and would require extra modeling as-
sumptions, which prevents the estimator from achieving the
efficiency bound.

In our case, however, h∗
eff is simple to compute and the AIPW

estimator achieves the optimal efficiency. A consistent estimate
uses a sample version of (4) with IPW:

ĥeff,i(u) =
∑n

j=1 I (qj = qi)φ(qj , xj )Yj (u)δj /Ĝ(xj )∑n
j=1 I (qj = qi)Yj (u)δj /Ĝ(xj )

. (5)

Because heff,i(u) is not a function of Ci , the independence be-
tween the censoring and the survival process gives

B(heff, u) = E{heff,i(u)I (Ti ≥ u)I (Ci ≥ u)}
E{I (Ti ≥ u)I (Ci ≥ u)}

= E{heff,i(u)Yi(u)}
E{Yi(u)} .

Therefore, we can approximate B(heff, u) with

B̂(heff, u) =
∑n

i=1 heff,i(u)Yi(u)

Y (u)
,

which satisfies
n∑

i=1

∫
λc(u)Yi(u)

Ĝ(u)
{̂heff,i(u) − B̂(̂heff, u)}du = 0.

This enables us to obtain the optimal AIPW estimator F̂ (t) by
solving

n∑
i=1

[
δiφ(qi , xi)

Ĝ(xi)
+

∫
dNc

i (u)

Ĝ(u)
{̂heff,i(u) − B̂(̂heff, u)}

]
= 0.

(6)
The AIPW estimator is very easy to implement, especially com-
pared with many other nonparametric or semiparametric prob-
lems, where the efficient estimator often involves additional
model assumptions (Tsiatis and Ma 2004), solving integral
equations (Rabinowitz 2000), and iterative procedures (Zhang,
Tsiatis, and Davidian 2008).

In Section S.3 of the supplementary materials, we demon-
strate that the AIPW estimator indeed has the efficient influence
function (EFF), which corresponds to replacing h(·) with
heff,i(u) in (4). The variance of the efficient estimator is

V eff =cov{φ( Qi , Ti)}+E

∫ B{(φ − heff)⊗2, u}
G2(u)

λc(u)Yi(u)du,

which is estimated consistently by

V̂ eff = n−1
n∑

i=1

δiφ(qi , xi)φ
T (qi , xi)

Ĝ(xi)

+ n−1
n∑

i=1

∫ B̂1{(φ − ĥeff)⊗2, u}
Ĝ2(u)

dNc
i (u).

3.1.3 Subgroup-Specific Censoring. The IPW estimator
(3) and the AIPW estimator (6) are designed for the case when
the censoring distribution G(·) is common for all subjects in
m subgroups. When this is not the case, subgroup-specific
censoring distributions, G̃j (t), j = 1, . . . , m, should be
used. Specifically, Ĝ(t) is replaced by the subgroup-specific
Kaplan–Meier estimators

G̃j (t) =
∏
xi≤t

qi=uj

{
1 − 1 − δi∑

qk=uj
I (xk ≥ xi)

}
,

for j = 1, . . . , m. Consequently, the IPW estimating equation
(3) changes to

n−1
m∑

j=1

∑
i:qi=uj

δiφ(qi , xi)

G̃j (xi)
= 0,

and the corresponding estimated variance V̂ ipw changes
analogously, with summation

∑m
j=1

∑
i:qi=uj

replacing
∑n

i=1,
and a subgroup-specific

B̂1j (h, u) = 1

#{i : qi = uj }Ŝj (u)

∑
i:qi=uj

δi h(qi , xi, δi)I (xi ≥ u)

G̃j (xi)

replacing the pooled B̂1(h, u).
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Wang, Garcia, and Ma: Analysis of Censored Mixture Data 1329

Similar changes apply to the AIPW estimator. Specifically, in
Equations (5) and (6) and in the expression of V̂ eff , we replace∑n

i=1 with
∑m

j=1

∑
i:qi=uj

, Ĝ(t) with G̃j (t), and B̂(heff, u) with

B̂j (heff, u) =
∑

i: qi=uj
heff,i(u)Yi(u)∑

i: qi=uj
Yi(u)

.

It is worth noting that if we erroneously treat the censoring
distribution as common when in fact it is not, the IPW estimator
will not be consistent any more because the corresponding influ-
ence function no longer has mean zero. On the other hand, the
AIPW estimator will still be consistent, although less efficient.
This is a direct consequence of the double robustness property
of the AIPW estimator, in that the validity of the complete-
data influence function φ(q, t) alone guarantees consistency of
the AIPW estimator. However, since the efficiency of AIPW is
achieved when the correct censoring model is used, treating the
censoring distribution as identical across subgroups when they
are not leads to efficiency loss. The issue of subgroup-specific
censoring and the performance of IPW, AIPW, and their mod-
ified versions are illustrated in simulation studies in Section
4.3.

3.2 An IMP Estimator

Lipsitz, Ibrahim, and Zhao (1999) proposed a conditional
estimating equation for regression with missing covariates by
conditioning the complete-data estimating equation on the ob-
served data. Similarly, with censored observations, we replace
the unknown complete-data influence function with its condi-
tional expectation, given that the event happens after the ob-
served censoring time. Doing so yields the following imputed
estimating equation:

0 =
n∑

i=1

[δiφ(qi , xi) + (1 − δi)E{φ( Qi , Ti)|Ti > xi, qi}]

=
n∑

i=1

{δiφ(qi , xi) + (1 − δi)heff,i(xi)}.

In practice, with ĥeff,i(·) as in (5), we obtain the IMP estimator
by solving

0 =
n∑

i=1

{δiφ(qi , xi) + (1 − δi )̂heff,i(xi)}.

While in many cases, the imputation method could lead to bias
if the model of the missingness is misspecified, it is straightfor-
ward to see that our proposed IMP estimator is always con-
sistent. In practice, we often, but not always, observe that it
performs competitively in comparison with the optimal AIPW
estimator. For inferences, we derive the influence function of the
IMP estimator in Section S.4 of the supplementary materials and
show that it has a complex form containing nested conditional
expectations, and hence, is hardly useful practically. Asymp-
totic analysis for imputation-based estimation is often complex
and can be rather involved even in parametric imputation proce-
dures (Wang and Robins 1998; Robins and Wang 2000), which
partially explains why the bootstrap method is usually favored
in its inference.

4. SIMULATIONS

4.1 Simulation Design

We conducted comprehensive Monte Carlo simulations to
illustrate the finite-sample performance of four groups of esti-
mators, yielding a total of 11 different estimators. The first three
groups of estimators include the IPW, optimal AIPW, and IMP
estimators based on (a) the complete-data ordinary least-square
(OLS) influence function, (b) the complete-data weighted least-
square (WLS) influence function using the inverse of the vari-
ance as weights, and (c) the efficient (EFF) influence function;
see the Appendix for the exact forms of the influence functions.
The fourth group of estimators contains the two NPMLEs.

The primary goal of the simulation studies is to compare
the bias and efficiency of the 11 estimators of the distri-
bution function of an outcome subject to censoring in each
genotype population without directly observing the genotypes.
In the first two simulations, the distribution function F(t) is a
two-dimensional vector (i.e., p = 2 subpopulations). In the first
simulation, we set F1(t) = {1 − exp(−t/4)}/{1 − exp(−2.5)}
on the interval (0, 10) and F2(t) = F1(t)0.98 on the inter-
val (0, 5). In the second simulation, we set F1(t) = [{1 −
exp(−t/4)}/{1 − exp(−2.5)}]0.5 on (0, 10) and F2(t) = {1 −
exp(−t/2)}/{1 − exp(−2.5)} on (0, 5). Thus, the distributions
in the first simulation belong to the proportional hazards model
family, while they do not in the second. In both simulations, we
let each random mixture proportion qi be one of m = 4 differ-
ent possible vector values: (1, 0)T , (0.6, 0.4)T , (0.2, 0.8)T , and
(0.16, 0.84)T . Our sample size was 500, and we generated a
uniform censoring distribution to achieve moderate (20%) and
high (50%) censoring rates.

Our third simulation mimics the COHORT data. With
p = 2, we set F1(t) = [1 + exp{−(t − 63)/7}]−0.9/0.995 on
(0, 100), and F2(t) = 0.0007t on (0, 53] and F2(t) = 0.022 +
[1 + exp{−(t − 68)/7.5}]−2 on (53, 100). These distributions
roughly mimic the estimated cumulative risk of death for HD
gene mutation carriers and noncarriers, respectively, in the CO-
HORT study (Figure 1). Analogous to the COHORT study, we
used sample size n = 4500, generated m = 6 different mixture
proportions: (0, 1)T , (0.5, 0.5)T , (0.97, 0.03)T , (0.75, 0.25)T ,
(0.25, 0.75)T , and (1, 0)T ; and censored 65% of the observa-
tions with a uniformly distributed censoring process.

For each of the three simulations under different censoring
rates, we evaluated all 11 estimators at different t-values. First,
we ran 1000 Monte Carlo simulations to evaluate the point-
wise bias, defined as F̂(t) − F(t), at t = 2.5 in the first sim-
ulation (Table 1), at t = 1.5 in the second simulation (Table
S.1, supplementary materials), and at t = 70 in the third sim-
ulation (Table S.2). The corresponding estimated standard er-
rors for the IPW and AIPW estimators were based on V̂ ipw

and V̂ eff given in Section 3.1.1 and Section 3.1.2, respectively,
whereas bootstrap estimates were used to quantify the variabil-
ity for the IMP estimator and the NPMLEs. Next, we eval-
uated the biases of the estimators across the entire range of
t-values through an integrated absolute bias (IAB), defined as∫ ∞

0 |F̄j (t) − Fj (t)|dt , j = 1, 2, where F̄j (t) is the average es-
timated curves over multiple datasets. The results are in Ta-
ble S.3 (upper half) and Tables S.2 and S.3 (upper half). In
the first two simulations, the IAB was computed on a grid set
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Figure 1. Simulation 3. True survival curve (solid) and the mean of 250 simulations at each time point (short-dashed for carrier group,
long-dashed for noncarrier group), and 95% pointwise confidence band (upper band dotted, lower band dash-dotted) of the estimated survival
curves. The mean and true survival curves are indistinguishable in the figures for the EFFIMP and EFFAIPW estimators. Sample size is 4500
and censoring rate is 65%.

with an increment of � = 0.1 as
∑100

i=1 |F̄1(xi) − F1(xi)|� and∑50
i=1 |F̄2(xi) − F2(xi)|�, where F̄j (xi) (j = 1, 2) denotes the

mean estimated distribution from 1000 datasets. In the third
simulation, it was computed on a grid set with an increment
of � = 2 on (0,100) as

∑50
i=1 |F̄j (xi) − Fj (xi)|� (j = 1, 2),

where F̄j (xi) denotes the mean estimated distribution from 250
datasets.

4.2 Simulation Results

The results in Table 1 and Tables S.1 and S.2 indicate that all
the nonparametric estimators we propose have ignorable finite-
sample biases, while the Type II NPMLE has much larger bias.
At high censoring rates, the bias for the Type II NPMLE is much
greater and the coverage probability is much lower than the pre-
specified nominal level. Moreover, the bias is not a finite-sample
effect since even at a sample size of n = 4500, the bias persists.
Despite its asymptotic consistency, the Type I NPMLE also
shows substantial bias when the censoring rate increases. This
is because in the estimation procedure of the Type I NPMLE,

the mixture nature of the model is not taken advantage of at
the maximization step. The Kaplan–Meier estimation in some
subgroups could be based on very small sample sizes, which
can make the overall estimation unreliable.

Compared with the proposed estimators, the Type I NPMLE
has, for the most part, larger estimation variability, and the in-
creased variability is rather substantial for the F2(t) estimation.
In particular, the WLS-based estimators have much less vari-
ability than the Type I NPMLE. Ma and Wang (2012) showed
that the Type I NPMLE for uncensored data belongs to the
WLS family with weights wi = 1/ni , where ni is the number
of subjects who share the same qi . In other words, the Type I
NPMLE essentially downweights individuals belonging to large
subgroups. Since such a weighting strategy is highly undesir-
able, it is not surprising to see that the weights in the WLS
provide an improvement over those in the Type I NPMLE.

In contrast, the three proposed nonparametric estimators have
satisfactorily small biases and are more efficient compared with
the Type I NPMLE. The optimal AIPW and IMP estimators both
improve upon IPW in terms of estimation efficiency. When the
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Wang, Garcia, and Ma: Analysis of Censored Mixture Data 1331

Table 1. Simulation 1. Bias, empirical standard deviation (Emp. SD), average estimated standard deviation (Est. SD), and 95% coverage (95%
cov.) of 11 estimators

F1(t) = 0.5063 F2(t) = 0.5132

Estimator Bias Emp. SD Est. SD 95% cov. Bias Emp. SD Est. SD 95% cov.

Group 1: OLS-based, censoring rate = 20%
IPW 0.0013 0.0424 0.0427 0.9460 −0.0026 0.0408 0.0418 0.9590
AIPW 0.0003 0.0396 0.0402 0.9450 −0.0021 0.0390 0.0393 0.9520
IMP 0.0004 0.0396 0.0401 0.9460 −0.0022 0.0389 0.0392 0.9500

Group 2: WLS-based, censoring rate = 20%
IPW 0.0013 0.0424 0.0427 0.9450 −0.0026 0.0408 0.0418 0.9590
AIPW 0.0003 0.0396 0.0402 0.9440 −0.0021 0.0390 0.0393 0.9520
IMP 0.0004 0.0396 0.0401 0.9460 −0.0022 0.0389 0.0392 0.9500

Group 3: EFF-based, censoring rate = 20%
IPW 0.0011 0.0427 0.0431 0.9520 −0.0029 0.0418 0.0433 0.9630
AIPW 0.0004 0.0399 0.0404 0.9480 −0.0022 0.0393 0.0399 0.9540
IMP 0.0004 0.0398 0.0403 0.9430 −0.0022 0.0391 0.0394 0.9500

Group 4: NPMLE, censoring rate = 20%
Type I 0.0000 0.0462 0.0466 0.9470 0.0007 0.0881 0.0897 0.9230
Type II −0.0135 0.0364 0.0364 0.9300 0.0075 0.0308 0.0313 0.9390

Group 1: OLS-based, censoring rate = 50%
IPW 0.0043 0.0733 0.0683 0.9290 0.0004 0.0722 0.0668 0.9290
AIPW 0.0010 0.0452 0.0459 0.9530 −0.0026 0.0452 0.0448 0.9450
IMP 0.0043 0.0486 0.0496 0.9580 0.0012 0.0484 0.0480 0.9480

Group 2: WLS-based, censoring rate = 50%
IPW 0.0044 0.0732 0.0683 0.9290 0.0004 0.0722 0.0668 0.9280
AIPW 0.0010 0.0452 0.0459 0.9520 −0.0026 0.0451 0.0448 0.9460
IMP 0.0043 0.0486 0.0496 0.9590 0.0012 0.0484 0.0480 0.9470

Group 3: EFF-based, censoring rate = 50%
IPW −0.0021 0.0740 0.0702 0.9290 0.0005 0.0799 0.0744 0.9300
AIPW −0.0006 0.0465 0.0464 0.9500 −0.0008 0.0470 0.0455 0.9480
IMP 0.0031 0.0493 0.0508 0.9610 0.0026 0.0495 0.0489 0.9480

Group 4: NPMLE, censoring rate = 50%
Type I 0.0011 0.0531 0.0537 0.9410 0.0001 0.1058 0.1030 0.9190
Type II −0.0405 0.0407 0.0417 0.8350 0.0312 0.0381 0.0382 0.8750

NOTE: Sample size n = 500, 20% and 50% censoring rate, and 1000 simulations.

censoring rate is moderate, IMP and AIPW perform similarly,
while when the censoring rate increases, the superiority of the
optimal AIPW over IMP becomes more notable. The similarity
of the results in the first three groups of estimators suggests
that the estimation efficiency is not sensitive to the choice of
the noncensored-data influence function φ. The same insensi-
tivity of estimation efficiency to the choice of influence function
is also observed for the noncensored-data case (Ma and Wang
2012). This phenomenon proves beneficial, especially in the
censored-data analysis since Robins and Rotnitzky (1992) re-
marked that the best complete-data influence function does not
necessarily yield an optimal censored-data influence function,
and that finding the optimal member usually requires a compu-
tationally intensive procedure. Finally, the estimated standard
error matches reasonably well with the empirical standard error,
while the 95% coverage probability is close to the nominal level.

In Figure 1, we examine the entire estimated survival curve
1 − F̂(t) in the third simulation, which mimics the COHORT
study. In particular, we display results from the imputation es-
timator (EFFIMP) and the AIPW estimator (EFFAIPW), both

based on the complete-data EFF, as representatives of the pro-
posed estimators, and compare them with the two NPMLEs. To
evaluate these estimators, we plotted the true survival curves and
the mean estimated survival curves from 250 simulated datasets
along with the 95% pointwise confidence bands. The EFFIMP
and EFFAIPW estimators perform satisfactorily throughout the
entire range of t, while the Type I NPMLE starts to exhibit
large variability and small-sample estimation bias as time pro-
gresses. This confirms our previous observation that the Type I
NPMLE suffers from the small-subgroup sample size difficulty
and the instability of the Kaplan–Meier estimation procedure
near the maximum event time. The Type II NPMLE also shows
a nonignorable bias for a wide range of t’s.

To illustrate the overall bias of the 11 estimators across the
entire range of t-values, we further provide the IAB for all three
simulations in Table 2 (upper half) and Tables S.2 and S.3 (upper
half). Nearly all estimators have very small IAB, whereas the
Type II NPMLE can yield a bias 10 times larger than the other
estimators. For the same estimator in each simulation, the IAB
also tends to increase with higher censoring rate.
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Figure 2. Estimated survival curves for the COHORT data stratified by gender using the EFFAIPW estimator (left) and the Type I NPMLE
(right). The curves “USpop Male” and “USpop Female” correspond to Kaplan–Meier estimated survival rates for the general male and female
U.S. populations in 2003, respectively. Bottom two figures compare the estimated survival curves for the male and female HD gene mutation
carriers with that of the general male and female U.S. populations using the EFFAIPW estimator (left) and the Type I NPMLE (right).

4.3 Subgroup-Specific Censoring

We now examine the performance of the original IPW and
AIPW estimators proposed in Sections 3.1.1 and 3.1.2, respec-
tively, as well as the performance of their modified versions in
Section 3.1.3, when the true censoring distribution is different
across different subgroups. We extend the first simulation by
generating the censoring times from the proportional hazards

distribution

G(t | qi) = 1 − exp{−γ1t
γ2 exp(γ3)},

where we set γ3 = 0 if qi = (1, 0)T or qi = (0.6, 0.4)T , and set
γ3 = 0.2 if qi = (0.2, 0.8)T or qi = (0.16, 0.84)T . Here, γ1, γ2

remain the same across the different subgroups and were cho-
sen to achieve, respectively, moderate (20%) and high (50%)
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Table 2. Simulation 1. Integrated absolute bias (IAB)

Censoring rate

20% 50%

Estimator F1(t) F2(t) F1(t) F2(t)

Group 1: OLS-based
IPW 0.0103 0.0060 0.0332 0.0096
AIPW 0.0091 0.0055 0.0305 0.0077
IMP 0.092 0.0056 0.0348 0.0146

Group 2: WLS-based
IPW 0.0102 0.0060 0.0345 0.0095
AIPW 0.0370 0.0055 0.1062 0.0092
IMP 0.0092 0.0056 0.0357 0.0145

Group 3: EFF-based
IPW 0.0095 0.0062 0.0170 0.0106
AIPW 0.0090 0.0053 0.0462 0.0070
IMP 0.0090 0.0055 0.0325 0.0195

Group 4: NPMLE
Type I 0.0104 0.0116 0.0174 0.0337
Type II 0.0996 0.0374 0.2483 0.1367

Group 1: OLS-based
IPW† 0.0922 0.0632 0.0651 0.0412
AIPW† 0.0110 0.0045 0.0317 0.0101
IPW∗ 0.0159 0.0052 0.0181 0.0073
AIPW∗ 0.0148 0.0052 0.0240 0.0079

Group 2: WLS-based
IPW† 0.0923 0.0632 0.0658 0.0413
AIPW† 0.0517 0.0045 0.1024 0.0111
IPW∗ 0.0169 0.0051 0.0218 0.0074
AIPW∗ 0.0591 0.0051 0.1031 0.0092

Group 3: EFF-based
IPW† 0.1104 0.0791 0.0642 0.0495
AIPW† 0.0122 0.0054 0.0392 0.0094
IPW∗ 0.0151 0.0053 0.0149 0.0071
AIPW∗ 0.0112 0.0073 0.0351 0.0068

NOTES: Upper half of the table: the true censoring distribution is independent of Qi ; G(t)
is estimated using a common Kaplan–Meier estimator of the censoring distribution. Lower
half of the table: the true censoring distribution is subgroup-specific; G(t) is estimated using
a common Kaplan–Meier estimator (denoted by †) or a subgroup-specific Kaplan–Meier
estimator (denoted by ∗).

censoring proportions. The survival times and qi were generated
as in the first simulation in Section 4.1. We first implemented the
original IPW and AIPW estimators, which ignore the subgroup-
specific censoring pattern and simply use a pooled censoring
distribution Ĝ(t). We then implemented the modified IPW and
AIPW estimators, which incorporate the subgroup-specific cen-
soring distributions by obtaining G̃j (t) as described in Section
3.1.3. As in our earlier analyses, we investigated the pointwise
bias at t = 2.5, as well as the IAB across the entire range of t.

Table 3 shows the pointwise bias of the IPW and AIPW es-
timators when using a pooled estimated censoring distribution
and a subgroup-specific censoring distribution. It is evident that
the IPW has substantial bias if the pooled censoring estimate is
used, indicating that the original IPW is not applicable when the
censoring is subgroup-specific. However, its bias is substantially
reduced as soon as the subgroup-specific censoring is taken into
account. The AIPW, on the other hand, is robust to misspeci-

fication and has small bias regardless of whether a pooled or
a subgroup-specific censoring estimate is used. For the AIPW,
ignoring the subgroup-specific censoring pattern only incurs a
small efficiency loss, mostly for the OLS-based and WLS-based
estimators. For the EFFAIPW, the efficiency loss is minimal.

The IAB (lower half of Table 2) further indicates that when the
pooled censoring distribution is used, the IPW has much larger
overall bias than the AIPW. However, after incorporating the
subgroup-specific censoring distribution, the modified IPW and
AIPW have similar magnitudes of the IAB. In a separate analysis
where we extended the second simulation in Section 4.1, we also
found similar behaviors for the pointwise bias (Table S.4) and
IAB (lower half of Table S.3).

5. ANALYSIS OF COHORT DATA

Data from the COHORT study consist of 4587 relatives of
the proband participants who have different mixing proportions
for being carriers or noncarriers of the HD gene mutation. Com-
putation of these mixing proportions is discussed in section 2
of Wacholder et al. (1998) and in Wang et al. (2008). The event
time of interest is age of death, and roughly 68% of the data is
censored. A main research interest is estimating the age-at-death
distribution or the survival function for carriers and noncarriers
to assess the effects of HD mutation on survival. The severity of
HD warrants that noncarriers tend to live longer, so we expect
to see lower survival rates for the carrier group.

Since it is well known that survival rates differ by gender, we
stratified the COHORT data by gender (2367 males and 2220 fe-
males) and analyzed the effects of HD gene mutation on the male
and female subpopulations. The quantity of interest, 1 − F(t),
is a four-dimensional vector (i.e., p = 4), where 1 − F1(t) and
1 − F2(t) denote the survival functions for male noncarriers
and carriers, respectively, and 1 − F3(t) and 1 − F4(t) denote
analogous functions for females. Furthermore, the mixture pro-
portions Qi are four-dimensional vectors with the first two
components corresponding to mixture proportions for male non-
carriers and carriers, and the last two components for female
noncarriers and carriers, respectively. To estimate 1 − F(t), we
implemented several theoretically consistent nonparametric es-
timators, including the Type I NPMLE and the complete-data
EFFAIPW as representatives of the already existing and newly
proposed methods, respectively.

To examine the performance of these estimators, we first com-
pare the results for the male and female noncarrier groups with
the general male and female U.S. populations in 2003 (Arias
2006). These survival rates should be similar since the risk in
noncarriers for both genders would reflect the general popula-
tion if there is minimal ascertainment bias in family members.
Figure 2 and Tables 4 and 5 (lowest panel) indicate that the
EFFAIPW outperforms the Type I NPMLE in capturing the be-
havior of the general male and female U.S. populations. In fact,
comparing the noncarrier female estimates and general female
population, the EFFAIPW has an IAB less than half of that of
the Type I NPMLE. Likewise, for the noncarrier males, the EF-
FAIPW has an IAB about half of that of the Type I NPMLE.
Hence, the EFFAIPW appears to be a more reasonable estimator
for analysis.
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Table 3. Simulation 1. Bias, empirical standard deviation (Emp. SD), average estimated standard deviation (Est. SD), and 95% coverage
(95% cov.) of 11 estimators

F1(t) = 0.5063 F2(t) = 0.5132

Estimator Bias Emp. SD Est. SD 95% cov. Bias Emp. SD Est. SD 95% cov.

Group 1: OLS-based, censoring rate = 20%
IPW† −0.0132 0.0439 0.0443 0.9440 0.0131 0.0433 0.0428 0.9360
AIPW† 0.0007 0.0386 0.0399 0.9520 −0.0018 0.0380 0.0381 0.9490
IPW∗ 0.0019 0.0395 0.0395 0.9370 −0.0012 0.0384 0.0389 0.9530
AIPW∗ 0.0018 0.0391 0.0391 0.9430 −0.0012 0.0383 0.0384 0.9490

Group 2: WLS-based, censoring rate = 20%
IPW† −0.0132 0.0439 0.0443 0.9440 0.0131 0.0433 0.0428 0.9360
AIPW† 0.0007 0.0386 0.0399 0.9520 −0.0018 0.0380 0.0381 0.9490
IPW∗ 0.0019 0.0395 0.0395 0.9400 −0.0012 0.0384 0.0389 0.9530
AIPW∗ 0.0018 0.0390 0.0391 0.9430 −0.0012 0.0383 0.0384 0.9500

Group 3: EFF-based, censoring rate = 20%
IPW† −0.0153 0.0459 0.0452 0.9350 0.0163 0.0446 0.0450 0.9360
AIPW† 0.0004 0.0392 0.0401 0.9470 −0.0014 0.0387 0.0386 0.9470
IPW∗ 0.0020 0.0392 0.0396 0.9390 −0.0014 0.0384 0.0393 0.9550
AIPW∗ 0.0013 0.0393 0.0393 0.9390 −0.0007 0.0387 0.0390 0.9500

Group 1: OLS-based, censoring rate = 50%
IPW† −0.0077 0.0708 0.0682 0.9320 0.0130 0.0729 0.0663 0.9230
AIPW† 0.0014 0.0448 0.0472 0.9570 −0.0027 0.0463 0.0442 0.9380
IPW∗ 0.0032 0.0502 0.0474 0.9410 −0.0028 0.0492 0.0477 0.9380
AIPW∗ 0.0021 0.0473 0.0449 0.9410 −0.0021 0.0471 0.0455 0.9330

Group 2: WLS-based, censoring rate = 50%
IPW† −0.0076 0.0707 0.0682 0.9310 0.0130 0.0729 0.0663 0.9220
AIPW† 0.0014 0.0448 0.0472 0.9550 −0.0027 0.0462 0.0442 0.9380
IPW∗ 0.0033 0.0504 0.0474 0.9390 −0.0028 0.0492 0.0477 0.9370
AIPW∗ 0.0022 0.0473 0.0449 0.9420 −0.0021 0.0471 0.0455 0.9330

Group 3: EFF-based, censoring rate = 50%
IPW† −0.0148 0.0753 0.0707 0.9250 0.0169 0.0794 0.0736 0.9240
AIPW† 0.0008 0.0463 0.0477 0.9570 −0.0021 0.0487 0.0449 0.9350
IPW∗ 0.0020 0.0481 0.0466 0.9480 −0.0024 0.0485 0.0477 0.9400
AIPW∗ 0.0003 0.0472 0.0454 0.9470 −0.0003 0.0483 0.0462 0.9390s

NOTES: The censoring distribution is subgroup-specific, and G(t) is estimated using a common Kaplan–Meier estimator (denoted by †) or a subgroup-specific Kaplan–Meier estimator
(denoted by ∗). Sample size n = 500, 20% and 50% censoring rate, and 1000 simulations.

The EFFAIPW depicted in Figure 2 shows a steep differ-
ence in the estimated survival rates between the carrier and the
noncarrier groups for both genders. In addition, the bottom-
left figure suggests that male carriers tend to have only slightly
lower survival rates than female carriers. For example, at age
65, male carriers have a cumulative risk of death of 46.9% (95%
CI: 40.9%–53%) whereas female carriers have a cumulative risk
of death of 43.0% (95% CI: 37.4%–48.7%). This slight differ-
ence, in combination with the overlapping 95% confidence band
(not shown here), suggests that HD mutation affects males and
females equally. The observed lack of gender effects from EF-
FAIPW agrees with some earlier studies that also did not find a
gender effect in either the mean survival times of HD patients
(Harper 1996) or the progression of HD (Marder et al. 2000).
In contrast, the Type I NPMLE suggests that male carriers have
much better survival rates than female carriers, and sometimes,
even slightly better survival rates than noncarriers—a behavior
contradictory to the existing clinical literature.

The upper panel of Table 5 further presents the area under the
survival curves, which can be interpreted as the expected years of

life. Hence, the difference in the area under two survival curves
represents the expected years of life lost for one compared with
the other. Based on the EFFAIPW, the estimated expected years
of life lost for mutation carriers compared with noncarriers is
9.06 years in males and 12.76 in females. In contrast, the Type I
NPMLE estimates longer expected years of life for male carriers,
which is unreasonable.

Our further investigation reveals that the poor performance
of the Type I NPMLE on the COHORT data is partially due to
small-sample sizes in several Qi subgroups. When we remove
211 subjects pertaining to three subgroups with sample sizes no
more than 3% of the data, the behavior of the Type I NPMLE
improves (Figure S.1 in the supplementary materials). The im-
provement is reflected in both the IAB between noncarriers and
the U.S. population and the survival rates for carriers in both
genders. However, there is still a large difference in the noncar-
rier female Type I NPMLE estimate in terms of expected life
lost compared with the U.S. population (Table 5, middle panel).

Lastly, in Table 6, we present the estimated conditional prob-
abilities of surviving the next several years in five-year intervals
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Wang, Garcia, and Ma: Analysis of Censored Mixture Data 1335

Table 4. Estimated survival rates and 95% confidence intervals (in parentheses) based on EFFAIPW and Type I NPMLE for carrier and
noncarrier groups in the COHORT data stratified by gender

Noncarrier Carrier

Age USpop EFFAIPW Type I NPMLE EFFAIPW Type I NPMLE

Males
30 97.2 (97.1–97.3) 97.5 (96.6–98.3) 98.1 (96.8–99.4) 98.7 (98.2–99.3) 99.7 (99.4–99.9)
35 96.5 (96.4–96.6) 97.4 (96.6–98.3) 97.9 (96.8–99.0) 97.2 (96.2–98.2) 99.4 (98.9–99.9)
40 95.6 (95.5–95.7) 96.8 (95.7–98.0) 96.5 (94.2–98.7) 94.1 (92.4–95.8) 98.4 (97.6–99.2)
45 94.3 (94.1–94.4) 95.5 (94.0–97.1) 95.1 (92.1–98.1) 91.2 (89.0–93.4) 97.4 (96.1–98.7)
50 92.3 (92.1–92.4) 93.9 (92.0–95.8) 93.8 (90.0–97.5) 86.4 (83.6–89.3) 93.4 (88.8–98.1)
55 89.4 (89.2–89.6) 89.7 (86.9–92.5) 88.9 (83.5–94.3) 77.9 (74.0–81.9) 86.5 (78.8–94.3)
60 85.5 (85.3–85.7) 83.2 (79.5–87.0) 82.4 (76.1–88.7) 66.5 (61.4–71.5) 82.4 (72.4–92.5)
65 79.9 (79.6–80.1) 77.4 (72.9–81.9) 72.6 (65.8–79.3) 53.1 (47.0–59.1) 76.9 (65.8–88.0)
70 72.0 (71.7–72.3) 68.1 (62.7–73.5) 65.4 (56.3–74.5) 40.3 (33.6–47.0) 64.4 (43.5–85.3)
75 61.3 (61.0–61.6) 59.4 (53.3–65.6) 54.8 (45.5–64.2) 27.3 (20.5–34.0) 58.9 (39.3–78.5)

Females
30 98.4 (98.4–98.5) 98.0 (97.1–98.9) 98.7 (98.1–99.3) 98.9 (98.1–99.7) 99.5 (99.1–99.9)
35 98.1 (98.0–98.2) 97.8 (96.8–98.7) 97.5 (95.6–99.4) 97.7 (96.6–98.9) 99.0 (98.4–99.5)
40 97.6 (97.5–97.7) 97.7 (96.7–98.8) 96.5 (93.6–99.4) 96.3 (94.8–97.8) 98.2 (97.5–98.9)
45 96.7 (96.6–96.9) 97.4 (96.2–98.6) 94.3 (89.8–98.7) 92.6 (90.5–94.7) 96.2 (95.3–97.1)
50 95.5 (95.4–95.7) 96.1 (94.4–97.8) 90.3 (85.0–95.7) 88.9 (86.2–91.7) 93.8 (92.4–95.3)
55 93.8 (93.6–94.0) 94.7 (92.7–96.7) 89.5 (84.1–94.9) 79.9 (76.3–83.5) 89.9 (88.2–91.6)
60 91.2 (91.1–91.4) 93.0 (90.3–95.6) 86.6 (80.5–92.7) 69.1 (64.5–73.8) 83.7 (81.6–85.8)
65 87.3 (87.1–87.5) 91.0 (87.6–94.4) 84.9 (79.2–90.7) 57.0 (51.3–62.6) 75.9 (73.3–78.5)
70 81.6 (81.3–81.8) 84.0 (79.3–88.6) 74.5 (67.3–81.6) 42.8 (36.5–49.2) 68.7 (66.2–71.1)
75 73.3 (73.0–73.6) 73.9 (68.0–79.8) 62.8 (55.0–70.6) 33.2 (26.6–39.9) 63.6 (60.7–66.5)

NOTE: Survival rates are compared with Kaplan–Meier estimated survival rates for the general male and female U.S. populations (USpop) in 2003.

for a subject alive at a given age. These probabilities are based on
the EFFAIPW and are stratified by gender and mutation status.
For example, a 35-year-old female carrier has a 94.71% chance
of surviving the next 10 years, and an 81.76% chance of surviv-

Table 5. Summary statistics for the COHORT data and the general
male and female U.S. populations (USpop) in 2003 from age 20 to

90 years

Males Females

Noncarrier Carrier Noncarrier Carrier

Expected years of life (area under the survival
curves)

USpop 55.5559 59.8726
EFFAIPW 54.8759 45.8229 59.6289 46.8695
Type I NPMLE 53.6082 57.7125 57.0451 52.1563
Type I NPMLEa 56.5764 47.3792 61.1127 47.2930

Expected years of life lost compared with the U.S.
population

EFFAIPW 0.6800 9.7330 0.2436 13.0031
Type I NPMLE 1.9477 −2.1566 2.8275 7.7162
Type I NPMLEa −1.0205 8.1767 −1.2401 12.5796

IAB∗ between an estimator and the U.S.
population

EFFAIPW 1.4026 10.0315 1.2957 13.1922
Type I NPMLE 2.6079 3.9104 2.9016 8.1144
Type I NPMLEa 1.1071 8.7317 1.8435 12.7560

aComputed under a subsample by removing subjects in Qi groups with small sample sizes.
∗Integrated Absolute Bias.

ing the next 20 years, compared with a 99.63% and a 96.81%
chance in the case of a female noncarrier, respectively. Such
probabilities are useful for patients when interpreting mutation
testing results, and may help them make lifetime decisions, such
as having children.

In conclusion, using the more reliable EFFAIPW estimator,
our analysis suggests that mutation carriers tend to have much
lower survival rates than noncarriers, and the mutation equally
affects survival rates in both genders. These survival rates are
the first in the literature obtained from a sample of family mem-
bers, and they highlight the deleterious effects of HD mutation
on survival. The estimated survival rates in noncarriers closely
resemble that of the U.S. population, which illustrates mini-
mal ascertainment bias and reflects the advantage of analyzing
family members whose information is not used in the initial
recruitment of probands.

6. DISCUSSION

We propose two IPW-based estimators and an IMP estimator
for censored mixture data, among which the AIPW achieves
the optimal efficiency based on a given complete-data influ-
ence function. These estimators are easy to compute and do
not involve any iterative procedures. When the sample size is
small and the censoring rate is moderate, the IMP estimator can
sometimes compete or even outperform the asymptotically op-
timal AIPW estimator. We also point out the surprising results
of the inefficiency of the Type I NPMLE and the inconsistency
of the Type II NPMLE proposed in the literature. Our finite-
sample simulations suggest that the efficiency loss of the Type
I NPMLE and the bias of the Type II estimator can be quite
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Table 6. Estimated conditional probabilities of survival for the COHORT data based on the EFFAIPW estimator

Conditional probability individual alive in the next span of years

Current age 5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years

Male carriers Male noncarriers
30 0.9843 0.9533 0.9239 0.8753 0.9996 0.9937 0.9803 0.9636
35 0.9686 0.9387 0.8893 0.8017 0.9941 0.9808 0.9640 0.9206
40 0.9692 0.9182 0.8277 0.7061 0.9866 0.9698 0.9261 0.8594
45 0.9474 0.8540 0.7285 0.5818 0.9830 0.9387 0.8711 0.8099
50 0.9015 0.7690 0.6142 0.4666 0.9550 0.8862 0.8239 0.7251
55 0.8530 0.6813 0.5176 0.3498 0.9280 0.8628 0.7593 0.6628
60 0.7987 0.6068 0.4101 0.2122 0.9297 0.8182 0.7142 0.4984

Female carriers Female noncarriers
30 0.9887 0.9744 0.9363 0.8997 0.9977 0.9975 0.9940 0.9806
35 0.9855 0.9471 0.9100 0.8176 0.9998 0.9963 0.9829 0.9689
40 0.9610 0.9233 0.8296 0.7177 0.9965 0.9831 0.9691 0.9511
45 0.9608 0.8633 0.7469 0.6153 0.9865 0.9725 0.9544 0.9346
50 0.8985 0.7773 0.6404 0.4814 0.9858 0.9674 0.9473 0.8737
55 0.8651 0.7127 0.5358 0.4156 0.9814 0.9610 0.8863 0.7802
60 0.8239 0.6194 0.4804 0.1971 0.9792 0.9031 0.7950 0.6116

substantial, and the finite-sample bias of the Type I NPMLE can
be nonignorable when the subgroup sample size is small or the
estimation region is close to the upper end of the distribution
support. Caution should be applied in interpreting inconsistency
of the Type II NPMLE, which occurs when a pure nonparametric
model is used. Parametric models and semiparametric models,
such as the Cox proportional hazards model with a nonparamet-
ric baseline or piecewise exponential model, are expected to be
consistent (Zeng and Lin 2007).

In a special case when the data arise from a single distribution
(i.e., p = 1), the IPW, AIPW, IMP, and the two NPMLEs are
all equivalent to the familiar Kaplan–Meier estimator. This indi-
cates the complexity arising from the mixture nature. Through
extensive simulation studies, we demonstrate that the proposed
AIPW has satisfactory small bias and is more efficient than the
Type I NPMLE even when the censoring rate is high.

The optimal AIPW estimator also provides reasonable sur-
vival rate estimates for both genders and different mutation sta-
tus in the COHORT study. Since genetic testing of HD mutation
is commercially available, the estimated survival rates are useful
in genetic counseling when a subject, with a family history of
HD, needs to decide on whether to undergo genetic testing. Un-
derstanding the mortality rates associated with a positive testing
result may make the subject more inclined to determine his/her
mutation status and seek treatments. In addition, in a future
work, it may be of interest to estimate the survival rates as a
function of the number of CAG repeats in carriers.

In some genetic studies, the relatives are included through
their probands, and there might be potential ascertainment bias.
If the HD gene mutation carriers’ probands are randomly sam-
pled from the population of all carriers, then the estimation from
the relatives can be generalized to the population of all carriers.
This corresponds to no ascertainment bias. However, when there
is heterogeneity in the survival function of HD gene mutation
carriers (e.g., there exists another gene influencing the survival
function) and if the carriers’ probands are not a representative
sample of the population of all HD mutation carriers, then es-
timation based on their relatives may be biased (Begg 2002).

For example, if there is a second gene that decreases survival in
HD mutation carriers, then oversampling of probands with the
second gene may lead to an upward bias of the risk of death,
and undersampling would lead to a downward bias. However, in
the analysis of the COHORT data, the estimated survival func-
tion in noncarriers is reasonably close to the general population
estimates obtained from the census data. This is an indication
that the COHORT sample is not likely to be subject to severe
ascertainment bias. Otherwise, the noncarrier distribution esti-
mated from the COHORT relative data would be very different
from the that for the general population due to the distorted
distribution of additional risk factors.

Finally, since the survival distribution is well known to be dif-
ferent between two genders in the general population, we carried
out the COHORT analysis separately for each gender. It may be
desirable to test the gender difference among the HD gene muta-
tion carriers/noncarriers. This amounts to testing H0 : F1(t) =
F2(t) at all t versus H1 : F1(t) �= F2(t) for at least one t, where
F1(·) is the vector of cumulative distribution functions for males
and F2(·) for females. Among various methods of performing
the test, a convenient choice is permutation. Specifically, we
compute the test statistic v0 = supt ||F̂1

(t) − F̂
2
(t)|| from the

observed data, where || · || is the L2-norm. Since under the null
hypothesis, the two genders have identical distributions, we can
randomly permute the gender variable to obtain a permuted
sample. Perform such a permutation B times for some large B,
and recompute the test statistic vb based on the bth permuted
sample, b = 1, . . . , B. The p-value is then

∑B
b=1 I (vb ≥ v0)/B.

If interest only lies in the gender difference in the carrier popu-
lation, one may extract the corresponding component in F1(t)
and F2(t) to perform the test.

APPENDIX: INFLUENCE FUNCTION OF
CONSISTENT ESTIMATORS WITH COMPLETE DATA

When there is no censoring [i.e., δi = 1 for all i in (1)], Ma and
Wang (2012) adopted a pure nonparametric model of the genotype-
specific distributions without assuming any parametric form of the
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Wang, Garcia, and Ma: Analysis of Censored Mixture Data 1337

density function. They proposed a general class of consistent estimators
and identified the efficient member of the class. The complete set of
all influence functions of the consistent estimators for F(t) can be
characterized as (Ma and Wang 2012){

φ(q, s) : φ(q, s) = d(q, s) − F(t) − B1p,∫
d( Q, s)QT pQ( Q)dμ( Q) = I(s ≤ t)Ip + B

}
,

where Ip is a p-dimensional identity matrix, d(q, s) is a vector of real
functions (for qualified choices of d(q, s), see Ma and Wang 2012), B
is an arbitrary p × p constant matrix, and 1p is a p-dimensional vector
with all elements being 1.

It is useful to identify several typical members in this class, such
as the OLS estimator and the WLS estimator. Ma and Wang (2012)
showed that for uncensored data, the OLS is derived by viewing the q i’s
as covariates and I (Ti ≤ t) as response variables, where the covariates
and the responses are linked by F (t) via a linear regression model

Yi ≡ I (Ti ≤ t) = qT
i F(t) + ei,

with E(ei |q i) = 0, i = 1, . . . , n. It is straightforward that the ei’s are
independent, conditional on q i’s, and have variances vi = qT

i F(t){1 −
qT

i F(t)}. The WLS is then defined by using the inverse of the variances
vi as weights in a WLS.

Both the OLS and the WLS correspond to special members of the
family of all influence functions. Specifically, the OLS has the influence
function

φOLS(q, s) = {E( QQT )}−1q{I (s < t) − qT F(t)},
and WLS has the influence function

φWLS(q, s) = {E(W QQT )}−1wq{I (s < t) − qT F(t)},
where W is a random weight variable. Furthermore, by projecting an
influence function onto the tangent space, Ma and Wang (2012) derived
the EFF corresponding to a semiparametric efficient estimator:

φEFF(q, s) = {I (s < t)Ip − K }A−1(s)q
qT f (s)

,

where A(s) = ∫ Q QT pQ ( Q)

QT f (s)
dμ( Q), and K = ∫ T2

T1
I (s < t)A−1(s)ds

{∫ T2
T1

A−1(s)ds}−1.

The form φEFF is known, but may contain unknown nuisance param-
eters such as the density f (·). As before, we assume f (·) is completely
unspecified (nonparametric), and thus, is an infinite-dimensional nui-
sance parameter. Ma and Wang (2012) showed that substituting consis-
tent estimators for the nuisance parameters in φEFF and solving for F(t)
leads to a semiparametric efficient estimator that reaches the semipara-
metric efficiency bound in the sense of Bickel et al. (1993).

SUPPLEMENTARY MATERIALS

The document provides further technical details and addi-
tional numerical results from the simulation studies and appli-
cation to COHORT study.

[Received June 2011. Revised May 2012.]
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