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Abstract

Some biomedical studies lead to mixture data. When a discrete covariate defining

subgroup membership is missing for some of the subjects in a study, the distribution

of the outcome follows a mixture distribution of the subgroup-specific distributions.

Taking into account the uncertain distribution of the group membership and the co-

variates, we model the relation between the disease onset time and the covariates

through transformation models in each sub-population, and develop a nonparametric

maximum likelihood based estimation implemented through EM algorithm along with

its inference procedure. We further propose methods to identify the covariates that

have different effects or common effects in distinct populations, which enables parsi-

monious modeling and better understanding of the difference across populations. The

methods are illustrated through extensive simulation studies and a real data example.

Key words: Censored data, EM algorithm, Laplace transformation, mixed populations,

uncertain population identifier, semiparametric models, transformation models

1 Introduction

Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup

membership is missing for some of the subjects in a study, the distribution of the outcome

follows a mixture distribution of the subgroup-specific distributions. One example is kin-

cohort study (Wacholder et al. 1998) with the goal of estimating penetrance function of a

deleterious mutation (Khoury et al. 1993), i.e., the cumulative risk of disease for mutation
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carriers. However, the mutation status is only collected in an initial sample of participants

referred as probands, but not in their relatives. For example, genetic mutation status is

not available for relatives who have deceased or have not undergone genetic testing due

to resource constraints from collecting blood samples in all family members. The disease

phenotype information for these relatives is often available from other sources such as inter-

viewing the proband in a family (Marder et al. 2003). Consider late-onset disease such as

Parkinson’s disease (PD), parents of study participants are often deceased. Therefore even

though age-at-onset of PD is provided by a family member, no genotyping can be performed

on deceased parents. When estimating disease risk distribution for mutation carriers and

non-carriers using these relatives’ disease onset information, the unknown mutation status

needs to be accounted for by using distribution of mutation status in these relatives es-

timated from living relatives who provide blood sample (Wang et al. 2012, Ma & Wang

2014).

We consider estimating subgroup-specific distribution for outcomes that are subject to

censoring and with missing subgroup identifiers. The nonparametric models in Wacholder

et al. (1998), Wang et al. (2012) and Ma & Wang (2014) do not include any covariates other

than the mutation status. In this work, we consider how to include covariates which can have

identical or different effects across subgroups. Popular semiparametric models for censored

outcomes such as Cox proportional hazards model, accelerated failure time model, and

transformation model have been studied extensively in the literature. However, they have

been less explored in mixture data setting. Recently, Altstein & Li (2013) proposed a latent

subgroup analysis for semiparametric accelerated failure time model in clinical trials setting.

Our work here differs from Altstein & Li (2013) in that the distribution of the subgroup

identifiers is available in our problem, and we assume a semiparametric transformation

model in each subgroup. Transformation model is applied to analyze neurological disorder

data (e.g, Huntington’s disease [HD] as in our motivating study) due to its useful biological

and clinical interpretations; see for example Zhang et al. (2012).
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We propose a semiparametric transformation model for mixture data. Compared to the

parametric transformation model in the literature (Zhang et al. 2012), we allow for greater

flexibility to account for subgroup heterogeneity. This is achieved in our model through

characterizing the outcome in each subpopulation using different distribution indexed by

both parameters and error distributions. Specifically, each subpopulation can have distinct

scale or shape parameter and distribution function. They can also have both shared co-

variate effect and/or subgroup-specific covariate effect. In addition, we assume an unknown

transformation to avoid the difficulty in specifying a parametric transformation. When as-

suming homogeneous covariate effect, we account for missing population identifier by taking

advantage of the distribution of the mixing proportion and using a weighted least-square

type estimator which greatly simplifies the procedure. When we assume a subgroup-specific

covariate effect, the weighted least-square estimator no longer applies, and we use the EM

algorithm. We perform extensive simulation studies to examine performance of the pro-

posed approach and apply to estimating the survival function for HD mutation carriers

in a large genetic epidemiology study (Dorsey & The Huntington Study Group COHORT

Investigators 2012).

2 Modeling, Estimation, and Asymptotic Properties

Assume there are n observations from p populations. Here p is usually determined by the

research purpose as of which populations are to be examined. For genetic studies that we

consider, populations are defined by mutation carrier status. Throughout the article, we

assume p is pre-determined. Denote the data from the ith relative as Oi = (qi,xi, zi, yi, δi),

where qi is a length p vector, with the jth entry qij being the probability that the ith

observation is a random sample of the jth population. We also allow a subject’s population

membership to be known by allowing qi to be a vector with 1 in one component and zero in

all others. Let ti be the time to event and ci be the censoring time. Let yi = min(ti, ci) and

δi = I(ti ≤ ci). Let xi denote the covariate vector that has a common effect on the event
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time across different populations, while zi denote the covariate vector that has a different

effect in different populations. For simplicity, we sort the data so that yi ≤ yk for all i < k.

2.1 Model

For the jth population, the linear transformation model we propose has the form

H(T ) = −XTβ − ZTαj + εj. (1)

Here H is an unknown, monotonically increasing function. Without loss of generality,

we assume H(0) = −∞. Also, we assume εj is independent of X, Z, and has a known

population-specific distribution fj(εj). There are a few features of the model that accom-

modate population heterogeneity worth noting. First, in each population, the model is a

classical linear transformation model, and hence it retains the usual generality and flexibil-

ity of this class. Second, the baseline population distribution can be heterogeneous due to

the different choice of fj. For example, the first population may satisfy Cox proportional

hazard assumption if f1 is the extreme value distribution, and the second population may

satisfy a proportional odds model if f2 is a logistic distribution. Selection of fj for each

population can be based on scientific or biological knowledge of a particular population.

Third, the covariate effect is also allowed to vary, reflected in the population-specific αj.

Thus, a same covariate can have positive, none or even negative effect in different popula-

tions. By including the term xTβ, we also allow the possibility that some covariates have

homogeneous effect across populations. We will develop a test to assess whether a covariate

exhibits evidence of deviation from a homogeneous effect model.

Let θ = (βT,αT
1 , . . . ,α

T
p )T, Φ(t) = exp{H(t)}, φ(t) = exp{H(t)}h(t). The conditional

distribution function of the ith relative from (1) is then

f(yi, δi | xi, zi;θ,Φ, φ)

=

[
h(yi)

p∑
j=1

qijfj{H(yi) + xT
i β + zT

i αj}

]δi [
1−

p∑
j=1

qijFj{H(yi) + xT
i β + zT

i αj}

]1−δi
= φ(yi)

δiΨ(Oi;θ,Φ),
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where Φ is a function that depends only on θ and Φ, but not φ. Clearly this model can

no longer be viewed as a transformation model, hence the existing estimation procedures

for transformation models do not apply. To ensure that the model is still identifiable, in

addition to requiring H(0) = −∞, we further require that the qi variable takes m different

vector values, denoted u1, . . . ,um, so that the matrix (u1, . . . ,um) has rank p. Under

this assumption, if the problem is not identifiable, then there will be uT
k (f1, . . . , fp)

T =

uT
k (f ∗1 , . . . , f

∗
p )T for k = 1, . . . ,m, where f ∗1 , . . . , f

∗
p denote alternative transformation models

to f1, . . . , fp. This directly leads to (u1, . . . ,um)T(f1, . . . , fp)
T = (u1, . . . ,um)T(f ∗1 , . . . , f

∗
p )T,

hence fi = f ∗i for i = 1, . . . , p. Thus, the identifiability of the classical transformation model

under our parameterization leads to the overall identifiability of the problem. We point

out that the identifiability here excludes any permutation. That is, it is stronger than the

identifiability up to a permutation in most classical mixture models (Holzmann et al. 2006).

We can achieve the stronger form of identifiability because the mixture probabilities, while

different for different observations, are known.

2.2 Estimation

We propose a nonparametric maximum likelihood estimator (NPMLE) to estimate θ and

Φ(·). Specifically, we obtain θ̂ and Ĥ = log(Φ̂) through maximizing

l(θ,Φ) =
n∑
i=1

δilog{φ(yi)}+
n∑
i=1

log{Ψ(Oi;θ,Φ)}

with respect to θ and Φ, where we restrict Φ, hence H, to be a piecewise constant non-

decreasing function with non-negative jumps only at the observed event times. Following

the existing literature (Wacholder et al. 1998, Wang et al. 2012), we exclude the probands

from the analysis sample and the likelihood to protect against potential ascertainment bias

from unknown sources which may be difficult to adjust (e.g., convenience sample of patients

visiting a clinic). Given the mutation carrier status, we also assume the relatives’ phenotypes

are conditionally independent of probands’ phenotypes, which is an assumption satisfied by
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any monogenic disorder with a known genetic cause controlled in the model (e.g., HD in

our application).

Although conceptually simple, the computation of NPMLE is not straightforward be-

cause the maximization is with respect to not only γ, but also Φ(·) at all the yi’s that

are not censored. As sample size increases, the potential number of parameters increases

as well, hence the computational problem does not simplify in the asymptotic sense. To

overcome the computational difficulty, we use an EM algorithm. To this end, we first use

Laplace transformation in each population to obtain

1− Fj(x) =

∫ ∞
0

exp(−rjex)ψj(rj)drj,

where ψj(·) is the inverse Laplace transformation of 1−Fj(x) as a function of ex, consequently

1−
p∑
j=1

qijFj{H(yi) + xT
i β + zT

i αj} =

p∑
j=1

qij

∫ ∞
0

exp{−rijeH(yi)+xT
i β+zTi αj}ψj(rij)drij

=

p∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)e
xT
i β+zTi αj}ψj(rij)drij

and

h(yi)

p∑
j=1

qijfj{H(yi) + xT
i β + zT

i αj}

=

p∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)e
xT
i β+zTi αj}φ(yi) exp(xT

i β + zT
i αj)rijψj(rij)drij.

Recall that the ith observation is Oi, and let D = (O1, · · · ,On). Let 0 < t1 < · · · < tK < τ

be the distinct event times, and write the quantities to be estimated γ = {θT, H(t1), . . . H(tK)}T.

The log-likelihood is then l(γ; D) =
∑n

i=1 li(γ; Oi), where

li(γ; Oi) = log

p∑
j=1

∫ ∞
0

{φ(yi)rij exp(xT
i β + zT

i αj)}δi exp{−rijΦ(yi)e
xT
i β+zTi αj}qijψj(rij)drij.

We take advantage of the special data structure above and view the population identifiers

G = (G1, . . . , Gn) and r = (r1, . . . , rn) as the missing variable, where Gi = Ij represents that
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the ith observation is a random sample from the jth population, and ri = (ri1, . . . , rip)
T is the

introduced random effects to facilitate computation. Then the complete data loglikelihood

is l(γ | D,G, r) =
∑n

i=1 li(γ | Oi, Gi, ri), where

li(γ | Oi, Gi = Ij, rij) = log
[
{φ(yi)rij exp(xT

i β + zT
i αj)}δi exp{−rijΦ(yi)e

xT
i β+zTi αj}

]
= δilog{φ(yi)rij}+ δi(x

T
i β + zT

i αj)− rijΦ(yi)e
xT
i β+zTi αj .

Recognizing that this is a Cox model log-likelihood. Thus, in the E-step, we calculate

Q(γ,γ(u),D) ≡ Eγ(u){l(γ | D,G, r) | D} =
n∑
i=1

∫ ∑p
j=1 li(γ | Oi,Gi = Ij, rij)a

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

,

where

a
(u)
ij = {φ(u)(yi)rij exp(xT

i β
(u) + zT

i α
(u)
j )}δi exp{−rijΦ(u)(yi)e

xT
i β

(u)+zTi α
(u)
j }qijψj(rij).

In the M-step, we maximize Q(γ,γ(u),D) with respect to γ subject to the constraints

0 < H(t1) < · · · < H(tK) ≤ 1 to obtain γ(u+1). Specifically, taking derivative with respect

to γ, we obtain estimating equations

0 =
n∑
i=1

∫ ∑p
j=1{δixi − xirijΦ(yi)e

xT
i β+zTi αj}a(u)ij drij∫ ∑p

j=1 a
(u)
ij drij

=
n∑
i=1

δixi − xiΦ(yi)e
xT
i β

∑p
j=1 e

zTi αj
∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.

For j = 1, . . . , p,

0 =
n∑
i=1

∫
(δizi − zirije

H(yi)+xT
i β+zTi αj)a

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

=
n∑
i=1

δizi
∫
a
(u)
ij drij − ziΦ(yi)e

xT
i β+zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.

For k = 1, . . . , K,

0 =
∑
yi≥tk

∫ ∑p
j=1

{
I(yi=tk)

φk
− rijex

T
i β+zTi αj

}
a
(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

=
1

φk
−
∑
yi≥tk

ex
T
i β
∑p

j=1 e
zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.
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This yields

φk =

(∑
yi≥tk

ex
T
i β
∑p

j=1 e
zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

)−1
,

or in general

φ(yk;β,α) = δk

(
n∑
i=1

I(yi ≥ yk)e
xT
i β
∑p

j=1 e
zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

)−1
(2)

Φ(yi;β,α) =
n∑
k=1

I(yk ≤ yi)δk

(
n∑
i=1

I(yi ≥ yk)e
xT
i β
∑p

j=1 e
zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

)−1
.

Plugging into the estimating equation for β,α1, . . . ,αp, we obtain

n∑
i=1

δixi − xiΦ(yi;β,α)ex
T
i β

∑p
j=1 e

zTi αj
∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

= 0 (3)

n∑
i=1

δizi
∫
a
(u)
ij drij − ziΦ(yi;β,α)ex

T
i β+zTi αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

= 0

at j = 1, . . . , p.

We solve the estimating equations (3) to obtain β̂
(u+1)

, α̂(u+1), j = 1, . . . , p, and then

substitute into (2) to obtain Φ(u+1)(t) and hence also H(u+1)(t) = log{Φ(u+1)(t)}. The

procedure iterates between the E-step and the M-step until convergence.

We point out that although the functions ψj(r)’s are left as unknown, we can still

calculate
∫
a
(u)
ij drij and

∫
rija

(u)
ij drij in the M-step. Specifically,∫

a
(u)
ij drij = qij {1− Fj(t)}1−δi

{
h(u)(yi)fj(t)

}δi ∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

,∫
rija

(u)
ij drij =

{
e−tqijfj(t)

}1−δ [
e−tqijh

(u)(yi){fj(t)− f ′j(t)}
]δ ∣∣∣

t=H(u)(yi)+xT
i β

(u)+zTi α
(u)
j

,

as shown in Appendix A.1, by taking advantage of the Laplace/inverse Laplace transform

relation. In fact, even if an explicit form of ψj(r) can be obtained, it is not necessary to go

through the calculation because ψj(r) itself is not needed. Finally, because ψj is defined as

the inverse Laplace transform of a bounded function, it always exists for any ε distribution.
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2.3 Theoretical properties

Although (1) is not a transformation model, under the list of conditions imposed in Appendix

A.2, (1) can be cast into the general framework by Zeng & Lin (2007). To this end, we can

verify that our Conditions (a), (b), (c) lead to their conditions (C1), (C2), (C3) respectively.

Our Conditions (d) and (e) jointly ensure their conditions (C4) and (C8). Our Condition

(f) leads to their condition (C6) and our Condition (g) leads to their conditions (C5),

(C7). These are mild conditions mainly imposing identifiability, sufficient smoothness and

boundedness of various functions, and is usually satisfied in practice. Having verified the

regularity conditions C1-C7 of Zeng & Lin (2007), we can readily use their results to obtain

the asymptotic properties of the NPMLE in the linear transformation model in the mixture

data setting. We state the results in Theorem 1 and provide the proof in Appendix A.3.

Theorem 1. Let θ0,Φ0 denote the true value of θ,Φ, write Φ = {Φ(t1), . . . ,Φ(tK)}T. Under

conditions (a)-(g) listed in Appendix A.2, θ̂, Φ̂ are consistent, and have the asymptotic prop-

erty that
√
n(θ̂− θ, Φ̂−Φ) converges weakly to a zero mean Gaussian process. Specifically,

for any function a1(s) with bounded total variation and any vector a2,
√
n
∫
a1(s)d{Φ̂(s)−

Φ(s)} +
√
naT

2 (θ̂ − θ) converges to a zero mean normal distribution whose variance can be

approximated with

v{a1(·), a2} ≡ −(aT
1 , a

T
2 )

{
∂2l(Φ̂, θ̂)

∂(ΦT,θT)∂(ΦT,θT)T

}−1
(aT

1 , a
T
2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

2.4 Inference

In practice, often the main interest is in the covariate effects described by θ. In such cases,

we can perform inference using the results of profiling procedure. Specifically, at any θ,

we use the same EM algorithm to calculate Ĥ(T,θ) except that we held θ fixed, and then

calculate the information matrix using numerical derivative. This procedure provides a
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simplification because it bypasses the need to invert a potentially high dimensional matrix.

For example, the α100% confidence interval for the jth component of θ, θj is

θ̂j ± Z(1+α)/2

[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ2j

∣∣
θ=θ̂

]−1/2

≈ θ̂j ± Z(1+α)/2

[
n∑
i=1

−li{θ̂ + bej, Ĥ(t1, θ̂ + bej), . . . , Ĥ(tK , θ̂ + bej)}
b2

+
2li{θ̂, Ĥ(t1, θ̂), . . . , Ĥ(tK , θ̂)} − li{θ̂ − bej, Ĥ(t1, θ̂ − bej), . . . , Ĥ(tK , θ̂ − bej)}

b2

]−1/2
,

where Z(1+α)/2 is the (1+α)/2 quantile of the standard normal distribution, li is the likelihood

evaluated at the ith observation, ej is the vector with zero components everywhere except

the jth component being 1, and b is a small number that facilitates numerical derivative.

Likewise, for hypothesis testing of the form H0 : θ = c, we can construct the test statistic

Z =

[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ∂θT

∣∣
θ=θ̂

]1/2
(θ − c)

≈

[(
n∑
i=1

−li{θ̂ + bej + bek, Ĥ(t1, θ̂ + bej + bek), . . . , Ĥ(tK , θ̂ + bej + bek)}
4b2

+
li{θ̂ + bej − bek, Ĥ(t1, θ̂ + bej − bek), . . . , Ĥ(tK , θ̂ + bej − bek)}

4b2

+
li{θ̂ − bej + bek, Ĥ(t1, θ̂ − bej + bek), . . . , Ĥ(tK , θ̂ − bej + bek)}

4b2

− li{θ̂ − bej − bek, Ĥ(t1, θ̂ − bej − bek), . . . , Ĥ(tK , θ̂ − bej − bek)}
4b2

)
jk

1/2

×(θ − c),

and note that Z is approximately a standard multivariate normal random variable under

H0. Here, we use the notation (Ajk) to denote the square matrix A of size the length of θ

with its (j, k) entry given as Ajk.
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3 Homogeneous and no covariate effect model

When either β or αj does not appear in (1), the model becomes more restrictive while

the computation simplifies. If β does not appear, then there is no homogeneous covariate

effect in the transformation model. In terms of estimation, the procedures follows the same

line with some minor simplifications. However, if αj does not appear, model (1) greatly

simplifies and can be treated quite differently, as we now explain.

The common-effect covariate effect model for the jth population is

H(T ) = −XTβ + εj,

where all the components in the model retain the same interpretation as in (1). The impli-

cation of the model is that the heterogeneity between subpopulations is due to differential

distribution of random measurement errors εj (i.e., different variability of measurement er-

rors), but not the heterogeneous effect of covariates. The conditional distribution is then

simplified to

f(Y,∆ | X) =

[
h(y)

p∑
j=1

qjfj{H(y) + xTβ}

]δ [
1−

p∑
j=1

qjFj{H(y) + xTβ}

]1−δ
=

[
h(y)qTf{H(y) + xTβ}

]δ [
1− qTF

{
H(y) + xTβ

}]1−δ
,

where f = (f1, . . . , fp)
T, F = (F1, . . . , Fp)

T, and h(y) ≡ H ′(y), because the same transfor-

mation H and the same parameter β are assumed across all p populations. The population

difference is only reflected in the distribution of εj, which is assumed to be fj. We can how-

ever still use the different fj’s of the model to account for unexplained residual population

heterogeneity, for example, to account that subjects from different populations will have

different variances.

As before, estimating the distribution in each population is equivalent to estimating H

and β. Recall that qi’s can have m ≥ p different vector values u1, . . . ,um. Assign the n

observations to these m groups according to their q values. Assume there are respectively

r1, . . . , rm observations in each group. In group k, we can view the model as a transformation
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model with the same transformation H, the same parameter β, but a new distribution for

ε, which has the mixture form uT
k f(ε). Thus, we can use the existing estimation method for

transformation models to obtain the estimators of H and β, using exclusively the kth group

data. Denote the resulting estimator Ĥk and β̂k. We can then take the weighted average to

obtain the final estimator Ĥ(t) =
∑m

k=1wk(t)Ĥk(t) and β̂ =
∑m

k=1 wkβ̂k. To be consistent

with the estimation in the general model (1), we use the NPMLE proposed by Zeng & Lin

(2006) here. Thus, we obtain β̂k, Ĥk via maximizing

lk(H,β) = n−1
n∑
i=1

I(qi = uk)
(
δilog

[
h(yi)u

T
k f{H(yi) + xT

i β}
]

+(1− δi)log
[
1− uT

kF
{
H(yi) + xT

i β
}])

with respect to β and H. Here, we restrict H(y) to be a piecewise constant nondecreasing

function with nonnegative jumps only at yi’s where qi = uk and δi = 1. We write these jump

points t1, . . . , tK , and write Hk = {H(t1), . . . , H(tK)}T. Zeng & Lin (2006) showed that the

resulting β̂k, Ĥk are consistent, and have the asymptotic property that
√
n(β̂k−β, Ĥk−H)

converges weakly to a zero mean Gaussian process. Specifically, for any function a1(s) with

bounded total variation and any vector a2,
√
n
∫
a1(s)d{Ĥk(s) − H(s)} +

√
naT

2 (β̂k − β)

converges to a zero mean normal distribution whose variance can be approximated with

vk{a1(·), a2} ≡ −(aT
1 , a

T
2 )

{
∂2lk(Ĥk, β̂k)

∂(HT
k ,β

T)∂(HT
k ,β

T)T

}−1
(aT

1 , a
T
2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

It remains to determine the choice of weights wk. Because the estimation in different

group is based on different subjects, they are independent. Hence the optimal weights are

proportional to the inverse of the variance of the estimators. To be specific, the optimal

weights for Ĥ(t) are wk(t) = vk{I(s ≤ t),0}−1/[
∑m

k=1 vk{I(s ≤ t),0}−1] and wk is a

diagonal matrix with the jth diagonal element wkj = vk(0, ej)
−1/{

∑m
k=1 vk(0, ej)

−1}. In

practice, this may not work well since it relies on the asymptotic results. Based on prior work

in Ma & Wang (2014), a simple choice of wk(t) = wk = r−1k has satisfactory performance.
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Because the within group NPMLE already guarantees the monotonicity of each Ĥk, the

final weighted average estimator for Ĥ is automatically monotone. Asymptotic property of

Ĥ and β is standard. Specifically,
√
n(β̂ − β, Ĥ − H) converges weakly to a zero mean

Gaussian process. For any function a1(t) with bounded total variation and any vector a2,

√
n
∫
a1(s)d{Ĥ(s) − H(s)} +

√
naT

2 (β̂ − β) converges to a zero mean normal distribution

whose variance can be approximated with

v{a1(·), a2} ≡
m∑
k=1

vk{a1(·)wk(·),wka2}

where t1, . . . , tK are the observed event times, i.e. the yi values where the corresponding

δi = 1, a1 = {a1(t1), . . . , a1(tK)}T.

It is of interest to test whether population heterogeneity in the covariate effects is present

in (1). This is equivalent to testing α1 = α2 = · · · = αp, and can be written as testing

Aθ = 0, where A is a (p− 1)dz× (dx + pdz) block matrix where the (j, j) block is I and the

(2, j) block is −I for j = 3, . . . , p + 1. All other blocks are zero. Based on the asymptotic

results in Section 2, we can conveniently use a Wald test, where under Φ0, n(Aθ)TV−1Aθ

has χ2 distribution with (p− 1)dz degrees of freedom, where

V = −(0(p−1)dz×K ,A)

{
∂2l(Φ̂, θ̂)

∂(ΦT,θT)∂(ΦT,θT)T

}−1
(0(p−1)dz×K ,A)T.

Our final note in this section is to point out the special case where no covariate is included

in the model, hence β does not appear. The procedure derived above in this section can

be directly applied with the simplification of deleting all the steps concerning estimating

β. In other words, we would estimate H(·) from each of the m groups, and then combine

these results via a weighted average. This is very similar to the approaches in Wacholder

et al. (1998) and in Ma & Wang (2014), except that the estimation of H(·) in each group is

carried out via MLE here instead of least squares in these works, and the weight selection

is further different from that in Wacholder et al. (1998).
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4 Simulation Studies

We performed six sets of simulation studies to demonstrate the performance of the proposed

method for the transformation model in the mixture data context. We present three of the

simulation studies here and relegate the remaining three to Appendix A.4. Our first set of

simulations contain homogeneous covariate effect. We generate data using p = 2, without

αj, and X is a bivariate random vector. The first component of X is a binary variable,

taking values 1 or 0 each with probability 0.5. The second component of X is a uniform

random variable between -1 and 1. The transformation H is a logarithm function. We set

f1 to be the extreme value distribution, thus the first population has a Cox proportional

hazard model. We set f2 to be the logistic distribution, hence the second population has

a proportional odds model. The censoring distribution is exponential, resulting an overall

censoring rate about 25%. The results are in the first block of Table 1 and upper-left plot of

Figure 1. For comparison, we also experimented the estimation by treating the homogeneous

effect as heterigeneous, and estimated β1, β2 as α11, α21, α12, α22 instead. The results are in

the second block of Table 1 and upper-right plot of Figure 1. It can be seen that the

estimations are still consistent, yet the estimation variability roughly doubled, because we

are using about half of the effective information.

The second set of simulations study the heterogeneous covariate effect. It includes αj,

but not β. We generated data using p = 2. Z contains the same structure as X as in the

first simulation for the first two terms and an intercept term for the third term. We keep

H the same as in the first simulation. Note that usually, in the transformation models, the

intercept term is not identifiable. However, in our case, the difference of the intercepts in

different populations is identifiable, and hence will be estimated. In this setting, we used two

slightly different models for f1, f2. Specifically, we set f1 to be standard normal and f2 to

be a t distribution with 5 degrees of freedom. The censoring distribution is still exponential

to achieve a 20% overall censoring rate. Results are in the second block of Table 1 and

lower-left plot of Figure 1.
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Our third simulation considers a more complex simulation including both β and αj.

We generated data using p = 2. X is bivariate. The first component of X is either 1

or 0 with equal probability, and the second component of X is a standard normal random

variable. Z contains a uniform covariate on [-1 1] and a constant 1 to capture intercept. The

true H is still the log transformation. This time, we will use two similar models for f1, f2.

Specifically, we set both f1, f2 to be normal with mean zero, but with different variances,

where the second population has four times the variance as the first one. The censoring

distribution is exponential yielding a 20% overall censoring rate. The results are in the third

block of Table 1 and the lower-right plot of Figure 1.

The simulation studies suggest that the proposed method has satisfactory finite sample

performance. Specifically, the parameter estimation yields small biases in all three simu-

lations measured by the mean and median of the 1000 estimates. In addition, inference

results are precise, in that the sample standard deviation from the 1000 simulations are

closely matched by both the average and the median of the 1000 estimated standard de-

viations calculated from the asymptotic results. The overall distribution of the estimated

parameters are also close to normal, as indicated by the empirical coverage of the 95%

confidence intervals, which are close to their nominal levels. The estimation of the trans-

formation function H, as shown in Figure 1, is within the expectation. Overall, the average

of the curve estimation approximately overlays the true H curve, while the 95% confidence

bands have performance better than the typical nonparametric curve estimation. This is

due to the fact that H is estimated with the root-n rate, instead of the usual nonparametric

rate. We also experimented different transformation function form for H, and the overall

performance is similar. The details of these simulations are in Appendix A.4.

5 Application to Huntington’s Disease Study

HD is the most prevalent monogenic neurodegenerative disorder caused by expansion of C-A-

G repeats at the HD gene on chromosome 4 (MacDonald et al. 1993). Typically neurological,
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cognitive and physical symptoms begin to exhibit around 30-50 years of age for affected

individuals, and eventually they die from pneumonia, heart failure, or other complications

15-20 years after the diagnosis of HD (Foroud et al. 1999). The subjects analyzed here were

recruited in the Cooperative Huntington’s Observational Research Trial (COHORT, Dorsey

& The Huntington Study Group COHORT Investigators 2012), an epidemiological study

of the natural history of HD. The probands were recruited primarily at academic research

centers from 50 sites in the United States, Canada, and Australia. Probands were either

clinically diagnosed with HD or the individuals who pursued HD genetic testing and carry

a mutation but who were not clinically diagnosed. The initial probands underwent clinical

examination and genotyping for HD mutation, and reported family history information

on their first-degree relatives. The relatives were not genotyped because there was no

resource for in-person collection of blood samples. Thus the relatives’ HD mutation status

is unknown, while the distribution of their mutation status can be estimated from the

pedigree structure and the probands’ carrier status. The full details of the COHORT study

design are described in Dorsey & The Huntington Study Group COHORT Investigators

(2012) and Wang et al. (2012).

Wang et al. (2012) proposed nonparametric methods to estimate survival functions in

HD mutation carriers and non-carriers using first-degree relatives in COHORT study. The

COHORT recruitment criteria are to include individuals from age 15 to age 89 who have

none zero probabilities to be genetically at-risk and not at-risk for HD. Family history of the

disease was not part of recruitment design. Therefore, the data of the first-degree relatives

are free of sampling bias. Wang et al. (2012) has shown that the survival function in

non-carriers estimated from the relative data matches adequately with the US population

mortality rates, while the survival function in carriers estimated from the same relative

data is very different. However, the nonparametric estimator in Wang et al. (2012) does not

allow adjustment for covariate effect, thus it cannot be used for predicting survival function

in relatives based on various covariates, such as the relative’s gender and the relative’s
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proband’s characteristics.

There were 4105 subjects included in the COHORT analysis, and they were either mu-

tation carriers or not, hence p = 2. The heterogeneous covariate effect model (1) was used

to study the effect of several covariates on mortality in HD mutation carriers, where the

model of the carriers, f1 is normal with mean zero standard deviation 0.2, and for the non-

carriers, f2 is the distribution of 0.2T5, where T5 stands for a student t random variable

with degrees-of-freedom 5. The main research interest is to predict age at death based on

CAG repeats length, adjusting for gender, proband’s HD clinical diagnosis status and a

relative’s relationship to the probands. We assume all covariates to have differential effect

in each mutation group to allow for maximal flexibility, i.e. all covariates are included in

Z and X does not appear in (1). The covariates included in the model are: CAG repeats

length at the HD gene, gender, and proband’s HD diagnosis status. As expected, the effects

of CAG repeats length has a significant effect on age-at-death with an estimated effect of

−0.76 (SE: 0.09, p-value< 0.001). The results suggest that if all covariates are the same,

the subjects with one unit CAG repeat longer are expected to have a 2.38 years shorter

lifespan. Here 2.38 is calculated as the average of Ĥ−1(U) − Ĥ−1(U − 0.76) for a random

U , where Ĥ is the estimated transformation function and is close to a linear function (See

Figure 2). This finding is consistent with the clinical literature which indicated an inverse

association between CAG repeats length and HD age at diagnosis and death Foroud et al.

(1999), Langbehn et al. (2004). Further, proband’s HD diagnosis also has a significant effect

after adjusting for CAG repeats and other covariates. Thus having a positive HD diagnosis

in a family member is associated with an earlier mean age-at-death in carrier potentially

due to other shared familial risk factors.

The estimated transformation H(·) and its bootstrap confidence interval are presented

in Figure 2. The nonparametric function suggests that a linear transformation may fit the

data adequately, and under a parametric approximation, prediction formula for the age-at-

death in a mutation carrier subject can be obtained. The approximated linear function is
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Ĥ(t) = −24.35 + 0.32t. We show this linear transformation in Figure 3.

A limitation of our analysis is that probands data were not included to protect against

potential bias resulting from unknown sources in COHORT study which does not use a

population-based ascertainment scheme for probands. When the proband ascertainment is

population-based, for example, probands are randomly selected from diseased population

(case-family design), their data may be included through a retrospective likelihood. It will

be interesting to replicate our analysis in an independent study using such a design and

include probands data in the analyses.

6 Discussion

In this work, we proposed a semiparametric transformation model to estimate distribution

function and covariate effect for censored mixed population data. We assume that it is not

known from which population an observation is drawn from, while the probability of an ob-

servation belonging to each population is known. This implies that as a mixed sample, the

distribution of the mixture, although it may be different for different observation, is known.

A potential interesting extension of our method is to further parametrize the mixing dis-

tributions and estimate the parameters from data. Specifically, this implies that qij’s are

not completely known, but are modeled parametrically, semiparametrically or nonparamet-

rically and then estimated as q̂ij. It will be interesting and challenging to develop methods

that can account for the additional discrepancy between q̂ij and qij and deliver appropriate

estimation of the survival function and covariate effect using q̂ij.

Our method has the flexibility to account for cross-population heterogeneity by charac-

terizing the outcome in each population using different distributions specified by covariate

parameters and error distributions (e.g., distinct scale or shape parameter; population-

specific covariate effect), while simultaneously allow for common components across pop-

ulations (e.g., shared covariate effect). In practice, whether or not to adopt population

specific effect or shared effect is often determined by the purpose of the analysis and prior
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knowledge. In many cases, covariates whose effects are of particular research interest should

be modeled carefully and preferably assumed to be population-specific as a precaution, while

covariates that are not of interest while their effect should be controlled to avoid bias can

be modeled across population.

Finally, we have assumed that the relative observations are independent and excluded

probands from the analyses. In proband-relative studies, multiple relatives from a same

family may be collected and thus could have residual familial correlation (arising from

other unknown causal genes or shared environmental familial factors) unexplained by our

model. While our current approach is still consistent if the probands are representative

samples of the probands population, the inference developed above will no longer be valid.

Furthermore, when probands are not representative samples and there is residual familial

aggregation, ascertainment scheme may need to be modeled and probands and relative data

need to be analyzed jointly. How to best accommodate familial correlation and adjust for

probands ascertainment scheme will be highly challenging and interesting.
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Figure 1: True function (solid line), median estimation (dashed line), mean estimation

(dotted line) and 95% confidence band (dash-dotted line) of H(T ) in simulations 1.1 (upper-

left), 1.2 (upper-right), 2 (lower-left), and 3 (lower-right) .
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Figure 2: Estimated H function (solid line), median estimation (dashed line), mean es-

timation (dash-dotted line) and 95% confidence band (dashed line) of H(T ) in real data

analysis. Median, mean and 95% confidence band are based on 1000 bootstrapped samples.

The mean, median and estimated functions almost overlap one another.
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Figure 3: Fitted linear function Ĥ(t) versus age t for HD data analysis.
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Table 1: Simulation results based on 1000 repetitions.

true mean median sd mean(ŝd) median(ŝd) 95% CI

simulation 1.1

β1 1.0000 0.9834 0.9703 0.4384 0.4474 0.4472 0.9570

β2 2.0000 1.9734 1.9626 0.3845 0.3958 0.3954 0.9570

simulation 1.2

α11 1.0000 0.9958 0.9992 1.0400 0.9623 0.9414 0.9410

α12 2.0000 2.0420 2.0456 0.8916 0.8539 0.8199 0.9310

α21 1.0000 0.9915 1.0140 0.8581 0.8395 0.8378 0.9420

α22 2.0000 1.9684 1.9879 0.7328 0.7436 0.7350 0.9530

simulation 2

α11 1.0000 1.0644 1.0584 1.1017 1.1758 1.1264 0.9530

α12 2.0000 2.0767 2.0493 1.2519 1.3178 1.2870 0.9620

α21 1.5000 1.4353 1.4306 0.7582 0.8072 0.7918 0.9640

α22 3.0000 2.9344 2.9167 0.8787 0.9039 0.8852 0.9490

simulation 3

β1 1.0000 0.9895 0.9915 0.3944 0.3976 0.3974 0.9520

β2 1.5000 1.4974 1.4894 0.1983 0.2083 0.2079 0.9560

α1 2.0000 1.9007 1.9443 1.1372 1.1737 1.1683 0.9600

α2 3.0000 3.0040 2.9988 0.5071 0.5071 0.5028 0.9420

Table 2: COHORT analysis results: estimated covariate effects (age, gender, proband’s

diagnosis of HD), their standard errors, and p-values.

Carriers Non-carriers

α1intercept α1Age α1Gender α1ProDiag α2intercept α2Age α2Gender α2ProDiag

est -33.65 0.76 -0.67 1.79 -7.07 0.18 2.82 -2.30

se 4.28 0.09 0.70 1.00 1.25 0.03 0.67 0.84

p-value < 0.001 < 0.001 0.34 0.07 < 0.001 < 0.001 < 0.001 0.006
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Appendix

A.1 Derivation of
∫
a

(u)
ij drij and

∫
rija

(u)
ij drij

Here we show the derivation of the relationships∫
a
(u)
ij drij = qij {1− Fj(t)}1−δi

{
h(u)(yi)fj(t)

}δi ∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j∫

rija
(u)
ij drij = e−tqijfj(t)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

if δi = 0∫
rija

(u)
ij drij = −e−tqijh(u)(yi){f ′j(t)− fj(t)}

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

if δi = 1.

Let t = H(u)(yi) + xT
i β

(u) + zT
i α

(u)
j . Then

a
(u)
ij = {h(u)(yi)rij exp(t)}δi exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

.

When δi = 0,

da
(u)
ij

dt
= −rijet exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

d2a
(u)
ij

dt2
= −rijet exp(−rijet)qijψj(rij) + r2ije

2t exp(−rijet)qijψj(rij)
∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

.

When δi = 1,

da
(u)
ij

dt
= −h(u)(yi)r2ije2t exp(−rijet)qijψj(rij)

+h(u)(yi)rije
t exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j

Thus, when δi = 0,

rija
(u)
ij = −e−t

da
(u)
ij

dt

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j ,δi=0

,

when δi = 1,

rija
(u)
ij = h(u)(yi)e

−t

(
d2a

(u)
ij

dt2
−
da

(u)
ij

dt

)∣∣∣
t=H(u)(yi)+xT

i β
(u)+zTi α

(u)
j ,δi=0

.
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A.2 List of regularity conditions

We impose the following list of regularity conditions to achieve this purpose.

(a) The parameter value θ0 belongs to the interior of a compact set Θ ∈ Rdθ , and φ0(t) > 0

for all t ∈ [0, τ ]. (C1).

(b) With probability 1, pr(Yi ≥ τ | Xi,Zi) > δ0 > 0 for some constant δ0 > 0. (C2).

(c) fj(s) is bounded away from zero and infinity on its support for j = 1, . . . , p. (C3).

(d) fj(s) is three times continuously differentiable and f
(v)
j (s)/ exp(ks), v = 0, . . . , 3, k =

2, . . . , 4, are square integrable on (−∞, log(τ)] for j = 1, . . . , p. (C4), (C8).

(e) The covariates X,Z have finite kth moments for k = 1, . . . , 6. (C4), (C8).

(f) The first moment of logfj(s) exists for j = 1, . . . , p. (C6).

(g) m ≥ p and the matrix (u1, . . .um) has rank p. (C5), (C7).

A.3 Proof of Theorem 1

Because NPMLE for the linear transformation model in the mixture model setting we con-

sider here can be cast into the general framework established in Zeng & Lin (2007), we prove

Theorem 1 through verifying the conditions (C1)-(C8) required by Zeng & Lin (2007).

First, our Condition (a) ensures that the true parameter value is in the interior of a

compact set of the parameter space, with Conditions (c) and (d), we further guarantee the

differentiability and positivity of the hazard function. This leads to condition (C1) of Zeng

& Lin (2007).

Next, our Condition (b) requires a positive probability to survive or be uncensored at

the end of the time interval under consideration, which is equivalent to condition (C2) of

Zeng & Lin (2007).
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Further, our Condition (c) directly excludes the pathological situation that the moments

or total variation involving the survival process becomes unbounded by requiring each fj to

be bounded and bounded away from zero. This guarantees that condition (C3) of Zeng &

Lin (2007) is satisfied.

Condition (C4) of Zeng & Lin (2007) is a type of Lipschitz condition, with respect to

both parameter and function. This is guaranteed by the stronger differentiability conditions

in our Condition (d) and and the moment conditions in Condition (e).

Our Condition (g) ensures the identifiability of the problem, which is stated in condition

(C5) of Zeng & Lin (2007).

Condition (C6) of Zeng & Lin (2007) requires sufficient smoothness and boundedness of

the hazard functions and some functions derived from them. This is achieved here by our

Conditions (c), (d) and (f).

Condition (C7) of Zeng & Lin (2007) is an identifiability condition that arises due to the

generality of the framework they consider. In our problem it is guaranteed to hold under

Condition (g) and the parameterization of requiring H(0) = −∞.

Finally, condition (C8) of Zeng & Lin (2007) is similar to their (C4) but is strengthened

to hold along each path in a neighborhood of the true parameter value. Our Conditions (d)

and (e) are imposed for all the parameter values in a compact set hence they jointly ensure

this condition to hold.

A.4 Additional simulations

The fourth simulation resembles the first simulation, with everything the same as in the

first simulation except that the true transformation H is log{t/(1 − t)}. In this case, the

overall censoring rate is about 25%. The results are in Table 3 and Figure 4.

Similarly, the fifth simulation resembles the second simulation but with a different H

function. In this case, the true transformation H is log{t/(1− t)}. and the overall censoring
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rate is about 20%. The results are in Table 3 and Figure 4.

Finally, the sixth simulation resembles the third simulation except in terms of the func-

tion H. The true transformation H is log{t/(1 − t)}, and the overall censoring rate about

25%. The results are in Table 3 and Figure 4.

Table 3: Simulation results. Results based on 1000 simulations.

true mean median sd mean(ŝd) median(ŝd) 95% CI

simulation 4

β1 1.0000 0.9809 0.9776 0.4393 0.4605 0.4601 0.9650

β2 2.0000 1.9693 1.9565 0.3974 0.4088 0.4084 0.9540

simulation 5

α11 1.0000 0.9893 0.9986 0.6229 0.6363 0.6351 0.9590

α12 2.0000 1.9895 1.9988 0.5339 0.5552 0.5535 0.9550

α21 1.5000 1.4764 1.4410 1.1660 1.1346 1.1292 0.9530

α22 3.0000 2.9565 2.9681 0.9947 0.9971 0.9933 0.9460

simulation 6

β1 1.0000 0.9973 0.9914 0.2951 0.2982 0.2978 0.9590

β2 1.5000 1.5038 1.4982 0.1551 0.1569 0.1567 0.9590

α1 2.0000 1.8943 1.9186 0.7693 0.7955 0.7945 0.9510

α2 3.0000 3.0311 3.0257 0.3728 0.3609 0.3595 0.9560
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(dotted line) and 95% confidence band (dash-dotted line) of H(T ) in simulations 1 (upper-

left), 2 (upper-right) and 3 (lower) .
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