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Abstract

Censored quantile regression is an important alternative to the Cox proportional hazards

model in survival analysis. In contrast to the usual central covariate effects, quantile re-

gression can effectively characterize the covariate effects at different quantiles of the survival

time. When covariates are measured with errors, it is known that naively treating mis-

measured covariates as error-free would result in estimation bias. Under censored quantile

regression, we propose smoothed and corrected estimating equations to obtain consistent

estimators. We establish consistency and asymptotic normality for the proposed estimators

of quantile regression coefficients. Compared with the naive estimator, the proposed method

can eliminate the estimation bias under various measurement error distributions and model

error distributions. We conduct simulation studies to examine the finite-sample properties

of the new method and apply it to a lung cancer study.
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1 Introduction

Mean-based regression models have been extensively studied for randomly censored survival

data. For example, the Cox (1972) proportional hazards model characterizes the hazard

as a function of different covariates; and the accelerated failure time (AFT) model directly

formulates linear regression between the logarithm of the failure time and covariates. How-

ever, neither the Cox nor the AFT model can differentiate the covariate effect at higher or

lower quantiles of survival times, as they only provide the mean effect. In particular, the

AFT model concerns only the mean regression, for which the estimation procedure is typi-

cally based on the least squares or rank methods (Prentice, 1978; Buckley and James, 1979;

Ritov, 1990; Tsiatis, 1990; Wei, Ying, and Lin, 1990; Lai and Ying, 1991; and Jin et al.,

2003). On the other hand, quantile regression provides a robust alternative to mean-based

regression models. Under this framework, we can model the median or any other quantile

of the outcome or survival time (Koenker and Bassett, 1978; and Koenker, 2005). Regres-

sion parameters are often estimated by minimizing a check function, and the corresponding

variance estimates are typically obtained by resampling methods, such as bootstrap. When

censoring times are assumed to be fixed and known, quantile regression has been extensively

studied, particularly in the field of econometrics; for example, see Powell (1984), Buchinsky

and Hahn (1998), Fitzenberger (1997), and Khan and Powell (2001). In survival analysis

with random censoring, censored quantile regression (CQR) has been proposed and is gain-

ing much popularity (Ying, Jung, and Wei, 1995; Lindgren, 1997; Yang, 1999; Koenker and

Geling, 2001; Bang and Tsiatis, 2002; Chernozhukov and Hong, 2002; Portnoy, 2003; Peng

and Huang, 2008; and Wang and Wang, 2009).

In practice, covariates are often subject to measurement errors. The most common mea-

surement error structure is W = Z + U, where W is the observed surrogate, Z is the true

but unobserved covariate, and U is the random measurement error. For a comprehensive

coverage of various measurement error models and inference procedures with mean-based

regression, see Carroll et al. (2006). In the context of quantile regression with measurement
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errors, Brown (1982) examined median regression and described the difficulty involved in

parameter estimation. He and Liang (2000) proposed root-n consistent estimators for linear

and partially linear quantile regression models. Their method assumes that the random error

in the response and the measurement errors in the covariates follow a spherical symmetric

distribution. Wei and Carroll (2009) proposed a novel approach to quantile regression with

measurement errors by utilizing the derivative property of the quantile function when the

same quantile regression structure is assumed for all the quantile levels. Recently, Wang, Ste-

fanski, and Zhu (2012) developed a corrected-loss function for the smoothed check function,

a substantial advance in this area. However, there is limited research on quantile regression

with covariate measurement errors under censoring. Ma and Yin (2011) studied covariate

measurement errors in CQR models based on the inverse probability weighting scheme, but

their method also requires the spherically symmetric distribution. In this paper, we study

the issue of covariate measurement errors in quantile regression with randomly censored

data. We propose a smoothed and corrected martingale-based estimating equation, consider

grid-based estimates for the quantile regression coefficients, and establish the asymptotic

properties of the proposed estimator by employing empirical process theory. Our proposed

method allows an abundant class of distributions for the error in the response; for example, it

could be light- or heavy-tailed, symmetric or asymmetric, homoscedastic or heteroscedastic.

The rest of the article is organized as follows. In Section 2, we describe the CQR model

with measurement errors, develop a corrected estimating equation based on a kernel smooth-

ing approximation, and establish the asymptotic properties of the resultant estimator. Sec-

tion 3 contains simulation studies for the evaluation of the finite sample performance of the

proposed method. A data set concerning lung cancer is analyzed in Section 4 and some con-

cluding remarks are provided in Section 5. The assumptions that we imposed in the paper

were listed and discussed in the Appendix and the detailed proofs of theorems are deferred

to the online Supplementary Material.
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2 CQR Model With Measurement Errors

2.1 Model Specification

Let T denote the transformed failure time under a known monotone transformation, e.g.,

the logarithm function. Let C denote the censoring time under the same transformation.

Let Z be a p-vector of covariates, X = T ∧ C be the observed time, and ∆ = I(T ≤ C)

be the censoring indicator, where a ∧ b is the minimum of a and b, and I(·) is the indicator

function. Assume that T and C are conditionally independent given covariate Z.

For τ ∈ (0, 1), the conditional τth quantile function of survival time T given covariate Z

is defined as QT (τ |Z) = inf{t: P (T ≤ t|Z) ≥ τ}. The quantile regression model associated

with covariate Z has the form

QT (τ |Z) = ZTβ(τ), (2.1)

where β(τ) is an unknown p-vector of regression coefficients, representing the effect of Z on

the τth quantile of the transformed survival time.

In reality covariate Z may be measured with errors, so that we do not directly observe

Z but its surrogate W. We assume the classical error structure

W = Z + U,

where U is a p-variate random vector with mean 0 and covariance matrix Σ. The case

that some covariates are error-free is accommodated in our model by setting the relevant

terms in Σ to be zero. We further make the typical surrogacy assumption that (T, C) and

W are conditionally independent given covariate Z. For ease of exposition, we assume Σ

to be known provisionally, since Σ can easily be estimated with replicated observations or

validation data.

2.2 Approximately Corrected Estimating Equation

We first introduce notation: FT (t|Z) = P (T ≤ t|Z), ΛT (t|Z) = − log{1 − P (T ≤ t|Z)},
N(t) = ∆I(X ≤ t) and M(t) = N(t)−ΛT (t∧X|Z). Following the argument in Fleming and
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Harrington (1991), it is easy to show that evaluated at β0(τ), the true value of β(τ), M(t)

is a martingale process associated with the counting process N(t). Furthermore, because

E{M(t)|Z} = 0 at β0(τ) for any t, we have

E
{
Z

(
N{ZTβ0(τ)} − ΛT [{ZTβ0(τ)} ∧X|Z]

)}
= 0 (2.2)

for τ ∈ (0, 1). Under model (2.1), after some algebraic manipulations, we obtain that

ΛT [{ZTβ0(τ)} ∧X|Z] =

∫ τ

0

I{X ≥ ZTβ0(u)}dH(u), (2.3)

where H(u) = − log(1− u) for 0 ≤ u < 1.

Based on (2.2) and (2.3), when all Zi’s are observed, Peng and Huang (2008) proposed

an estimating equation for β(τ),

n∑
i=1

Zi

[
Ni{ZT

i β(τ)} −
∫ τ

0

I{Xi ≥ ZT
i β(u)}dH(u)

]
= 0. (2.4)

However, when the covariates Zi’s are measured with errors, naively treating mismeasured

covariates to be error-free would cause estimation bias and thus lead to incorrect inference.

In (2.4), because covariate Zi lies inside the indicator function, which is discontinuous, it is

difficult to build up a consistent estimator when the surrogates Wi’s, instead of Zi’s, are

observed. To overcome the challenge caused by discontinuity and measurement errors, we

propose an approximately corrected estimating equation for (2.4) and further establish the

asymptotic properties of the resultant estimators for regression quantile coefficients.

We denote the observed data O = (X, ∆,W) and let U = (X, ∆,Z). In view of the

estimating equation (2.4), if we can find a function g∗{O,β(τ)} such that for τ ∈ (0, 1),

E[g∗{O,β(τ)}|U ] = ZI{X > ZTβ(τ)},

we can then follow the corrected score argument (Stefanski, 1989; Nakamura, 1990) to con-

struct an unbiased estimating equation as

n∑
i=1

[
∆iWi −∆ig

∗{Oi,β(τ)} −
∫ τ

0

g∗{Oi, β(u)}dH(u)

]
= 0.
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However, the cusp in the indicator function makes it difficult to find such a function. On

the other hand, Horowitz (1992, 1998) proposed the smoothed maximum score estimator for

the binary response model and the smoothed least absolute deviation for median regression.

Motivated by the smoothing scheme, we circumvent the discontinuity stemming from the

indicator function and consider a smoothing function that approaches the indicator function

as n →∞. More specifically, assume that a smooth function K(·) satisfies limx→−∞ K(x) = 0

and limx→∞ K(x) = 1. If we consider a positive scale parameter hn that converges to zero

as sample size n → ∞, K(x/hn) may provide an adequate approximation to I(x > 0) as

n →∞, where hn behaves like the bandwidth in the kernel smoothing.

If we can find a function G{O,β(τ); hn} such that

E[G{O,β(τ); hn}|U ] = {X − ZTβ(τ)}K
{

X − ZTβ(τ)

hn

}
(2.5)

≈ {X − ZTβ(τ)}I{X > ZTβ(τ)},

we may set

g{O,β(τ); hn} = −∂G{O,β(τ); hn}
∂β(τ)

,

and conclude that E[g{O,β(τ); hn}|U ] is close to ZI{X > ZTβ(τ)}. As a result, we can

construct an approximately corrected estimating equation

n∑
i=1

[
∆iḡ{Oi,β(τ); hn} −

∫ τ

0

g{Oi, β(u); hn}dH(u)

]
= 0, (2.6)

where ḡ{Oi,β(τ); hn} = Wi−g{Oi,β(τ); hn}. Since it is challenging to obtain the functional

solution to the integral equation (2.6), we follow Peng and Huang (2008) to develop a grid-

based estimation procedure for β0(·). Assume that τU is a deterministic constant in (0, 1)

subject to certain identifiability constraints, e.g., Assumption 4-(iii) in the Appendix. Due

to the inherent nonidentifiability of the regression quantiles beyond the level τU , we confine

estimation of β0(τ) for τ ∈ (0, τU ]. We denote a partition over the interval [0, τU ] by Sqn =

{0 ≡ τ0 < τ1 < · · · < τqn ≡ τU}, where the number of grid points qn depends on n.

We consider an estimator of β0(τ) that is a right-continuous piecewise constant function
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and jumps only at grid points in Sqn . Noting that ZTβ0(τ0) = −∞, we intuitively set

g{O, β̂(τ0); hn} = W. For a given hn, employing the Newton–Raphson algorithm, the

estimates β̂(τj), j = 1, . . . , qn, can be obtained sequentially by solving

n∑
i=1

[
∆iḡ{Oi, β(τ); hn} −

j−1∑

k=0

g{Oi, β̂n(τk); hn}{H(τk+1)−H(τk)}
]

= 0. (2.7)

2.3 Laplace and Normal Measurement Errors

Apparently, it is crucial to find the function G such that (2.5) holds. For illustration, we

construct G when the measurement errors follow a multivariate Laplace and a multivariate

normal distribution, respectively. Wang, Stefanski, and Zhu (2012) also considered these two

types of measurement errors, as Laplace distributions are more heavy-tailed than normal

distributions, and both are widely used in practice.

Assume that U is a p-variate Laplace distributed random vector with mean 0 and co-

variance matrix Σ, denoted by U ∼ Lp(0,Σ), whose characteristic function is given by

ϕ(t) = 1/(1 + 0.5tTΣt) for t ∈ Rp (Kotz, Kozubowski, and Podgorski, 2001). Thus,

ε(τ)|U ∼ L1

{
X − ZTβ(τ),β(τ)TΣβ(τ)

)},

where ε(τ) = X − WTβ(τ). Following the work of Hong and Tamer (2003) and Wang,

Stefanski, and Zhu (2012), we have

GL{O,β(τ); hn} = ε(τ)K

{
ε(τ)

hn

}
− β(τ)TΣβ(τ)

2

[
2

hn

K(1)

{
ε(τ)

hn

}
+

ε(τ)

h2
n

K(2)

{
ε(τ)

hn

}]
,

where K(j)(x) = djK(x)/dxj for j = 1, 2, 3, 4. It is easy to show that GL{O,β(τ); hn}
satisfies (2.5). Therefore,

gL{O,β(τ); hn} =

[
K

{
ε(τ)

hn

}
+

ε(τ)

hn

K(1)

{
ε(τ)

hn

}]
W

+

[
2

hn

K(1)

{
ε(τ)

hn

}
+

ε(τ)

h2
n

K(2)

{
ε(τ)

hn

}]
Σβ(τ)

−
[

3

h2
n

K(2)

{
ε(τ)

hn

}
+

ε(τ)

h3
n

K(3)

{
ε(τ)

hn

}]
β(τ)TΣβ(τ)

2
W.
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After plugging gL{O,β(τ); hn} in (2.7), we can solve for β(τ).

We consider a more common case that U is a p-variate normal random vector with mean

0 and covariance matrix Σ, i.e., U ∼ Np(0,Σ). Note that

ε(τ)|U ∼ N
{
X − ZTβ(τ),β(τ)TΣβ(τ)

}
.

Motivated by Stefanski (1989) and Wang, Stefanski, and Zhu (2012), we take the objective

function GN{O,β(τ); hn} to be

GN{O, β(τ); hn} =
∞∑

j=0

{−β(τ)TΣβ(τ)}j

2jj!

[
ε(τ)K

{
ε(τ)

hn

}](2j)

,

provided that K(·) is sufficiently smooth, where {xK(x/hn)}(0) = xK(x/hn) and

{
xK

(
x

hn

)}(j)

=
j

hj−1
n

K(j−1)

(
x

hn

)
+

x

hj
n

K(j)

(
x

hn

)
, j = 1, 2, . . . .

Consequently, gN{O,β(τ); hn} can be obtained by taking the derivative of GN{O,β(τ); hn}.
Although we can construct the approximately corrected estimating equation as (2.6) and

theoretically define an estimator based on the resultant grid-based solution for β0(·), it is

infeasible to solve the equation because GN involves an infinite series. Following the recom-

mendation of Stefanski (1989), we keep the first two summands in GN as an approximation,

which is found to be adequate in our simulation studies. More interestingly, using the first

two summands leads to exactly the same form of the approximately corrected estimating

equation as that in the Laplace measurement error model.

2.4 Asymptotic Properties

Denote an = max1≤j≤qn |τj − τj−1|, the maximum distance between two adjacent points

belonging to Sqn . The asymptotic properties of the estimator β̂(τ), which solves (2.7), are

summarized in the following two theorems.

Theorem 1 Under Assumptions 1–4 in the Appendix, if an = o(1), then supτ∈[ν,τU ] ‖β̂(τ)−
β0(τ)‖ → 0 in probability for any ν ∈ (0, τU ] as n →∞.
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Theorem 2 Under Assumptions 1–5 in the Appendix, if an = o(n−1/2), then n1/2{β̂(τ) −
β0(τ)} converges weakly to a mean zero Gaussian random field over τ ∈ [ν, τU ] for any

ν ∈ (0, τU ] as n →∞.

Both the consistency and weak convergence of the proposed estimator only hold for

quantile levels bounded away from zero due to the data sparsity when τ is close to zero.

A much finer partition with a step size of order o(n−1/2) is required to establish the weak

convergence property. The proofs of both theorems rely heavily on empirical process theory,

which are provided in the Supplementary Material.

It is crucial to select the smoothing parameter hn. Without loss of generality, assume

that Z includes the intercept as its first element. Noting that E[g{O,β(τ); hn}|U ] is close

to ZI{X > ZTβ(τ)} and utilizing only the intercept term, we can get the smoothed and

corrected function

M(O,β(τ); hn) = ∆ḡ1{O,β(τ); hn} −
∫ τ

0

g1{O,β(u); hn}dH(u)

for the martingale M{ZTβ(τ)}, where ḡ1 and g1 are the first elements of ḡ and g, respectively.

In practice, we recommend a d-fold cross-validation method to choose hn. We randomly

divide the data into d nonoverlapping and approximately equal-sized subgroups. For the jth

subgroup Dj, we fit the proposed procedure using the data excluding Dj, denoted by D(−j),

and calculate the loss function

Lj(hn) =
1

|Dj|
∑

k∈Dj

∫ τU

0

|R(hn,W
o
k, β̂(−j)(τ))|dτ,

where |Dj| denotes the cardinality of the set Dj,

R(hn,wo, β(τ)) =
1

|D(−j)|
∑

i∈D(−j)

I(Wo
i ≤ wo)M(Oi,β(τ); hn),

Wo
i denotes the error-free elements of Zi, and Wo

i ≤ wo means every entry of Wo
i is not larger

than the counterpart of wo. The loss function is based on a cumulative sum of martingale

residuals, with further correction on measurement errors. Here, β̂(−j)(τ) for τ ∈ [0, τU ] is
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obtained using the proposed procedure on the data D(−j). Finally, we select the bandwidth

by minimizing the total loss L(hn) =
∑d

j=1 Lj(hn).

3 Simulation Studies

We conducted extensive simulation studies to assess the performance of the proposed method

with finite samples. We generated survival time T̃ from the log-transformed linear model

with heteroscedastic errors,

log T̃ = −0.5 + Z + (1 + 0.2Z)ε,

where the model error ε was from the standard normal distribution, and Z was generated

from the uniform distribution, Unif(0,
√

12). The corresponding CQR model (2.1) given

Z = (1, Z)T takes the form of

QT (τ |Z) = β0(τ) + β1(τ)Z,

where T = log T̃ , β0(τ) = −0.5+Qε(τ), β1(τ) = 1+0.2Qε(τ), and Qε(τ) is the τth quantile of

ε. We further assumed that Z was measured with errors in the form of W = Z +U , where U

is the measurement error and W is the surrogate of Z. We generated the measurement errors

from three different distributions, respectively; that is, Laplace: U ∼ L1(0, 0.5
2), normal:

U ∼ N(0, 0.52), and uniform: U ∼ Unif(−√3/2,
√

3/2). These choices of measurement error

distributions correspond to a signal-to-noise ratio of 0.8. The censoring time C, dependent

on Z, was generated from Unif(c1, c2) if Z <
√

12/2 and from Unif(c1 + 1, c2) otherwise.

For each scenario, c1 and c2 were chosen to yield a censoring rate of around 20%. Note that

although the proposed method is developed to handle the Laplace or normal measurement

errors, we also considered uniform measurement errors to examine the robustness of our

approach. We chose the bandwidth hn = 1, while sensitivity analysis with different values of

hn is given at the end of this section. We set the smoothing function K(·) as the standard

normal distribution function, and adopted an equally spaced grid over interval [0.1, 0.78]

with a step 0.02. The naive estimator was obtained by directly regressing on W = (1,W )T.

10



Our proposed estimator, which solves the estimating equation (2.7) coupled with treating

the measurement error as Laplace, was obtained through the Newton–Raphson algorithm by

taking the naive estimator as the initial value. We set sample size n = 200, and simulated

500 replicated data sets under each configuration. Following the convention in quantile

regression, we used bootstrap with 200 bootstrap samples to obtain the variances of the

parameter estimates.

In Table 1, the column labeled “Est” is the median of the estimates, “SE” is the rescaled

(i.e., multiplied by Φ−1(0.75), where Φ(·) is the standard normal cumulative distribution

function) median absolute deviation of the estimates, which is a robust estimate for the

standard error (van der Vaart, 1998, Example 21.11), “ESE” is the average of the bootstrap

rescaled median absolute deviation, “CP” is the coverage probability of 95% confidence

intervals. With sample size n = 200, the proposed estimation method performs reasonably

well under the standard normal distribution for the model error ε, coupled with three different

distributions for the measurement error U . The biases are essentially negligible except for

those of the lower quantile levels near 0.2 due to sparse event information observed at the

initial follow-up time. The estimated standard errors using the bootstrap method agree well

with the sampling standard errors, and the coverage probabilities of 95% confidence intervals

are around the nominal level. We specifically point out that the performance is similar in

all three measurement error cases, even though strictly speaking, our implementation here

is only valid for Laplace measurement errors and serves as an approximation for normal

measurement errors.

We also explored different distributions for the model error ε; for example, an extreme

value distribution with the cumulative distribution function Fε(x) = 1 − exp(−ex) and

Student’s t distribution with two degrees of freedom, while keeping the rest of the data

generation scheme the same as before. The corresponding simulation results are respectively

presented in Tables 2 and 3, from which we can draw similar conclusions. When the sample

size is small, some nonconvergent cases might be encountered using the Newton–Raphson
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algorithm. Often, the nonconvergent issue would disappear with a larger sample size. An

alternative solution is to minimize the L2-norm of the estimating function that would bring

the estimating equation value as close to zero as possible. More detailed discussions on

numerical issues are given in the Supplementary Material.

To evaluate the overall performance of the proposed method as well as its comparison

with the naive method, we present the biases of the estimated quantile intercept and slope

coefficients across τ ∈ [0.2, 0.78] under different model error and covariate measurement error

distributions in Figures 1 and 2, respectively. It can be seen that the proposed method can

effectively correct the biases caused by measurement errors, whereas the naive method indeed

produces serious biases, especially for the quantile slope coefficients, which are typically of

more interest in practice. Moreover, Figures 3 and 4 exhibit the mean squared errors (MSEs)

of the estimated quantile intercept and slope coefficients, respectively. The MSEs under

the proposed method are much smaller than those under the naive method, which further

demonstrates that the proposed method is a viable approach to CQR with measurement

errors.

When Σ is unknown, it may be estimated from replicated data, for which case Table

4 shows that the proposed method also performs well. Obviously, when the censoring rate

becomes heavier, the range of estimable quantile levels shrinks. It is evident from Table

5 that the performance of the proposed method is satisfactory even with a censoring rate

of 50%. Furthermore, when the symmetric Laplace measurement error is misspecified as

an asymmetric distribution, for example, U ∼ Exp(1/λ) − λ with λ = 0.5, the conclusions

remains the same.

We investigated the sensitivity of the proposed method to the smoothing parameter hn

when the data were generated from the log-transformed CQR model with heteroscedastic

model errors for ε ∼ N(0, 1) and covariate measurement errors U ∼ N(0, 0.52). As shown

in Figure 5, the biases and MSEs vary slightly with different values of hn, demonstrating

the estimation stability and, more strikingly, both of them are always much smaller than
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those from the naive method. We also explored the situation where multiple covariates are

subject to measurement errors while others are measured precisely. For normal measurement

errors, we conducted simulations to compare our infinite series correction function with the

integral correction function proposed by Wang, Stefanski, and Zhu (2012). In addition, we

examined the simulation and extrapolation (SIMEX) method in He, Yi, and Xiong (2007)

under the AFT model, and the simulation results in the Supplemental Material demonstrate

the comparability of our proposed method with other alternatives.

4 Application

As an illustration, we applied the proposed estimation and inference procedure for CQR

with measurement errors to a lung cancer study. This data set contains 280 lung cancer

patients, whose survival times were recorded with a censoring rate of 64.3%. One of the

main objectives of this study was to assess the association of patient survival with certain

biomarker expression in the tumor cell cytoplasm. The reading of the biomarker expression

was performed by pathologists and could be subjective. As a result, the readings of the

biomarker expression for each patient were considered imprecise measurements. To reduce

the possible subjectivity of the evaluation, for some patients, two readings of the biomarker

expression were provided by two different pathologists (replicates). However, neither of the

two measurements of biomarker expression can be considered precise. Our main interest lies

in investigating the potential of the biomarker as a new prognostic marker and therapeutic

target for lung cancer. Other confounding covariates of interest include tumor histology

(there were 61% of patients with adenocarcinoma coded as 1, and 39% squamous cell car-

cinoma coded as 0), age (ranging from 34 to 90 years with mean 66 years), and sex (52%

female coded as 1, 48% male coded as 0). In our analysis, we standardized the patients’ ages

by subtracting their mean and dividing their standard deviation. Half of the patients in the

data set had duplicated readings of the biomarker expression and the averaged value of the

two expression readings was considered as the surrogate variable in our analysis. Based on
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the duplicates, we were able to calculate the variance of the measurement error.

We selected the smoothing parameter hn through the ten-fold cross-validation procedure

proposed in Section 2 and obtained the optimal hn = 1.88. Figure 6 displays the proposed

quantile regression estimates of covariate effects and the corresponding 95% pointwise con-

fidence intervals for τ ∈ [0.1, 0.5] on the basis of 200 bootstrap samples. As the censoring

rate is high, we can only estimate regression quantiles up to τU = 0.5. We observe that in

general patients with a tumor histology of adenocarcinoma had a significantly better sur-

vival rate than those with squamous cell carcinoma, and younger patients could be expected

to live longer at a lower risk of death. We did not find any significant covariate effects

for patients’ sex on their survival for all of the considered regression quantiles. There was

no significant effect of the biomarker expression detected on the survival for the regression

quantiles that we considered. However, there was a trend that a lower level of biomarker

expression tended to be associated with a longer survival time, which nevertheless requires

a confirmative study. The naive estimates of covariate effects, ignoring the measurement

errors, show large volatilities.

Li and Ryan (2004) proposed a first-order bias correction method for the Cox proportional

hazards model with covariate measurement errors. For comparison, we also analyzed the lung

cancer data using the method of Li and Ryan (2004) as well as the SIMEX method of He,

Yi, and Xiong (2007). The corresponding results are summarized in Table 7, from which we

can see that patients with a tumor histology of adenocarcinoma or younger patients could

be expected to experience significantly longer survivals whereas patients’ sex and biomarker

expression were not significantly associated with their survival times. These results in general

agree with those drawn by the smoothed and corrected method for CQR. Nevertheless, the

Cox model in Li and Ryan (2004) or the AFT model in He, Yi, and Xiong (2007) cannot

provide the dynamic covariate effects as the quantile level varies.

For model checking, we consider the cumulative residuals over the precisely measured
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covariates,

T (wo, τ) = n−1/2

n∑
i=1

I(Wo
i ≤ wo)M(Oi, β̂n(τ); hn).

where Wo = (Histology, Age, Sex)T represent the error-free covariates excluding the biomarker

expression. The null distribution of T (wo, τ) can be approximated by the zero-mean process

T ∗(wo, τ) = n−1/2

n∑
i=1

I(Wo
i ≤ wo)M(Oi, β̂n(τ); hn)Gi,

where (G1, . . . , Gn) were generated independently from the standard normal distribution

while fixing the data {(Xi, ∆i,Wi), i = 1, . . . , n} at their observed values. The supremum

statistic supwo,τ |T (wo, τ)| can be used to test the overall fit of the CQR model. We gener-

ated a large number of, say 1000, realizations from supwo,τ |T ∗(wo, τ)| and obtained its 95th

percentile as 1.827. The observed value of supwo,τ |T (wo, τ)| is 0.394, which indicates that

the global linear CQR model fits the lung cancer data well.

5 Remarks

We have proposed a corrected estimating equation approach to CQR models for survival

data when covariates are measured with errors. Using a smooth function to approximate

the indicator function, the resultant estimating function is smoothed, and thus conventional

iterative root-finding procedures, such as the Newton–Raphson algorithm, can be applied

(Wang, Stefanski, and Zhu, 2012). We have established the asymptotic consistency and

weak convergence of the proposed estimator through modern empirical process techniques.

Numerical results show that the proposed method is promising in terms of correcting the

bias arising from covariate measurement errors, whereas the naive method typically produces

biased estimates.

For variance estimation, we also explored directly using the sandwich-type variance esti-

mator based on the smoothed estimating equation (2.6), but the resulting coverage probabil-

ity is found to be generally over the nominal level. A more interesting resampling method,

known as the Markov chain marginal bootstrap, can be tailored for variance estimation in
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quantile regression (Kocherginsky, He, and Mu, 2005). When the covariates are of high

dimension, particularly for those mismeasured ones, estimation could be difficult, whereas

some regularization methods may potentially be incorporated into the estimation procedure

to alleviate the instability caused by high dimensionality.

Identifiability is an inherent and subtle issue in CQR. Regression quantiles with τ close

to 1 may not be identifiable due to the lack of event information in the upper tail. Theoret-

ically, τU should satisfy the identifiability Assumption 4-(iii) in the Appendix. In practical

implementation, we first set τU to be close to one minus the censoring rate, and then select

the final τU in an adaptive manner as follows. If all the regression quantiles over [ν, τU ] can

be estimated, we increase τU by some small step size, e.g., 0.05 or 0.1; otherwise, we decrease

τU slightly. Through this trial-and-error process, we can push τU to the largest value at

which the model parameters can be identified. Similarly, ν could also be chosen in such an

adaptive way.

The proposed method requires the global linearity assumption as in Portnoy (2003),

Peng and Huang (2008) and Wei and Carroll (2009); that is, in order to estimate the τth

conditional regression quantile, it is necessary to assume that the conditional functionals at

all the lower quantiles are also in the linear form. When the linearity assumption holds only

at one specific quantile level τ of interest, research along the work of Wang and Wang (2009)

is warranted.

Appendix: Assumptions

Let ‖·‖ denote the L2-norm of the corresponding vector or matrix after vectorization. Define

r0 = inf{j ≥ 1:
∫∞
−∞ xjK(1)(x)dx 6= 0}. Let SC(t|z) = P (C > t|z), FX,∆=1(t|z) = P (X ≤

t, ∆ = 1|z) and FX(t|z) = P (X ≤ t|z), and then FX,∆=1(t|z) =
∫ t

−∞ SC(u|z)dFT (u|z) and

FX(t|z) = 1 − {1 − FT (t|z)}SC(t|z). Further denote µ0(b) = E{ZN(ZTb)}, µ(b; hn) =

E{∆ḡ(O,b; hn)}, µ̃0(b) = E{ZI(X ≥ ZTb)}, and µ̃(b; hn) = E{g(O,b; hn)}.
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For d > 0, define B(d) = {b ∈ Rp: infτ∈(0,τU ] ‖µ0(b) − µ0{β0(τ)}‖ ≤ d}. Assume

that there exists d0 > 0 such that B(d0) contains {β0(τ): τ ∈ (0, τU ]}. Denote fX,∆=1(t|z)
and fX(t|z) as the density functions corresponding to FX,∆=1(t|z) and FX(t|z), respectively.

Let B0(b) = E{ZZTfX,∆=1(Z
Tb|Z)} and J0(b) = −E{ZZTfX(ZTb|Z)}. Finally, denote

ġ{O,β(τ); hn} = ∂g{O,β(τ); hn}/∂β(τ).

Assumption 1. The smoothing function K(·) satisfies:

(i) K(j)(·) is uniformly bounded for j = 0, . . . , 4 in the Laplace measurement error

model and for j ≥ 0 in the normal measurement error model.

(ii) r0 ≥ 2 and for each integer j (0 ≤ j ≤ r0),
∫∞
−∞ |xjK(1)(x)|dx < ∞.

(iii) For each integer j (0 ≤ j ≤ r0), any η > 0, and any sequence hn converging to 0,

limn→∞ hj−r0
n

∫
|hnx|>η

|xjK(1)(x)|dx = 0 and limn→∞ h−1
n

∫
|hnx|>η

|K(2)(x)|dx = 0.

Assumption 2. For each integer j such that 1 ≤ j ≤ r0, F
(j)
T (t|z) is a continuous function

of z and uniformly bounded over t and z, where F
(j)
T (t|z) is the jth derivative of FT (t|z)

with respect to t. So is S
(j)
C (t|z).

Assumption 3. Each component of µ0{β(τ)}, µ{β(τ); hn}, µ̃0{β(τ)}, and µ̃{β(τ); hn}
as a function of τ is Lipschitz continuous.

Assumption 4. Boundedness conditions are imposed:

(i) Both E(‖Z‖2) and E(‖U‖2) are bounded, and E(ZZT) is positive definite.

(ii) fX,∆=1(Z
Tb|Z) is bounded away from zero for all b in B(d0).

(iii) infτ∈[ν,τU ] eigmin[B0{β0(τ)}] > 0 for any 0 < ν ≤ τU , where eigmin(·) denotes the

minimum eigenvalue of a matrix.

(iv) The norm of J0(b)B0(b)−1 is uniformly bounded for all b in B(d0).

Assumption 5. We assume that
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(i) supτ∈[ν,τU ] ‖E[ġ{O,β0(τ); hn}]2‖ is bounded as n →∞ for any ν ∈ (0, τU ].

(ii) E[ġ{O, β(τ); hn}]2 is component-wise continuous in sup-norm as a functional of

β(τ).

Assumption 1 holds if K(·) is the standard normal cumulative distribution function.

Apparently, FX,∆=1(t|z) and FX(t|z) satisfy a similar boundedness condition as Assumption

2, which is a standard assumption in survival analysis. Assumptions 3 and 4 are commonly

used in CQR models (Peng and Huang, 2009). Assumption 5 essentially imposes a higher

convergence rate of the smoothing parameter hn compared with Assumption 1-(iii). If we

take K(·) to be the standard normal cumulative distribution function, Assumption 5 holds for

both the Laplace and the normal measurement errors. This is because the exponential part

can be factored out for any order of derivatives with respect to K(·) and the component-wise

continuity follows directly.

References

Bang, H., and Tsiatis, A. A. (2002), “Median Regression With Censored Cost Data,”

Biometrics, 58, 643–649.

Brown, M. L. (1982), “Robust Line Estimation With Error in Both Variables,” Journal of

the American Statistical Association, 77, 71–79. Correction in 78, 1008.

Buchinsky, M., and Hahn, J. Y. (1998), “An Alternative Estimator for Censored Quantile

Regression,” Econometrica, 66, 653–671.

Buckley, J., and James, I. (1979), “Linear Regression With Censored Data,” Biometrika,

66, 429–436.

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. (2006), Measurement

Error in Nonlinear Models: A Modern Perspective, London: CRC Press.

18



Chernozhukov, V., and Hong, H. (2002), “Three-Step Censored Quantile Regression and

Extramarital Affairs,” Journal of the American Statistical Association, 97, 872–882.

Cox, D. R. (1972), “Regression Models and Life Tables” (with discussion), Journal of Royal

Statistical Society, Ser. B, 34, 187–220.

Fitzenberger, B. (1997), “A Guide to Censored Quantile Regressions,” in Handbook of

Statistics, Robust Inference, eds. Maddala G. S., and Rao C. R., Amsterdam: North-

Holland.

Fleming, T. R., and Harrington, D. (1991), Counting Processes and Survival Analysis, New

York: Wiley.

He, X., and Liang, H. (2000), “Quantile Regression Estimates for a Class of Linear and

Partially Linear Errors-in-Variables Models,” Statistica Sinica, 10, 129–140.

He, W., Yi, G. Y., and Xiong, J. (2007), “Accelerated Failure Time Models With Covariates

Subject to Measurement Error,” Statistics in Medicine, 26, 4817–4832.

Hong, H., and Tamer, E. (2003), “A Simple Estimator for Nonlinear Error in Variable

Models,” Journal of Econometrics, 117, 1–19.

Horowitz, J. (1992), “A Smoothed Maximum Score Estimator for the Binary Response

Model,” Econometrica, 60, 505–531.

Horowitz, J. (1998), “Bootstrap Methods for Median Regression Model,” Econometrica, 66,

1327–1352.

Jin, Z., Lin, D. Y., Wei, L. J., and Ying, Z. (2003), “Rank-Based Inference for the Accel-

erated Failure Time Model,” Biometrika, 90, 341–353.

Khan, S., and Powell, L. J. (2001), “Two-Step Estimation of Semiparametric Censored

Regression Models,” Journal of Econometrics, 103, 73–110.

19



Kocherginsky, M., He, X., and Mu, Y. (2005), “Practical Confidence Intervals for Regression

Quantiles,” Journal of Computational and Graphical Statistics, 14, 41–55.

Koenker, R. (2005), Quantile Regression, New York: Cambridge University Press.

Koenker, R., and Bassett, G. J. (1978), “Regression Quantiles,” Econometrica, 46, 33–50.

Koenker, R., and Geling, O. (2001), “Reappraising Medfly Longevity: A Quantile Regres-

sion Survival Analysis,” Journal of the American Statistical Association, 96, 458–468.

Kotz, S., Kozubowski, T. J., and Podgorski, K. (2001), The Laplace Distribution and Gen-

eralizations, New York: Springer.

Lai, T. L., and Ying, Z. (1991), “Rank Regression Methods for Left-Truncated and Right-

Censored Data,” The Annals of Statistics, 19, 531–556.

Li, Y., and Ryan, L. (2004), “Survival Analysis With Heterogeneous Covariate Measurement

Error,” Journal of the American Statistical Association, 99, 724–735.

Lindgren, A. (1997), “Quantile Regression With Censored Data Using Generalized L1 Min-

imization,” Computational Statistics and Data Analysis, 23, 509–524.

Ma, Y., and Yin, G. (2011), “Censored Quantile Regression With Covariate Measurement

Errors,” Statistica Sinica, 21, 949–971.

Nakamura, T. (1990), “Corrected Score Function for Errors-in-Variables Models: Method-

ology and Application to Generalized Linear Models,” Biometrika, 77, 127–137.

Peng, L., and Huang, Y. (2008), “Survival Analysis With Quantile Regression Models,”

Journal of the American Statistical Association, 103, 637–649.

Portnoy, S. (2003), “Censored Regression Quantiles,” Journal of the American Statistical

Association, 98, 1001–1012.

20



Powell, J. L. (1984), “Least Absolute Deviations Estimation for the Censored Regression,”

Journal of Econometrics, 25, 303–325.

Prentice, R. L. (1978), “Linear Rank Tests With Right Censored Data,” Biometrika, 65,

167–180.

Ritov, Y. (1990), “Estimation in a Linear Regression Model With Censored Data,” The

Annals of Statistics, 18, 303–328.

Stefanski, L. A. (1989), “Unbiased Estimation of a Nonlinear Function of a Normal-Mean

With Application to Measurement Error Models,” Communications in Statistics-Theory

and Methods, 18, 4335–4358.

Tsiatis, A. A. (1990), “Estimating Regression Parameters Using Linear Rank Tests for

Censored Data,” The Annals of Statistics, 18, 354–372.

van der Vaart, A. W. (1998), Asymptotic Statistics, New York: Cambridge University Press.

Wang, H., and Wang, L. (2009), “Locally Weighted Censored Quantile Regression,” Journal

of the American Statistical Association, 104, 1117–1128.

Wang, H., Stefanski, L. A., and Zhu, Z. (2012), “Corrected-Loss Estimation for Quantile

Regression With Covariate Measurement Errors,” Biometrika, 99, 405–421.

Wei, L. J., Ying, Z., and Lin, D. Y. (1990), “Linear Regression Analysis of Censored Survival

Data Based on Rank Tests,” Biometrika, 77, 845–851.

Wei, Y., and Carroll, R. J. (2009), “Quantile Regression With Measurement Error,” Journal

of the American Statistical Association, 104, 1129–1143.

Yang, S. (1999), “Censored Median Regression Using Weighted Empirical Survival and

Hazard Function,” Journal of the American Statistical Association, 94, 137–145.

21



Ying, Z., Jung, S. H., and Wei, L. J. (1995), “Survival Analysis With Median Regression

Models,” Journal of the American Statistical Association, 90, 178–184.

22



Table 1: Simulation results for the log-transformed censored quantile regression with three
different distributions of covariate measurement errors and heteroscedastic model errors for
ε ∼ N(0, 1)

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.5
2)

0.2 −1.342 −1.245 0.934 91.8 0.832 0.811 1.028 93.4
0.3 −1.024 −0.976 0.953 94.0 0.895 0.881 1.014 92.8
0.4 −0.753 −0.740 1.022 95.6 0.949 0.944 1.021 94.2
0.5 −0.500 −0.509 1.030 95.8 1.000 1.006 1.028 93.2
0.6 −0.247 −0.269 0.996 95.6 1.051 1.080 0.974 93.4
0.7 0.024 −0.001 1.040 95.0 1.105 1.117 1.038 93.2

U ∼ N(0, 0.52)
0.2 −1.342 −1.265 0.967 92.8 0.832 0.830 0.993 94.0
0.3 −1.024 −0.975 0.943 92.0 0.895 0.885 0.932 93.6
0.4 −0.753 −0.715 0.928 93.8 0.949 0.936 0.925 93.8
0.5 −0.500 −0.465 0.879 93.0 1.000 0.993 0.935 94.2
0.6 −0.247 −0.222 0.886 94.2 1.051 1.053 0.972 93.6
0.7 0.024 0.044 0.913 94.6 1.105 1.099 0.942 92.8

U ∼ Unif(−√3/2,
√

3/2)
0.2 −1.342 −1.260 0.987 92.6 0.832 0.817 0.891 94.8
0.3 −1.024 −0.971 0.969 93.6 0.895 0.878 0.894 94.8
0.4 −0.753 −0.720 0.951 93.8 0.949 0.934 0.962 92.8
0.5 −0.500 −0.476 0.942 94.2 1.000 0.990 0.986 92.6
0.6 −0.247 −0.222 0.969 93.8 1.051 1.050 1.042 93.6
0.7 0.024 0.060 1.004 94.2 1.105 1.102 1.052 92.6

Note: SE/ESE is the ratio of the sampling standard error and the estimated (bootstrap) standard error, and
CP is the coverage probability.
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Table 2: Simulation results for the log-transformed censored quantile regression with three
different distributions of covariate measurement errors and heteroscedastic model errors for
ε from an extreme value distribution

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.5
2)

0.2 −2.000 −1.822 1.030 85.4 0.700 0.679 0.929 93.4
0.3 −1.531 −1.452 1.000 90.8 0.794 0.770 0.934 93.4
0.4 −1.172 −1.161 0.965 92.4 0.866 0.870 0.994 93.2
0.5 −0.867 −0.918 0.993 92.2 0.927 0.954 1.030 92.4
0.6 −0.587 −0.666 1.008 91.2 0.983 1.033 0.994 90.2
0.7 −0.314 −0.384 0.996 91.8 1.037 1.100 0.981 92.4

U ∼ N(0, 0.52)
0.2 −2.000 −1.823 1.008 85.6 0.700 0.680 1.042 94.0
0.3 −1.531 −1.453 1.026 91.0 0.794 0.778 1.050 94.4
0.4 −1.172 −1.154 0.957 93.8 0.866 0.863 1.018 94.6
0.5 −0.867 −0.895 0.950 94.2 0.927 0.946 0.957 94.6
0.6 −0.587 −0.635 0.923 93.2 0.983 1.018 1.013 93.0
0.7 −0.314 −0.349 0.876 95.2 1.037 1.066 0.974 94.8

U ∼ Unif(−√3/2,
√

3/2)
0.2 −2.000 −1.771 1.008 85.4 0.700 0.657 0.933 94.4
0.3 −1.531 −1.418 1.023 90.4 0.794 0.749 0.911 94.8
0.4 −1.172 −1.119 1.018 91.6 0.866 0.847 0.959 93.8
0.5 −0.867 −0.854 1.073 93.2 0.927 0.926 1.031 92.8
0.6 −0.587 −0.601 1.061 92.2 0.983 1.012 1.051 91.8
0.7 −0.314 −0.314 1.080 91.8 1.037 1.073 1.032 91.8
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Table 3: Simulation results for the log-transformed censored quantile regression with three
different distributions of covariate measurement errors and heteroscedastic model errors for
ε ∼ t2

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.5
2)

0.2 −1.561 −1.453 0.974 90.6 0.788 0.788 0.923 96.6
0.3 −1.117 −1.101 0.973 95.8 0.877 0.881 0.960 95.8
0.4 −0.789 −0.797 0.978 96.0 0.942 0.947 0.916 96.4
0.5 −0.500 −0.512 0.960 96.0 1.000 1.020 0.898 95.2
0.6 −0.211 −0.223 0.955 94.2 1.058 1.085 0.872 93.8
0.7 0.117 0.116 0.991 95.0 1.123 1.122 0.920 93.8

U ∼ N(0, 0.52)
0.2 −1.561 −1.452 0.975 92.0 0.788 0.810 0.908 95.0
0.3 −1.117 −1.082 0.973 95.0 0.877 0.885 0.935 94.6
0.4 −0.789 −0.763 1.026 95.2 0.942 0.947 0.981 95.8
0.5 −0.500 −0.477 1.041 95.0 1.000 1.006 1.025 94.6
0.6 −0.211 −0.193 1.036 95.0 1.058 1.073 1.030 94.8
0.7 0.117 0.161 0.967 94.8 1.123 1.114 0.967 93.6

U ∼ Unif(−√3/2,
√

3/2)
0.2 −1.561 −1.490 0.937 90.6 0.788 0.810 0.920 94.2
0.3 −1.117 −1.109 1.050 93.2 0.877 0.889 0.918 93.2
0.4 −0.789 −0.789 1.026 93.0 0.942 0.943 0.962 93.8
0.5 −0.500 −0.478 0.985 93.4 1.000 1.001 0.981 93.0
0.6 −0.211 −0.179 1.004 93.4 1.058 1.059 1.018 92.6
0.7 0.117 0.156 0.946 92.0 1.123 1.131 1.033 91.4
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Table 4: Simulation results for the log-transformed censored quantile regression with the
heteroscedastic model error for ε ∼ N(0, 1) and covariate measurement error U ∼ N(0, 0.52),
where the standard error of the measurement error is estimated based on five replications

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)
0.2 −1.342 −1.271 1.025 93.4 0.832 0.822 1.000 94.2
0.3 −1.024 −0.989 1.026 94.8 0.895 0.892 0.993 95.2
0.4 −0.753 −0.747 0.973 95.0 0.949 0.952 1.007 95.8
0.5 −0.500 −0.509 0.987 94.2 1.000 1.013 0.993 95.8
0.6 −0.247 −0.272 0.965 94.6 1.051 1.072 0.938 94.8
0.7 0.024 0.015 0.963 93.6 1.105 1.117 0.955 93.6

Table 5: Simulation results for the log-transformed censored quantile regression under a
censoring rate of 50%, with the heteroscedastic model error for ε ∼ N(0, 1) and covariate
measurement error U ∼ N(0, 0.52)

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)
0.2 −1.342 −1.349 1.044 94.4 0.832 0.849 0.994 93.8
0.3 −1.024 −1.072 0.992 92.6 0.895 0.943 1.000 93.0
0.4 −0.753 −0.788 1.004 92.8 0.949 0.998 0.975 94.2
0.5 −0.500 −0.483 0.963 93.2 1.000 0.988 0.890 92.6

Table 6: Simulation results for the log-transformed censored quantile regression with the
heteroscedastic model error for ε ∼ N(0, 1) and asymmetric covariate measurement error
U ∼ Exp(1/λ)− λ, where λ = 0.5

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)
0.2 −1.342 −1.197 0.962 88.2 0.832 0.793 1.021 92.8
0.3 −1.024 −0.946 0.938 92.6 0.895 0.872 0.979 95.4
0.4 −0.753 −0.719 1.013 94.0 0.949 0.953 0.972 94.6
0.5 −0.500 −0.508 1.000 94.8 1.000 1.038 0.926 93.2
0.6 −0.247 −0.304 0.969 93.4 1.051 1.124 0.961 91.4
0.7 0.024 −0.083 0.987 91.4 1.105 1.208 1.019 88.6
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Table 7: Analysis results of the lung cancer data using the first-order bias correction method
for the Cox proportional hazards model (Li and Ryan, 2004) and the simulation-extrapolation
method for the accelerated failure time (AFT) model (He, Yi, and Xiong, 2007)

Model Error Covariate Est ESE p-value
Cox – Histology −0.503 0.219 0.022

Age 0.433 0.118 < 0.001
Sex −0.081 0.209 0.699
Biomarker 0.043 0.183 0.813

AFT Normal Intercept 1.275 0.614 0.038
Histology 0.680 0.325 0.036
Age −0.500 0.159 0.002
Sex 0.210 0.303 0.487
Biomarker 0.178 0.300 0.552

Extreme Intercept 2.108 0.501 < 0.001
Histology 0.569 0.262 0.030
Age −0.490 0.131 < 0.001
Sex 0.100 0.238 0.673
Biomarker −0.070 0.246 0.776
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Figure 1: Biases of the estimated quantile regression intercept using the proposed method
(solid lines) and the naive method (dashed lines) under three different model error distri-
butions: normal, extreme value and t2, and three different measurement error distributions:
Laplace, normal and uniform, respectively.
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Figure 2: Biases of the estimated quantile regression slope using the proposed method (solid
lines) and the naive method (dashed lines) under three different model error distributions:
normal, extreme value and t2, and three different measurement error distributions: Laplace,
normal and uniform, respectively.
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Figure 3: Mean squared errors of the estimated quantile regression intercept using the pro-
posed method (solid lines) and the naive method (dashed lines) under three different model
error distributions: normal, extreme value and t2, and three different measurement error
distributions: Laplace, normal and uniform, respectively.
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Figure 4: Mean squared errors of the estimated quantile regression slope using the pro-
posed method (solid lines) and the naive method (dashed lines) under three different model
error distributions: normal, extreme value and t2, and three different measurement error
distributions: Laplace, normal and uniform, respectively.
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Figure 5: Comparison of biases and mean squared errors (MSEs) of the estimated quantile
regression intercept (left panel) and slope (right panel) for the proposed method with different
hn and the naive method under the normal measurement error and normal model error.
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Figure 6: Estimated covariate effects and the corresponding 95% pointwise confidence inter-
vals under the proposed measurement error quantile regression (solid lines) and the naive
method (dashed lines) for the lung cancer data.
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