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Abstract: We study capture-recapture models in a closed population when multiple

error-prone measurements of a covariate are available. Due to the identity between

the number of captures and the number of measurements, no suitable complete and

sufficient statistic exists, and the existing method no longer applies. The familiar

strategy of generalized method of moments fails to resolve this issue satisfactorily,

and complexity lies in the loss of the surrogacy assumption commonly assumed

in measurement error problems. Our approach to this problem through a semi-

parametric treatment overcomes these difficulties. The superior performance of the

new method is demonstrated through numerical experiments in simulated and data

examples.
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1. Introduction

Capture-recapture models are widely used to describe the abundance of a

species of interest. Modeling the probability of different numbers of captures

of a single animal as a function of the associated covariates enables use of the

observed covariate and capture information to infer the total population size. We

work in the closed population framework where there is no population flow such as

mortality and immigration occurring during the experiment. For various reasons,

covariate measurements are almost always prone to error. Hwang, Huang, and

Wang (2007) studied the effect of covariate measurement error on estimating the

population size in capture-recapture models. To find that ignoring the covariate

measurement error leads to estimation bias, they proposed an effective method

to correct this bias through accounting for the measurement error structure.

In capture-recapture models individual animals can be captured multiple

times. Commonly at each capture event the same covariates are measured, espe-

cially if they are difficult to measure precisely or their values could fluctuate. If

these are different measurements of an underlying true covariate that affects the

capture probability, it is natural to use their average in the capture-recapture
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model. If the measurements are systematic, one expects their average gains in

precision with more captures. This different measurement error variabilities re-

sult for animals captured different number of times. This information is ignored

in Hwang, Huang, and Wang (2007), who assume a single covariate measure-

ment is available and that has a common error variance across different animals.

Huggins and Hwang (2009) realized the advantage of multiple measurements and

successfully utilized it. However, they made an additional normality assumption

on the unobservable covariates. Then the problem is completely parametric and

no longer in the functional measurement error model framework. It is our goal

to take into account the multiple measurements in the estimation procedure, to

retain consistency, and to improve estimation efficiency.

In the capture-recapture literature, the capture probability is typically as-

sumed to relate to covariates through a linear logistic model (Huggins (1989)),

see Pollock (2002) for a comprehensive review of this topic. Extension to a par-

tially linear structure was studied in Huggins (2006), while Hwang and Huggins

(2007) further incorporated categorical variables. When covariates are measured

with error, Wang (2000) proposed a refined regression calibration estimator and

Hwang and Huang (2003) proposed a conditional likelihood-based method to

estimate the population size. A conditional score-based method was later pro-

posed by Hwang, Huang, and Wang (2007); Huggins and Hwang (2009) extended

the method to handle unknown measurement error variance. Our contribution in

this work is to allow unknown, unequal measurement error variance that depends

on the capture times, and to construct consistent and efficient estimators that

benefit from the special error properties.

The rest of the paper is organized as follows. In Section 2, we investigate

a generalized method of moments (GMM) procedure. In Section 3, we propose

an effective way of using multiple measurements based on semiparametrics. Nu-

merical experiments are reported for simulated examples in Section 4 and for

capture-recapture data of a bird population in Section 5. We conclude with a

discussion in Section 6, and relegate proofs to the Appendix.

2. Generalized Method of Moments Procedure

In the capture-recapture model we use N to denote the total population

size of the animals under study. Interest lies in estimating and making inference

about N . Let J be the total number of capture occasions. Using i to index the

distinct animals and j to index the capture occasions, we denote the random

event of the ith animal being captured on the jth occasion as Yij , with Yij = 1

for capture and Yij = 0 otherwise. Here i = 1, . . . , N and j = 1, . . . , J . Assume

there are a total of D distinct animals captured at least once. For convenience,

we label these animals from 1 to D and the animals never captured from D + 1
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to N . A widely used model to describe the probability mass function of a binary

outcome is the logistic regression model

logit{pr(Yij = 1 | Xi = xi)} = α+ xT
i β

that relates the capture probability of an animal on one occasion to its covariates,

see for example Pollock, Hines, and Nichols (1984), Huggins (1989), Alho (1990),

Huggins (1991), and Pledger (2000). Let Yi be the total number of captures of

the ith animal, so Yi =
∑J

j=1 Yij . If for each animal, conditional on its covariates,

the different captures are independent of each other, we have

pr(Yi = yi | Xi = xi) =

(
J

yi

)
exp{(α+ xT

i β)yi}
{1 + exp(α+ xT

i β)}J
,

the logistic based capture-recapture model.

When the covariates Xi’s are not directly observed, alternative information

is usually collected. We consider that at each capture of an animal, its covariate

is measured, subject to measurement error. Let Wij be the measurement of Xi

at the jth occasion if Yij = 1. We assume Wij = Xi + Uij , where Uij is a

random measurement error, assumed to have a normal distribution with mean

zero and variance-covariance matrix Σ. Our goal is to estimate N based on

(Yij , YijWij), i = 1, . . . , N, j = 1, . . . , J .

If only a single measurement Wi is available in place of Xi, where Wi has

the same relation to Xi as the Wij ’s above, results have been established in

the literature, see Hwang, Huang, and Wang (2007). If (Yi,Wi) are fixed and

the parameters θ = (α,β) are known in the joint probability density function of

(Yi,Wi) given Xi, then ∆i = Wi + YiΣβ is a complete sufficient statistic for

Xi. Thus, conditional on ∆i, because of the sufficiency, Yi does not depend on

Xi. Taking advantage of completeness, one can construct an estimating equation

based on (Yi,∆i) alone; see Ma and Tsiatis (2006) for the details on how suf-

ficiency and completeness contribute to the construction of the estimator. One

might use Wi = (
∑J

j=1 YijWi,j)/Yi in place of Wi. But for the different mea-

surement error variances across different animals, it is no longer a sufficient or

complete statistic.

An alternative obvious attempt of taking advantage of the situation is to

combine the procedures in Hwang, Huang, and Wang (2007) performed on each

individual Wij . To this end, we resort to the GMM (Hansen (1982)) approach.

Our consideration is the following. We first consider making use of the first mea-

surement of each animal that is captured at least once, forming the complete

sufficient statistic with the first measurement. This provides the first set of es-

timating equations. We then consider making use of the second measurement

of each animal that is captured at least twice, forming the complete sufficient
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statistic with the second measurement. This provides the second set of esti-

mating equations. We continue this process and obtain a maximum of J sets

of estimating equations in total. We then use GMM to take advantage of all

these equations. Specifically, let Cik denote the event Yi ≥ k for k = 1, . . . , J .

Thus, I(Cik) = 1 if the ith animal is captured at least k times, and I(Cik) = 0

otherwise. For the ith animal with Yi total captures, we denote its Yi available

measurements Wi(l), l = 1, . . . , Yi. Thus, the lth complete sufficient statistic is

defined by ∆i(l) = Wi(l) + YiΣβ, l = 1, . . . , Yi.

Using the above notation, the kth set of estimating equations can be writ-

ten as

N∑
i=1

gk(Yi,∆i(k), α,β)

=

N∑
i=1

I(Cik)
[

Yi − E(Yi | ∆i(k), Cik){
∆i(k) −E(Yi | ∆i(k), Cik)Σβ

}{
Yi − E(Yi | ∆i(k), Cik)

}] = 0,

where k = 1, . . . ,K ≤ J . We emphasize here that when k = 1, the estimating

equation is identical to the proposal in Hwang, Huang, and Wang (2007). Here we

use K to denote the maximum k value where there are still data available to form

the estimating equation, i.e. the largest possible k such that maxi I(Cik) = 1.

We now combine these K sets of equations via GMM. Specifically, Let Oi =

(Yi1, Yi1W
T
i1, . . . , YiJ , YiJW

T
iJ)

T be the observations related to the ith animal, let

θ = (α,βT)T, write

g(Oi,θ) =


g1(Yi,∆i(1),θ)

g2(Yi,∆i(2),θ)
...

gK(Yi,∆i(K),θ)

 ,

and obtain the estimator of θ through minimizing{
N∑
i=1

g(Oi,θ)

}T{
N∑
i=1

g(Oi,θ)g
T(Oi,θ)

}−1{ N∑
i=1

g(Oi,θ)

}
.

It is well known that the GMM estimator provides the optimal combination of

the estimating equations in terms of the estimation efficiency, and the resulting

estimator has the usual root-n consistency and asymptotic normality. Here,

estimation efficiency is measured by the inverse of the variance of an estimator.

Here, the estimation procedure has θ̂ consistent, with asymptotic variance

N−1

(
E

{
∂gT(Oi,θ)

∂θ

}[
E
{
g(Oi,θ)g

T(Oi,θ)
}]−1

E

{
∂g(Oi,θ)

∂θT

})−1

.
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The GMM uses each measurement Wi(k) separately. Alternatively, as sug-

gested by a referee, one can also consider the averaged measurement k−1
∑k

l=1Wi(l)

in the construction, with the estimating equation using all animals captured at

least k times. Since the averaged quantity does not depend on Yi, this results in

a sufficient complete statistic. One obvious advantage of such a configuration is

that it can stabilize the estimation procedure.

To take advantage of the multiple measurements fully, it is tempting to use

the average of all the Yi measurements, but the measurement error problem is

now differential and this requires attention.

3. Semiparametric Method

Consider the animals captured at least once. Modeling the probability of the

observed animal being captured y times given that it is captured at least once,

we have

pr(Yi = yi | Xi = xi, Ci1)

=

(
J

yi

)
exp{(α+ xT

i β)yi}
{1 + exp(α+ xT

i β)}J

[
1−

{
1

1 + exp(α+ xT
i β)

}J
]−1

, (3.1)

where yi = 1, . . . J . The averaged measurement Wi satisfies Wi = Xi + Ui,

where Ui ∼ N(0,Σ/Yi), with the convention that if yi = 0, Wi = 0. If Σ is not

known, we can estimate it by forming differences of the repeated observations,

say Wi(1) − Wi(2), and calculating the sample variance-covariance matrix, see

Hall and Ma (2007) for details. Thus, unless we specifically point out otherwise,

we assume Σ is known.

The variance expression for Ui indicates that Yi and Wi are no longer inde-

pendent conditional on Xi. This means that the standard surrogacy assumption

in the measurement error literature is violated in this context. If p is the dimen-

sion of Xi, the joint distribution of Yi and Wi conditional on (Xi, Ci1) is

fYi,Wi|Xi,Ci1(yi,wi | xi, Ci1) = pr(Yi = yi | Xi = xi, Ci1)fWi|Yi,Xi,Ci1(wi | yi,xi, Ci1)

=

(
J

yi

)
exp{(α+ xT

i β)yi}
{1 + exp(α+ xT

i β)}J

[
1−

{
1

1 + exp(α+ xT
i β)

}J
]−1

(2π)−p/2
∣∣∣Σ
yi

∣∣∣−1/2
exp

{
−yi

2
(wi − xi)

TΣ−1(wi − xi)
}

=

(
J

yi

)
(2π)−p/2

∣∣∣Σ
yi

∣∣∣−1/2 exp(yiα− yiw
T
i Σ

−1wi/2){
1 + exp(α+ xT

i β)
}J − 1

exp
{
xT
i (yiβ + yiΣ

−1wi)

−yix
T
i Σ

−1xi
2

}
.
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Because it is in the form of the exponential family, the minimal complete statistic

is (Yiβ + YiΣ
−1Wi, Yi), or equivalently (Wi, Yi). This statistic does not help

simplify the problem.

Without the surrogacy property or a suitable sufficient and complete statis-

tic, we turn to a semiparametric framework. The distribution of Xi has to be

taken into account and we treat it as a nuisance parameter with infinite dimen-

sion, but we do not estimate it. Instead, we calculate its corresponding tangent

space formed by the mean squared closure of the set of all score functions of its

parametric submodels; the orthogonal complement of the tangent space subse-

quently contains the elements for building consistent estimating equations. This

approach originates in Bickel et al. (1993), and discussion about such calculations

can be found in Tsiatis (2006).

The joint distribution of the observed (Yi,Wi) is

fYi,Wi|Ci1(yi,wi | Ci1)

=

∫
fWi|Yi,Xi,Ci1(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1)fXi|Ci1(xi | Ci1)dµ(xi),

where dµ(xi) is the dominating measure. Here fXi|Ci1(xi | Ci1) is the unknown

probability density function of Xi conditional on Ci1, while the conditional dis-

tribution fYi|Xi,Ci1(yi | xi, Ci1) is completely determined by θ = (α,βT)T.

Our goal is to construct an estimating equation based on the conditional

joint distribution of (Yi,Wi) through calculating the efficient score function. To

calculate the score function with respect to θ we have

Sθ(Yi,Wi) ≡
∂

∂θ

{
logfYi,Wi|Ci1(yi,wi | Ci1)

}
= E

{
SF
θ (Yi,Xi) | Yi,Wi, Ci1

}
,

where SF
θ (Yi,Xi) ≡ ∂logfYi|Xi,Ci1(yi | xi, Ci1)/∂θ and fYi|Xi,Ci1(yi | xi, Ci1) is

given in (3.1). To find the nuisance tangent space Λ and its orthogonal com-

plement with respect to the infinite dimensional parameter fXi|Ci1(xi | Ci1), we
consider the parametric submodels which lie in the family of the unknown con-

ditional distributions and contain the true distribution. For each of them, the

score function with respect to the nuisance parameter can be calculated directly.

We take the mean squared closure of all these score functions corresponding to

the different submodels to obtain Λ. Detailed calculation in the Appendix yields

Λ =
[
E
{
h(Xi) | Yi,Wi, Ci1

}
: E {h(Xi) | Ci1} = 0

]
.

Here h(Xi) is a random function in the Hilbert space H. The corresponding

orthogonal complement of Λ, denoted Λ⊥ is given by

Λ⊥ =
[
g(Yi,Wi) : E

{
g(Yi,Wi) | Xi, Ci1

}
= 0

]
.
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We project the score function Sθ(Yi,Wi) onto Λ⊥ to obtain the efficient score
Seff(Yi,Wi). Any random function g(Yi,Wi) in Λ⊥ must satisfy that its condi-
tional expectation on Xi and Ci1 is zero, and any random function in Λ can be
expressed as E

{
a(Xi) | Yi,Wi, Ci1

}
. Thus, if we identify a function a(Xi) such

that

E
[
Sθ(Yi,Wi)− E

{
a(Xi) | Yi,Wi, Ci1

}
| Xi, Ci1

]
= 0, (3.2)

we have found the efficient score

Seff(Yi,Wi) = Sθ(Yi,Wi)− E
{
a(Xi) | Yi,Wi, Ci1

}
= E

{
SF
θ (Yi,Xi)− a(Xi) | Yi,Wi, Ci1

}
.

The conditional expectation involved in the calculation of the efficient score re-
lies on the unknown distribution fXi|Ci1(xi | Ci1). In practice, we propose a
candidate distribution f∗

Xi|Ci1(xi | Ci1), and carry out the estimation proce-
dure under f∗

Xi|Ci1(xi | Ci1). We denote the resulting efficient score function

S∗
eff(Yi,Wi). Because our procedure in obtaining a(Xi) from (3.2) calculated un-

der f∗
Xi|Ci1(xi | Ci1) ensures that E{S∗

eff(Yi,Wi)} = 0 regardless of f∗
Xi|Ci1(xi | Ci1)

being the true conditional distribution or not, we still have a consistent estima-
tor when the candidate model is not the true model. This is usually referred
to as a locally efficient estimator. To solve for a(Xi), we use the technique in
Tsiatis and Ma (2004). Although the context is different, the integral equation
(3.2) shares the mathematical properties of the integral equation there. The
estimating equation is

D∑
i=1

S∗
eff(Yi,Wi;θ) = 0. (3.3)

Here only the animals captured at least once contribute to the estimation. Nu-
merically, (3.3) is solved through the Newton-Raphson algorithm. And, in prac-
tice, especially when D is small, there can be multiple roots. In such a case,
practical knowledge is typically used to select a suitable root.

Theorem 1. Let θ̂ solve (3.3) and assume Σ is known. Then
√
N(θ̂ − θ) → N(0,V)

in distribution when N → ∞, where V = A−1(θ)B(θ)
{
A−1(θ)

}T
,

A(θ) = E

{
∂

∂θT
S∗
eff(Yi,Wi;θ)

}
,

B(θ) = E
{
S∗
eff(Yi,Wi;θ)S

∗T
eff (Yi,Wi;θ)

}
.

In addition, when f∗
Xi|Ci1(xi | Ci1) = fXi|Ci1(xi | Ci1), the estimator achieves the

optimal estimation variance Vopt = B−1(θ).
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When Σ is unknown and needs to be estimated, the asymptotic normality

results in Theorem 1 still hold, but the variance V is different. The optimality

result no longer holds when Σ is estimated. The proof of Theorem 1 is in the

Appendix. For inference, we approximate A(θ) and B(θ) with their sample

versions evaluated at θ̂.

Given θ̂, we can use the procedure proposed in Hwang, Huang, and Wang

(2007) to estimate the population size

N̂C =

N∑
i=1

I(Ci1)
p̂r(Ci1 | ∆i)

, (3.4)

with associated asymptotic variance

var(N̂C) =

N∑
i=1

I(Ci1)
1− pr(Ci1 | ∆i)

pr2(Ci1 | ∆i)

+
{ ∂

∂θT

N∑
i=1

I(Ci1)
pr(Ci1 | ∆i)

}
var(θ̂)

{ ∂

∂θ

N∑
i=1

I(Ci1)
pr(Ci1 | ∆i)

}
.

Here

∆i =Wi(1) + YiΣβ, pr(Ci1 | ∆i)

= 1−
[ J∑
yi=0

(
J

yi

)
exp

{
yi(α+∆T

i β)−
1

2
y2i β

TΣβ
}]−1

,

p̂r(Ci1 | ∆i) is pr(Ci1 | ∆i) calculated under θ̂, and var(θ̂) is given in Theorem 1.

We can obtain the approximation v̂ar(N̂C) by replacing θ with θ̂ in the expression

of var(N̂C).

The first term of var(N̂C) captures the variability of estimating NC from not

observing all the animals, and the second term describes the additional variability

due to the estimation of the related parameters. If we reduce the estimation

variance of the parameters, we reduce the second term and the overall variance

in estimating N . In the simulation section, we illustrate that the semiparametric

method achieves this goal.

4. Simulation

We conducted a series of simulation experiments to investigate the perfor-

mance of the semiparametric methods in comparison with GMM and the con-

ditional score method Hwang, Huang, and Wang (2007). In each simulation

experiment, we generated 1,000 data sets.

In the first simulation, the true population size was N = 500. We generated

the true covariates Xi from Unif[−3, 3], and set the measurement error stan-

dard deviation σu = 0.6. We then generated the observations (Yij ,WijYij), j =



EFFECTIVE USE OF MULTIPLE ERROR-PRONE COVARIATE MEASUREMENTS 1537

1, · · · , 5 from the model with the true parameter values α = 0.2, β = 1.0. This

yielded an average of 417 first time captures and 335 second time captures, cor-

responding to high capture probability. To implement different estimators, we

replaced Σ with its estimate Σ̂, which has bias -0.009 and variance 0.0007. In

the semiparametric estimation, we implemented the estimation when the true

uniform distribution of X was used and when a false normal distribution was

used. For the GMM methods, one used a single Wi(k) and the other used the

average k−1
∑k

l=1Wi(l), called GMM1 and GMM2 respectively. The results of

the various estimators are given in Table 1, where we report the mean and the

standard error of the estimators as well as the average of estimated standard

errors and the sample coverage of the 95% confidence intervals constructed using

the asymptotic results. From Table 1, we can see that all five estimators have

small biases in estimating the parameters α, β. Each of the five methods has

positive bias for the population size N estimation, but it decreases toward zero

as sample size increases.

The GMM methods performed similarly. Although the GMM estimators

reduced the estimation standard error for the model parameters α and β, they

did not reduce the estimation variability of the population size N . This is likely

because the reduction of parameter estimation variability is not enough to mask

out the first term of var(N̂C), but the semiparametric method yielded a larger

variability reduction in parameter estimation that propagated to a more visible

variability reduction of the population size estimate.

The second simulation used α = −1.0, β = 1.0. This yielded an average

of 298 first time captures and 125 second time captures. All the other settings

are the same except that Xi was standard normal and J = 3. An estimated Σ̂

was used in the estimation procedures, where Σ̂ has bias -0.0019 and variance

0.0021. The semiparametric estimation also proposed both true and false distri-

bution for Xi. The results are given in Table 2. From it, we can see that all five

estimators have non-substantial biases in estimating the parameters α, β and the

population size N . With the exception of GMM estimators, the sample standard

error and the average of the estimated standard errors are close to each other,

indicating satisfactory performance of the asymptotic results for relatively small

N . This is further reflected in the close proximity of the observed 95% coverage

to its nominal level. The poor performance of GMM is likely caused by the small

number of animals captured more than once. Indeed, in simulations not reported

here, when we increased the population size, the performance of the GMM esti-

mators improved. The two GMM estimators performed similarly, with GMM2

having slightly smaller MSE, but both are clearly inferior to the semiparametric

estimators.
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Table 1. Simulation 1. Performance of five methods based on conditional
score (CS), two types of GMM (GMM1, GMM2), in comparison with the
semiparametric estimator using normal fX(x) (Semi-Nor) and using uniform
fX(x) (Semi-Uni). The mean of the estimates (estimate), empirical standard
error (emp se), mean square error (mse), average of estimated standard error
(est se) and the sample coverage rate of the 95% confidence interval (95%
cov) are reported.

α β N
true 0.2 1.0 500

CS estimate 0.1986 1.0035 503.12
emp se 0.0710 0.0607 23.79
mse 0.0101 0.0074 1163.3
est se 0.0712 0.0606 23.39

95% cov 95.1% 95.5% 94.8%
GMM1 estimate 0.1970 1.0091 504.44

emp se 0.0688 0.0591 23.96
mse 0.0095 0.0070 1179.7
est se 0.0690 0.0585 23.40

95% cov 95.0% 95.8% 95.3%
GMM2 estimate 0.1977 1.0083 504.24

emp se 0.0702 0.0598 24.06
mse 0.0099 0.0071 1187.8
est se 0.0701 0.0590 23.48

95% cov 94.9% 95.0% 95.3%
Semi-Nor estimate 0.2006 1.0033 502.14

emp se 0.0640 0.0537 22.92
mse 0.0084 0.0059 1056.5
est se 0.0658 0.0546 22.28

95% cov 95.4% 95.1% 93.3%
Semi-Uni estimate 0.2005 1.0031 502.13

emp se 0.0640 0.0536 22.91
mse 0.0084 0.0059 1055.7
est se 0.0658 0.0546 22.27

95% cov 95.6% 95.0% 93.3%

Summarizing the first two simulation results, we find that the GMM did not

improve drastically over the conditional score method in terms of the estima-

tion efficiency. Its finite sample performance also heavily relies on the capture

probability and the sample size, in that smaller sample sizes tend to inhibit the

gain. Intuitively, the gain of the GMM comes mainly from the appropriate usage

of additional measurements. When N is relatively small, there are very small

amount of additional measurements available. This not only limits the source of

additional information, but also adversely affects how such information is used,

because the GMM weighting matrix relies on asymptotic results and is not a
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Table 2. Simulation 2. Performance of five methods based on conditional
score (CS), two types of GMM (GMM1, GMM2), in comparison with the
semiparametric estimator using normal fX(x) (Semi-Nor) and using uniform
fX(x) (Semi-Uni). The mean of the estimates (estimate), empirical standard
error (emp se), mean square error (mse), average of estimated standard error
(est se) and the sample coverage rate of the 95% confidence interval (95%
cov) are reported.

α β N
true -1 1 500

CS estimate -1.0229 1.0239 519.87
emp se 0.1604 0.1829 85.55
mse 0.0528 0.0651 15928
est se 0.1612 0.1736 73.29

95% cov 96.2% 94.2% 94.1%
GMM1 estimate -1.0686 1.0692 544.22

emp se 0.1782 0.2082 142.21
mse 0.0682 0.0868 64989
est se 0.1676 0.1800 94.34

95% cov 95.6% 93.4% 96.2%
GMM2 estimate -1.0673 1.0685 544.37

emp se 0.1843 0.2107 147.12
mse 0.0672 0.0827 53500
est se 0.1663 0.1786 90.21

95% cov 94.7% 93.5% 95.9%
Semi-Nor estimate -1.0101 1.0102 512.27

emp se 0.1497 0.1571 68.16
mse 0.0442 0.0494 10149
est se 0.1465 0.1556 63.85

95% cov 95.7% 95.0% 93.3%
Semi-Uni estimate -1.0103 1.0106 512.40

emp se 0.1500 0.1577 68.36
mse 0.0444 0.0497 10220
est se 0.1468 0.1561 64.00

95% cov 96.0% 95.0% 93.5%

suitable approximation to the true weights under small number of recaptures.

In contrast, the semiparametric methods perform satisfactorily. The efficiency

in estimating α, β is improved by 15% and 36% respectively, while that for the

population estimation is improved by 58% in the worse capture scenario. The

dramatic efficiency gain on the population estimation is caused by the multipli-

cation of
∑N

i=1 ∂{I(Ci1)/pr(Ci1 | ∆i)}/∂θT in the second term of var(N̂C), which

amplifies the magnitude of the change in var(θ̂) in this model.

In the third simulation study, we generated the data by mimicking the bird

data structure in Section 5. We set N = 913 and used J = 12 capture occa-
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sions. We generated the covariates Xi from a normal with mean µX = 45.2 and

standard deviation σX = 1.0, with σu = 0.8 used to generate the measurement

errors. The observations (Yij ,WijYij), j = 1, . . . , J were generated from the logis-

tic model with α = −36.34 and β = 0.72. The observed average number of first

captures and second captures were respectively, 244 and 49. We conducted the

five estimations procedures; the results are in Table 3. For all five estimators, an

estimated Σ̂ was used, with bias -0.0136 and variance 0.1261. We saw small biases

of θ̂ and the population estimate in all cases. The conditional score and the semi-

parametric methods yielded close results between the sample estimation standard

error and the empirical one, and between the observed coverage of the 95% confi-

dence intervals and the nominal level, indicating the validity and relevance of the

asymptotic results. Once more, the semiparametric methods provided the small-

est estimation variability for both parameter and population estimation, with

a gain of 59%, 63%, and 277% in terms of estimation efficiency in comparison

with the conditional score method. Among the two semiparametric methods,

the normal-based procedure was slightly better than the uniform-based proce-

dure, indicating the optimality when the true fX distribution is used, though

the performance difference here was small. This is encouraging considering that

the true fX is not easy to obtain in practice. The GMM estimates of population

were not competitive with the semiparametric methods due to the small number

of recaptures. We conducted more extensive simulations, including the cases for

two covariates, and provide the results in the supplementary material. In all

simulations, the semiparametric methods outperformed CS and GMM.

5. Data Example

We implemented the conditional score method, the generalized method of

moments, and the semiparametric method on a data set, regarding the bird

species Prinia flaviventris, collected by the Hong Kong Bird Society from 1991

to 1995. In addition to the capture record, the data set contains the measure-

ments of a bird’s wing length, believed to be directly linked with a bird’s capture

probability and measured with error. We considered the data from 01/31/93

to 04/11/93. In this relatively short time period, the population size change is

likely small and we treated it as a closed population. During this time period, 146

distinct birds were captured and measured on J = 12 occasions with 168 total

captures. Among them, the average wing length was 45.20 and the variance was

1.64.

Under the normal additive measurement error assumption, and taking ad-

vantage of the multiple measurements of the wing length of recaptured birds, we

formed the difference between the measurements and estimated the variance of

the measurement error to be σ̂2
u = 0.626.



EFFECTIVE USE OF MULTIPLE ERROR-PRONE COVARIATE MEASUREMENTS 1541

Table 3. Simulation 3. Performance of five methods based on conditional
score (CS), two types of GMM (GMM1, GMM2), in comparison with the
semiparametric estimator using normal fX(x) (Semi-Nor) and using uniform
fX(x) (Semi-Uni). The mean of the estimates (estimate), empirical standard
error (emp se), mean square error (mse), average of estimated standard error
(est se) and the sample coverage rate of the 95% confidence interval (95%
cov) are reported.

α β N
true -36.34 0.72 913

CS mean -37.41 0.74 1031.44
emp se 10.43 0.2251 527.56
mse 353.43 0.1651 1.994e6

est se 10.21 0.2202 381.67
95% cov 94.7% 94.7% 93.3%

GMM1 mean -37.94 0.75 1051.96
emp se 9.7499 0.2118 264.97
mse 376.34 0.1769 4.539e5

est se 11.25 0.2427 365.93
95% cov 97.6% 97.6% 97.7%

GMM2 mean -37.93 0.75 1048.81
emp se 9.3641 0.2033 269.47
mse 252.54 0.1183 2.833e5

est se 10.53 0.2271 332.50
95% cov 98.3% 98.3% 98.3%

Semi-Nor mean -36.74 0.73 976.73
emp se 8.2814 0.1787 271.72
mse 137.01 0.0638 1.705e5

est se 8.0443 0.1735 245.43
95% cov 94.2% 94.3% 92.4%

Semi-Uni mean -36.91 0.73 982.07
emp se 8.4262 0.1818 279.99
mse 141.89 0.0661 1.798e5

est se 8.2185 0.1773 250.39
95% cov 94.2% 94.3% 92.6%

The results of parameter and population size estimation based on the five

methods are summarized in Table 4, with a normal and a uniform working model

for the semiparametric estimation. For the GMM1 method, we incorporated

only the first two captures while the maximum total recapture was five. Only

four birds were captured three or more times, too small a sample to justify

any analysis. Table 4 indicates that the GMM and the semiparametric methods

resulted in more estimation variance reduction than the conditional score method,

while the improvement from the two semiparametric methods was notable in

terms of estimating the population size. The improvement in the semiparametric
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Table 4. Estimation and the associated standard error (se) of bird data
analysis based on conditional score (CS), generalized method of moments
(GMM1) and semiparametric methods using normal (Semi-Nor) and uniform
(Semi-Uni) candidate distributions for the wing lengths.

α̂(se) β̂(se) N̂(se)
CS -40.11 (31.742) 0.80 (0.694) 921.46 (713.767)

GMM1(First 2 captures) -35.46 ( 9.274) 0.69 (0.201) 1117.31 (431.082)
Semi-Nor -37.03 (14.451) 0.73 (0.318) 839.58 (293.993)
Semi-Uni -32.75 ( 9.66 ) 0.64 (0.213) 770.82 (225.332)

estimators reflects the simulation results. But the improvement in GMM is less

trustworthy. The inference results for GMM at this population size may not be

sufficiently precise, it tends to under-estimate estimation variability, as in the

simulation studies.

6. Discussion

We have investigated the issue of using multiple error-prone covariate mea-

surements in the capture-recapture models. Although GMM is a possible way to

take account of multiple measurements, its use of the information is somewhat

superficial. Our semiparametric approach takes advantage of this information

directly in the construction of the estimator. Its effectiveness is reflected in theo-

retical analysis and in numerical results. Our approach differs from that in Xi et

al. (2009). In particular, the setting there is parametric, our is semi-parametric.

When sample size is moderate or small, the asymptotic properties of the

semiparametric estimator may not exhibit well. In addition, the superior per-

formance of the semiparametric estimator comes at the cost of more intensive

computation.

Throughout, we have worked under a closed population assumption in the

capture-recapture framework. Over a short time period, this is reasonable, as in

our data example (Hwang and Huang (2003), Hwang, Huang, and Wang (2007)

and Xi et al. (2009)). It is certainly of interest to also study population sizes over

the five year period that these data were collected. Here open population models,

such as the Jolly-Seber open population model (Jolly (1965), Seber (1982) and

Seber (1986)), are more appropriate. See also recent developments in open pop-

ulation studies in Schwarz and Arnason (1996) and Pledger, Pollock, and Norris

(2003).
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Appendix

A.1. Derivation of Λ

For the model

fYi,Wi,Xi|Ci1(yi,wi,xi | Ci1;θ)
= fWi|Yi,Xi,Ci1(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1;θ)fXi|Ci1(xi | Ci1), (A.1)

where fXi|Ci1(xi | Ci1) is unknown, the nuisance tangent space is

[h(Xi) : E {h(Xi) | Ci1} = 0] . (A.2)

To see this, suppose the true model for fXi|Ci1(xi | Ci1) is f0(xi | Ci1), and let

fXi|Ci1(xi | Ci1;η) = f0(xi | Ci1){1 + ηTh(Xi},

where h(Xi) satisfies (A.2), is a bounded random function, and ηr×1 is required

to be sufficiently small that 1 + ηTh(Xi) ≥ 0. A simple calculation yields∫
fXi|Ci1(xi | Ci1;η)dµ(xi) =

∫
f0(xi | Ci1)dµ(xi) +

∫
f0(xi | Ci1)ηTh(Xi)dµ(xi)

= 1 + ηTE {h(Xi) | Ci1}
= 1,

so fXi|Ci1(xi | Ci1;η) is a valid probability density function. When η = 0,

fXi|Ci1(xi | Ci1;η) is f0(xi | Ci1), the true model. Thus, one has a parametric

submodel. Since ∂fXi|Ci1(xi | Ci1;η)/∂η = h(Xi), we have shown that any

element in the set defined in (A.2) is indeed one element in the nuisance tangent

space of model (A.1). On the other hand, for any parametric submodel of (A.1)

fYi,Wi,Xi|Ci1(yi,wi,xi | Ci1;θ,η)
= fWi|Yi,Xi,Ci1(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1;θ)fXi|Ci1(xi | Ci1;η).

Let

Sη(xi;η) =
∂

∂η
log

{
fYi,Wi,Xi|Ci1(yi,wi,xi | Ci1;θ,η)

}
=

∂

∂η
logfXi|Ci1(xi | Ci1;η).

Because
∫
fXi|Ci1(xi | Ci1;η0)dµ(xi) = 1 when evaluating at the true value η0,

∂

∂η

∫
fXi|Ci1(xi | Ci1;η0)dµ(xi)

=

∫
∂

∂η
logfXi|Ci1(xi | Ci1;η0)fXi|Ci1(xi | Ci1;η0)dµ(xi)

= E{Sη(xi;η0) | Ci1} = 0.
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Thus, any element belongs to the nuisance tangent space of (A.1) must also

belong to the set given in (A.2).

Finally, because the conditional joint distribution of (Yi,Wi) can be written

as the conditional expectation

fYi,Wi|Ci1(yi,wi | Ci1) = E{fYi,Wi,Xi|Ci1(yi,wi,xi | Ci1;θ) | Yi,Wi, Ci1},

the semiparametric nuisance tangent space is

Λ =
[
E
{
h(Xi) | Yi,Wi, Ci1

}
: E {h(Xi) | Ci1} = 0

]
.

A.2. Derivation of Λ⊥

Suppose g(Yi,Wi) is an element in Λ⊥ and E
{
h(Xi) | Yi,Wi, Ci1

}
∈ Λ.

Since the two spaces are orthogonal, by using the conditional expectations iter-

atively, we have

0 = E
[
g(Yi,Wi)E

{
h(Xi) | Yi,Wi, Ci1

}]
= E

[
h(Xi)E

{
g(Yi,Wi) | Xi, Ci1

}]
.

This is true for any random function h(Xi) in the Hilbert space. Thus, E{g(Yi,
Wi) | Xi, Ci1} = 0, and the orthogonal complement of the nuisance tangent

space is

Λ⊥ =
[
g(Yi,Wi) : E

{
g(Yi,Wi) | Xi, Ci1

}
= 0

]
.

A.3. Proof of Theorem 1

A standard Taylor expansion of the estimating equation yields

0 =N−1/2
N∑
i=1

S∗
eff(Yi,Wi; θ̂)

=
1√
N

N∑
i=1

S∗
eff(Yi,Wi;θ)+

1√
N

{ N∑
i=1

∂S∗
eff(Yi,Wi;θ)

∂θT

}
(θ̂−θ)+op(1).

This implies
√
N(θ̂−θ) =

{
− 1

N

N∑
i=1

∂S∗
eff(Yi,Wi;θ)

∂θT

}−1{ 1√
N

N∑
i=1

S∗
eff(Yi,Wi;θ)

}
+ op(1)

= −A(θ)
1√
N

N∑
i=1

S∗
eff(Yi,Wi;θ) + op(1),

and the Central Limit Theorem then yields the asymptotic result in Theorem 1.

When the true distribution model fXi|Ci1 is used, all asterisks can be elim-

inated. Using integration by parts and observing that Seff is the orthogonal
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projection of the score function Sθ onto Λ⊥, we have

A(θ) = E

{
∂Seff(Yi,Wi;θ)

∂θT

}
=

∫
∂Seff(yi,wi;θ)

∂θT
fYi,Wi

(yi,wi)dµ(yi,wi)

= 0−
∫

Seff(yi,wi;θ)
∂logfYi,Wi

(yi,wi)

∂θT
fYi,Wi

(yi,wi)dµ(yi,wi)

= −E
{
Seff(yi,wi;θ)S

T
θ (yi,wi;θ)

}
= −E

{
Seff(yi,wi;θ)S

T
eff(yi,wi;θ)

}
= −B(θ).

The general expression of V indicates that the variance is B−1(θ). Finally, it is

the optimal variance because it is the variance of the efficient influence function.
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