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Stochastic Generalized Method of Moments

Guosheng YIN, Yanyuan MA, Faming LIANG, and Ying YUAN

The generalized method of moments (GMM) is a very popular estimation and in-
ference procedure based on moment conditions. When likelihood-based methods are
difficult to implement, one can often derive various moment conditions and construct
the GMM objective function. However, minimization of the objective function in the
GMM may be challenging, especially over a large parameter space. Due to the spe-
cial structure of the GMM, we propose a new sampling-based algorithm, the stochas-
tic GMM sampler, which replaces the multivariate minimization problem by a series
of conditional sampling procedures. We develop the theoretical properties of the pro-
posed iterative Monte Carlo method, and demonstrate its superior performance over
other GMM estimation procedures in simulation studies. As an illustration, we apply
the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials
for the article are available online.

Key Words: Generalized linear model; Gibbs sampling; Iterative Monte Carlo;
Markov chain Monte Carlo; Metropolis algorithm; Moment condition.

1. INTRODUCTION

The generalized method of moments (GMM) plays an important role in statistical esti-
mation and inference, particularly in econometrics (Hansen 1982; Newey and West 1987;
Pakes and Pollard 1989; Lee 1996; Hansen, Heaton, and Yaron 1996; Newey 2004; and
Hall 2005; among others). When the likelihood formulation is difficult, the GMM pro-
vides an attractive alternative for estimation and inference. Hansen (1982) developed a
comprehensive framework and asymptotic theory for the GMM estimator. One of the main
advantages of the GMM is that it can be used to make inference when there are more mo-
ment conditions than the number of unknown parameters. By combining the moments, the
GMM is parsimonious and useful for obtaining efficient estimators (Chamberlain 1987).
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In practice, if there is not enough information to construct the likelihood function,
likelihood-based methods can be very difficult (Kim 2002; Chernozhukov and Hong 2003).
Under such situations, Kim (2002) derived the limited information likelihood by minimiz-
ing the Kullback–Leibler distance. Chernozhukov and Hong (2003) developed a Laplace-
type estimator obtained by a Markov chain Monte Carlo (MCMC) approach with a focus
on non-smooth sample moments. Similarly, for non-smooth estimating functions, MCMC
sampling-based approaches have been studied because such estimating equations are dif-
ficult to solve directly, and also the variance of the parameter estimate is hard to obtain
(Tian et al. 2004; Tian, Liu, and Wei 2007). In the Bayesian framework, Yin (2009) pro-
posed to sample the GMM using the usual Metropolis algorithm, while the convergence
of the Markov chain appears to be slow due to the complexity of the pseudo-likelihood
function. In this article, we use the special quadratic structure of the GMM, and propose
sampling the GMM based on a novel iterative Monte Carlo procedure. The samples of
the model parameters, although not exactly from an MCMC procedure, can be used for
statistical inference purposes. The stochastic GMM sampler reduces the classical GMM
minimization problem to a series of conditional sampling steps. In addition, the variances
of the parameter estimates can be easily obtained using the empirical variance of a large
number of parameter samples.

More specifically, we take the negative GMM quadratic function divided by two and
then exponentiate it to construct the pseudo-likelihood function. In the proposed stochas-
tic GMM sampler, the parameters in the variance–covariance matrix of the quadratic form
are fixed as the sampled values at the previous iteration, such that the only parameters to
sample are in the moments. This is the key difference from the usual Metropolis algorithm
used by Chernozhukov and Hong (2003) and Yin (2009). The new sampling procedure con-
verges faster and the samples mix better, because the sampling objective function is greatly
simplified. The stochastic GMM sampler improves the estimation stability by inheriting the
numerical advantages of the usual Gibbs sampler. The estimates of model parameters can
be obtained easily, even for a high-dimensional case in which minimization over a large
parameter space is often quite challenging.

The rest of this article is organized as follows. In Section 2 we introduce the notation,
and review the classical frequentist GMM estimator and the Bayesian GMM estimator.
In Section 3 we propose the stochastic GMM sampler, and also derive the asymptotic
convergence property for the new stochastic GMM estimator. We examine the finite-sample
properties using simulation studies, and illustrate the proposed stochastic GMM sampling
scheme with a real data example in Section 4. Finally, we give concluding remarks in
Section 5.

2. FREQUENTIST AND BAYESIAN GMM ESTIMATORS

In the classical GMM framework (Hansen 1982), we denote the population moment
condition by E{ui (β)} = 0, for i = 1, . . . , n. The corresponding sample moment is

Un(β) = 1

n

n∑
i=1

ui (β), (2.1)
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in which the dimension of Un(β) may be higher than that of β . The GMM estimator β̂ is
obtained by minimizing the quadratic objective function

Qn(β) = UT
n (β)�−1

n (β)Un(β),

where �n(β) is the empirical version of the variance–covariance matrix of Un(β):

�n(β) = 1

n2

n∑
i=1

ui (β)uT
i (β) − 1

n
Un(β)UT

n (β).

In general, β̂ is computed via a two-stage iterative procedure:

(1) Insert the initial value β(0) into �n(β).

(2) At the kth iteration, obtain the estimator β̂(k) by minimizing

Q(k)
n (β) = UT

n (β)�−1
n

(
β̂(k−1)

)
Un(β)

with respect to β , in which we fix �n(β̂
(k−1)) as known by plugging in β̂(k−1) from

the (k − 1)th iteration.

(3) Plug the estimator β̂(k) back into �n(β̂
(k)), and go back to step (2).

(4) Continue this procedure until some prespecified convergence criteria are met.

Hence, we first specify an initial value for β and continue updating the estimator until
some prespecified convergence criteria are met. In step (2), the minimization is typically
achieved by the usual Newton–Raphson algorithm. Under suitable regularity conditions,
the classical GMM estimator β̂ exists and converges in probability to the true parameter
β0, and

√
n(β̂ −β0) converges in distribution to a multivariate normal distribution (Hansen

1982). The minimization can also be taken directly in a single step instead of using such
a two-stage procedure, which produces an asymptotically equivalent estimator (Hansen,
Heaton, and Yaron 1996). However, in certain cases, the minimization procedure needs to
minimize a possibly complex function. If Un(β) is a highly nonlinear function of β , the
iterative procedure may converge to a local optimal GMM estimator.

In contrast to the minimization procedure, Chernozhukov and Hong (2004) and Yin
(2009) proposed a Metropolis sampling approach to the GMM, in which they drew samples
of β from

exp
{− 1

2 UT
n (β)�−1

n (β)Un(β)
}
, (2.2)

directly. Based on the mean and empirical standard deviation of the samples, they were able
to make the same statistical inference as the classical GMM. By using the Metropolis algo-
rithm, the multivariate minimization problem is reduced to an MCMC sampling problem.
In particular, Chernozhukov and Hong (2003) provided regularity conditions and theoret-
ical justification for the convergence in total variation of moments norm. However, the
model parameter β stays in both Un(β) and �−1

n (β) as shown in (2.2). Such a complicated
structure often causes slow convergence of the Metropolis algorithm. From a computa-
tional perspective, we propose using the Bayesian mechanism and a new iterative Monte
Carlo algorithm as a means of computing an estimator that is effectively equivalent to the
frequentist GMM estimator.
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3. STOCHASTIC GMM SAMPLER

Following the same route of Chernozhukov and Hong (2003) and Yin (2009), we pro-
pose a new iterative Monte Carlo sampling procedure, the stochastic GMM sampler, to
alleviate the slow convergence of the usual Metropolis algorithm. We note that the main
difficulty in drawing samples from (2.2) is that β appears in both Un(β) and �−1

n (β), and
thus it is difficult to find a sensible candidate distribution in the Metropolis procedure. Our
Monte Carlo method takes iterative steps with partial substitution of the parameter sam-
ples in the covariance matrix. The detailed description of the new procedure is given as
follows.

(1) Insert an initial value β(0) into �n(β).

(2) At the kth iteration, plug in the sample of the (k − 1)th iteration, β(k−1), such that
the covariance matrix �n(β

(k−1)) is fixed and known. Then, draw a sample β(k)

from

exp
{− 1

2 UT
n (β)�−1

n

(
β(k−1)

)
Un(β)

}
,

where �−1
n (β(k−1)) does not involve any parameter to be sampled.

(3) Continue such sampling until the chain appears to be converging and stable.

More specifically, we give two illustrative examples. If the GMM only involves a single
model parameter (β is a scalar), then at the kth iteration, we sample β(k) from

[
β|β(k−1)

] ∼ exp

{
− U2

n (β)

2�n(β(k−1))

}
.

In a more general situation, we take a three-dimensional parameter vector β = (β0, β1,

β2)
T as an example. At the kth iteration, we sample from the following conditional distri-

butions:[
β0|β(k−1)

0 , β
(k−1)
1 , β

(k−1)
2

]
∼ exp

{− 1
2 UT

n

(
β0, β

(k−1)
1 , β

(k−1)
2

)
�−1

n

(
β

(k−1)
0 , β

(k−1)
1 , β

(k−1)
2

)
Un

(
β0, β

(k−1)
1 , β

(k−1)
2

)}
,[

β1|β(k)
0 , β

(k−1)
1 , β

(k−1)
2

]
∼ exp

{− 1
2 UT

n

(
β

(k)
0 , β1, β

(k−1)
2

)
�−1

n

(
β

(k)
0 , β

(k−1)
1 , β

(k−1)
2

)
Un

(
β

(k)
0 , β1, β

(k−1)
2

)}
,[

β2|β(k)
0 , β

(k)
1 , β

(k−1)
2

]
∼ exp

{− 1
2 UT

n

(
β

(k)
0 , β

(k)
1 , β2

)
�−1

n

(
β

(k)
0 , β

(k)
1 , β

(k−1)
2

)
Un

(
β

(k)
0 , β

(k)
1 , β2

)}
.

At each step of sampling, we may use the adaptive rejection Metropolis sampling algo-
rithm (Gilks, Best, and Tan 1995). The proposed iterative Monte Carlo procedure is differ-
ent from the usual Gibbs sampling, in that at each iteration we fix the covariance matrix,
�n(β), by plugging in the sample of β from the previous iteration. This augmentation sim-
plifies the sampling procedure tremendously. Because in the original form of the asymp-
totic distribution, the same β is contained in both the variance term �n(β) and the moment
term Un(β), it is difficult to approximate the shape of the conditional density.
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We now demonstrate the equivalence of the stochastic GMM estimator and the classical
frequentist GMM estimator. Let β∗ denote the unique classical GMM estimator which
minimizes UT

n (β)�−1
n (β)Un(β) in the article by Hansen (1982). Let {β(1), . . . ,β(K)} be

a sequence of the stochastic GMM samples generated according to the two-stage iterative
Monte Carlo procedure described previously. Let β̂ and �̂ be the sample mean and sample
variance of {β(1), . . . ,β(K)},

β̂ = 1

K

K∑
k=1

β(k),

�̂ = 1

K − 1

K∑
k=1

(
β(k) − β̂

)(
β(k) − β̂

)T
.

Then, we have the following theoretical convergence properties for the stochastic GMM
sampler.

Theorem 1. Assume that the true variance function var{u1(β)} evaluated at the clas-
sical GMM estimator β∗ is finite and has a finite first derivative with respect to β . As the
data sample size n → ∞ and the number of the stochastic GMM samples K → ∞, both
β̂ − β∗ and �̂ − var(β∗) go to zero in probability.

The theorem lays out the theoretical foundation for the validity of the new iterative
Monte Carlo sampling method, for which the proof is outlined in the Appendix.

4. NUMERICAL STUDIES

4.1 SIMULATIONS

We conducted simulation studies to examine the performance of the proposed stochastic
GMM estimator. For ease of exposition, we first considered the generalized linear models
(GLMs), while the GMM is applicable in a much broader range of problems. In particular,
we examined the linear, logistic, and Poisson regression models. For the ith subject, i =
1, . . . , n, let yi be the outcome of interest, and let Zi be the corresponding covariate vector.
Under the linear regression model,

yi = β0 + β1Z1i + β2Z2i + εi,

we took the true parameter values β0 = 0.2, β1 = 0.5, β2 = −0.5, and εi ∼ N(0, σ 2) a
zero-mean normal distribution with variance σ 2 = 0.25. The covariate Z1i was generated
from the standard normal distribution N(0,1), and Z2i was a binary variable taking a value
of 0 or 1 with probability 0.5. With β = (β0, β1, β2)

T and Zi = (1,Z1i ,Z2i )
T , the sample

moment is given by

Un(β) =
n∑

i=1

Zi (yi − βT Zi ).
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We also considered the logistic regression model, which takes the form of

logit(pi) = β0 + β1Z1i + β2Z2i ,

under which the binary outcome yi equals 1 with probability pi , or 0 with probability
1 − pi . Under the logistic model, the sample moment is given by

Un(β) =
n∑

i=1

Zi

{
yi − exp(βT Zi )

1 + exp(βT Zi )

}
.

For the Poisson log-linear model,

log(μi) = β0 + β1Z1i + β2Z2i ,

we simulated yi as a Poisson variable with mean μi , and correspondingly, the sample
moment is given by

Un(β) =
n∑

i=1

Zi{yi − exp(βT Zi )}.

In the logistic and Poisson models, the true values of the regression parameters were taken
to be the same as those in the linear regression model, and the covariates were generated
similarly as well, that is, Z1i ∼ N(0,1) and Z2i ∼ Bernoulli(0.5).

Besides the GLMs, we also considered the semiparametric proportional hazards model
(Cox 1972) for the time-to-event data, which has been widely used in survival analysis. Let
Ti be the failure time for subject i, and let Ci be the censoring time; then Yi = min(Ti,Ci)

is the observed time. Let �i = I (Ti ≤ Ci) be the failure time indicator, where I (·) is the
indicator function. Assume that Ti and Ci are conditionally independent given covariate
Zi , and the observed data {Yi,�i,Zi} are independent and identically distributed for i =
1, . . . , n.

Under the proportional hazards model, the hazard function for the ith subject with a
covariate vector Zi is

λ(t |Zi ) = λ0(t) exp(βT Zi ), (4.1)

where β is a p-dimensional vector of unknown regression coefficients and the baseline
hazard λ0(t) is a completely unspecified and unknown infinite-dimensional parameter. Us-
ing the counting process notation, we can define the at-risk process as Ji(t) = I (Yi ≥ t),
the counting process as Ni(t) = I (Yi ≤ t,�i = 1), and then the martingale is given by

Mi(t) = Ni(t) −
∫ t

0
Ji(u) exp(βT Zi ) d�0(u),

where the baseline cumulative hazard function �0(t) = ∫ t

0 λ0(u) du.
The estimation and inference procedure of model (4.1) follows the partial likelihood

function, in which λ0(t) cancels out so that the only unknown parameter left is β . Let D

denote the observed data, and then the partial likelihood is given by

Lpartial(D|β) =
n∏

i=1

{
exp(βT Zi )∑n

k=1 Jk(Yi) exp(βT Zk)

}�i

,
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and the corresponding score function is

Un(β) =
n∑

i=1

∫ ∞

0

{
Zi −

∑n
k=1 Jk(t) exp(βT Zk)Zk∑n

k=1 Jk(t) exp(βT Zk)

}
dMi(t).

In the Cox model, we took β = (β0, β1, β2)
T with the true parameter values β0 = 0.2,

β1 = 0.5, and β2 = −0.5, and the corresponding covariates Zi = (Z0i ,Z1i ,Z2i )
T were

simulated from Bernoulli(0.5), N(0,1), and Bernoulli(0.5), respectively. The baseline haz-
ard was taken as a constant of 1, and we simulated censoring times from an exponential
distribution, Exp(0.25), resulting in a censoring rate of 24%.

Under each of the GLMs and the Cox model, we examined the performance of the pro-
posed stochastic GMM estimator. For comparison, we also implemented the Metropolis
approach (Chernozhukov and Hong 2003; Yin 2009), the Langevin Metropolis–Hastings
(MH) method (Roberts and Tweedie 1996; Roberts and Rosenthal 1998), and the frequen-
tist GMM method. The Metropolis approach to the GMM is to directly sample from the
pseudo-likelihood function. In the Langevin-MH procedure, the discretized Langevin dif-
fusion is used as the proposal density to adaptively mimic the target posterior distribution.
We took the sample size n = 100,200, and 500, and for each configuration, we simulated
1000 datasets. For the sampling procedures including our stochastic GMM sampler, the
Metropolis, and the Langevin-MH approaches, we took 10,000 samples after a burn-in
period of 100 iterations.

The simulation results are summarized in Table 1, where we present the average of the
parameter estimates over 1000 simulations (Est); the empirical standard deviation (SD);
the average of the standard error estimates (SE); and the 95% coverage probability (CP).
We can see that under the linear regression model all of the four estimation methods, that is,
the proposed stochastic GMM estimator, the Metropolis algorithm, the Langevin-MH pro-
cedure, and the frequentist GMM approach, yielded very similar estimates for the model
parameters and standard errors. Furthermore, the corresponding coverage probabilities are
close to the nominal level 95%. Under the logistic regression model, the stochastic GMM,
Metropolis, and Langevin-MH approaches performed similarly, especially when n = 200
and 500. However, all three sampling methods produced relatively larger bias and slightly
wider interval estimates than the frequentist GMM method. Under the Poisson log-linear
model, the Metropolis algorithm and Langevin-MH performed relatively worse than the
other two estimation procedures in terms of both the point and variance estimates, espe-
cially when n = 100. There appeared to be some bias in the point estimates using the
Metropolis and Langevin-MH procedures, while as the sample size increased to 500 the
bias diminished. Under the Cox proportional hazards model, we used the partial likelihood
method for comparison, and the simulation results are quite similar across the four meth-
ods. As a summary, when the sample size increased from n = 100 to 500, the performance
of the three sampling methods substantially improved. In the situations considered, the
usual Metropolis algorithm and the Langevin-MH procedure performed similarly, while
the proposed stochastic GMM sampling procedure generally produced better estimates
than those two. The classical GMM which requires direct minimization of the objective
quadratic function performed quite competitively.
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Table 1. Comparison of parameter estimates using the proposed stochastic GMM, Metropolis, Langevin Metropolis–Hastings (Langevin-MH), and frequentist minimization methods.

Estimation
β0 = 0.2 β1 = 0.5 β2 = −0.5

Model n method Est SD SE CP Est SD SE CP Est SD SE CP

Linear 100 Stochastic GMM 0.199 0.071 0.072 94.2 0.500 0.051 0.051 93.9 −0.502 0.102 0.101 94.6
Metropolis 0.199 0.071 0.074 95.7 0.500 0.051 0.056 96.9 −0.502 0.102 0.105 95.4

Langevin-MH 0.199 0.071 0.073 95.0 0.500 0.051 0.058 97.0 −0.502 0.102 0.102 94.4
Frequentist GMM 0.203 0.073 0.070 94.0 0.501 0.051 0.050 94.1 −0.503 0.102 0.099 94.0

200 Stochastic GMM 0.202 0.053 0.050 93.7 0.500 0.036 0.036 94.6 −0.502 0.074 0.071 94.4
Metropolis 0.199 0.049 0.051 96.4 0.500 0.036 0.037 95.6 −0.500 0.071 0.072 95.3

Langevin-MH 0.202 0.053 0.050 93.2 0.500 0.036 0.038 96.5 −0.502 0.074 0.070 93.6
Frequentist GMM 0.199 0.052 0.050 92.9 0.501 0.035 0.035 94.9 −0.498 0.073 0.070 93.8

500 Stochastic GMM 0.200 0.032 0.032 94.6 0.500 0.023 0.022 94.6 −0.501 0.045 0.045 94.9
Metropolis 0.200 0.032 0.032 94.8 0.500 0.023 0.023 95.0 −0.501 0.045 0.045 95.3

Langevin-MH 0.200 0.032 0.031 94.3 0.500 0.023 0.024 95.6 −0.501 0.045 0.044 94.1
Frequentist GMM 0.200 0.031 0.032 95.1 0.500 0.023 0.022 95.2 −0.499 0.045 0.045 94.7

Logistic 100 Stochastic GMM 0.246 0.352 0.338 93.4 0.629 0.248 0.259 92.7 −0.592 0.506 0.481 92.6
Metropolis 0.247 0.353 0.349 94.3 0.626 0.247 0.276 91.6 −0.594 0.508 0.498 93.3

Langevin-MH 0.241 0.354 0.334 92.8 0.602 0.242 0.270 93.0 −0.567 0.492 0.458 92.2
Frequentist GMM 0.210 0.316 0.300 94.2 0.518 0.233 0.227 94.7 −0.516 0.441 0.427 95.2

200 Stochastic GMM 0.208 0.233 0.220 93.4 0.547 0.172 0.173 93.1 −0.531 0.310 0.313 94.4
Metropolis 0.211 0.226 0.224 94.2 0.552 0.174 0.179 93.9 −0.512 0.310 0.318 95.2

Langevin-MH 0.208 0.235 0.220 93.3 0.544 0.172 0.184 94.0 −0.529 0.310 0.308 94.0
Frequentist GMM 0.206 0.217 0.210 94.9 0.511 0.161 0.158 95.0 −0.512 0.299 0.298 95.6

500 Stochastic GMM 0.209 0.142 0.134 93.5 0.519 0.104 0.102 94.6 −0.525 0.195 0.190 94.5
Metropolis 0.209 0.142 0.135 93.9 0.519 0.104 0.103 94.7 −0.525 0.194 0.192 94.8

Langevin-MH 0.208 0.142 0.132 93.4 0.517 0.104 0.107 95.4 −0.523 0.194 0.185 93.6
Frequentist GMM 0.203 0.132 0.132 95.0 0.506 0.102 0.099 93.9 −0.506 0.188 0.187 95.0
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Table 1. (Continued.)

Estimation
β0 = 0.2 β1 = 0.5 β2 = −0.5

Model n method Est SD SE CP Est SD SE CP Est SD SE CP

Poisson 100 Stochastic GMM 0.156 0.133 0.135 92.9 0.500 0.098 0.101 95.4 −0.527 0.212 0.213 94.4
Metropolis 0.133 0.132 0.172 96.1 0.644 0.158 0.286 98.4 −0.585 0.229 0.321 97.9

Langevin-MH 0.133 0.132 0.172 96.1 0.646 0.159 0.286 98.2 −0.585 0.229 0.321 98.1
Frequentist GMM 0.189 0.132 0.128 93.5 0.497 0.094 0.094 93.5 −0.505 0.204 0.195 93.1

200 Stochastic GMM 0.175 0.096 0.094 93.9 0.501 0.070 0.068 94.6 −0.513 0.145 0.144 94.2
Metropolis 0.169 0.097 0.103 94.3 0.525 0.082 0.114 97.3 −0.520 0.148 0.164 95.2

Langevin-MH 0.170 0.096 0.101 95.0 0.524 0.084 0.111 96.0 −0.521 0.149 0.163 95.5
Frequentist GMM 0.193 0.094 0.091 93.9 0.503 0.068 0.066 92.9 −0.494 0.136 0.138 95.6

500 Stochastic GMM 0.191 0.057 0.058 94.6 0.501 0.042 0.043 95.0 −0.507 0.089 0.089 95.1
Metropolis 0.190 0.058 0.060 94.9 0.504 0.044 0.051 95.8 −0.507 0.089 0.092 95.4

Langevin-MH 0.190 0.058 0.060 94.9 0.503 0.046 0.048 95.7 −0.508 0.090 0.091 95.4
Frequentist GMM 0.202 0.059 0.057 95.0 0.499 0.044 0.042 93.8 −0.503 0.088 0.087 95.2

Cox 100 Stochastic GMM 0.205 0.235 0.237 95.8 0.516 0.126 0.131 95.5 −0.530 0.241 0.250 94.8
Metropolis 0.205 0.235 0.237 96.1 0.515 0.126 0.131 95.4 −0.529 0.241 0.251 94.9

Langevin-MH 0.205 0.235 0.238 96.4 0.516 0.126 0.132 95.3 −0.529 0.241 0.252 95.1
Partial likelihood 0.202 0.237 0.241 95.9 0.518 0.136 0.131 94.6 −0.502 0.247 0.245 94.7

200 Stochastic GMM 0.202 0.167 0.169 95.8 0.512 0.090 0.091 94.5 −0.511 0.175 0.172 94.0
Metropolis 0.202 0.167 0.169 95.9 0.512 0.090 0.091 94.4 −0.511 0.175 0.172 94.2

Langevin-MH 0.202 0.167 0.170 95.5 0.512 0.090 0.092 94.3 −0.510 0.175 0.173 93.8
Partial likelihood 0.200 0.167 0.167 95.4 0.507 0.091 0.090 94.9 −0.506 0.165 0.169 96.2

500 Stochastic GMM 0.198 0.106 0.105 94.2 0.501 0.056 0.056 94.9 −0.505 0.107 0.106 95.1
Metropolis 0.198 0.106 0.105 94.0 0.501 0.056 0.056 95.0 −0.505 0.107 0.106 95.0

Langevin-MH 0.198 0.106 0.105 94.1 0.501 0.056 0.056 95.1 −0.505 0.107 0.106 94.9
Partial likelihood 0.200 0.102 0.104 95.4 0.505 0.057 0.056 94.9 −0.500 0.104 0.105 95.9

NOTE: Est is the average of the parameter estimates over 1000 simulations, SD is the empirical standard deviation, SE is the average of the standard error estimates, and CP is the 95% coverage probability.
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To further examine the convergence of the proposed stochastic GMM sampler, we com-
pare the cumulative mean squared error (MSE) under the linear, logistic, Poisson, and Cox
models, respectively. We simulated 1000 datasets with n = 100, and computed the aver-
aged MSE based on the accumulating samples increased by every 10 iterations. That is, for
each component of β , we increased K by 10 to evaluate

MSEK = 1

K

K∑
k=1

(
β(k) − βTrue

)2
,

where β(k) is the kth sample and βTrue is the true parameter value. In Figure 1, we show the
plot of the cumulative MSE for each component of β under different models. We can see
that the convergence of the proposed stochastic GMM sampler is in general better than that
of the Metropolis algorithm, especially under the linear and Poisson cases. Compared with
the Langevin-MH approach, the stochastic GMM performed substantially better under the
Poisson model, but slightly worse under the logistic model. Under the Cox proportional
hazards model, the three sampling approaches performed comparably. The main advan-
tage of the stochastic GMM over the Langevin-MH is its ease of implementation. The
Langevin-MH algorithm involves the first partial derivatives of the objective function, and
the appearance of parameters in the covariance matrix makes these derivatives particularly
difficult to evaluate.

4.2 EXAMPLE

As an illustration, we applied the proposed stochastic GMM to data from a Medfly
life longevity study with 1,203,646 observations to determine the relationship between the
Medfly longevity and potentially important risk factors (Carey et al. 1992; Carey, Liedo,
and Vaupel 1995; Carey and Liedo 1995; Koenker and Geling 2001). In the study, pupae
were sorted into five sizes from 4 mm up to 8 mm, and the pupal size was known to be
strongly associated with the adult size of the fly, which would affect the fly’s survival.
There were a total of 167 cages, and each cage only contained one size. The initial density
of flies and the percentage of male flies in each cage varied considerably, both of which
could also affect the survival.

In our analysis, we took a log transformation on the survival times of the Medflies,
and included the covariates of sex (female = 1, male = 0), the size of the Medfly, the fly
density, and the percentage of male Medflies in each cage in an accelerated failure time
model (Kalbfleisch and Prentice 2002). In the stochastic GMM, we took 10,000 samples
after 100 burn-in iterations. The samples obtained from the stochastic GMM sampler and
the corresponding density functions are exhibited in Figure 2. We can see that the con-
vergence of the samples is very fast, the samples mix well, and the densities appear to be
normal. In Table 2, we present the parameter estimates and the standard errors using our
stochastic GMM sampling procedure, and the classical GMM minimization method. We
can see that both the point estimates and the standard errors for all of the covariate effects
are very close between these two approaches due to the extremely large sample size. As a
result, the proposed stochastic GMM sampler yielded a similar conclusion to that from the
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Figure 1. Mean squared errors by accumulating every 10 samples averaged over 1000 simulations. Under the linear, logistic, Poisson, and Cox models, respectively, the solid line
is obtained using the Metropolis algorithm (Chernozhukov and Hong 2003), the dotted line denotes the Langevin Metropolis–Hastings method (Roberts and Tweedie 1996), and the
dashed line corresponds to the stochastic GMM estimator.
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Figure 2. The trace plots for the samples using the stochastic GMM for the Medfly data analysis are given in
the left panels, and the corresponding densities are exhibited in the right panels.

frequentist GMM. All of the four covariates considered strongly affected flies’ survival.
Male Medflies survived significantly longer than female. The size of the Medfly was also
significantly associated with survival but not as strongly as other covariates: a Medfly with
a bigger size would survive longer. Furthermore, the higher was the density of the flies in
a cage, the longer was the Medfly’s survival; and more male flies in a cage also would lead
to better survival of the flies. Intuitively, our findings are consistent with the literature of
Medfly life longevity that bigger sizes, more male flies, and stronger cohorts would lead to
better survival.

Table 2. Analysis of the Medfly longevity data using the proposed stochastic GMM sampling procedure and the
frequentist GMM minimization method.

Stochastic GMM Frequentist GMM

Covariate Estimate Std. error Z Stat. Estimate Std. error Z Stat.

Intercept 2.99660 0.00060 5001.8 2.99663 0.00061 4897.2
Sex −0.12727 0.00086 −147.5 −0.12732 0.00086 −147.3
Size 0.00180 0.00040 4.5 0.00181 0.00039 4.6
Density 0.49234 0.00351 140.3 0.49233 0.00339 145.1
% male 1.00812 0.00954 105.6 1.00802 0.00982 102.7
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5. DISCUSSION

We have proposed a new sampling scheme for the GMM estimation, which can be
implemented in a straightforward manner. Our proposed stochastic GMM sampling algo-
rithm reduces the minimization problem to a sampling procedure based on a series of one-
dimensional conditional densities as the usual Gibbs sampler. Using the stochastic GMM
sampler, the point estimate of the model parameter can be obtained as the average of the
samples, and the standard error can be easily computed as the empirical standard deviation
of the samples. When β is of high dimension, and when it is difficult to numerically min-
imize Qn(β) over β , the stochastic GMM estimator with its simple iterative Monte Carlo
sampling scheme can be very useful for statistical estimation and inference. Although the
classical Metropolis–Hastings algorithm can also be used as a sampling tool for the GMM,
both Un(β) and �−1

n (β) contain the model parameter β to be sampled. Such a compli-
cated functional structure makes the Metropolis sampling difficult and the convergence of
the MCMC slow. The new stochastic GMM sampling algorithm through partial parameter
substitution immensely improves the convergence property of the samples.

SUPPLEMENTARY MATERIALS

Appendix: The supplemental files include the Appendix which gives the proof of Theo-
rem 1. (appendix.pdf)

C++ Code: The supplemental files include C++ programs which can be used to repli-
cate the Medfly data analysis. The programs need a C++ library BiostatGeneral.lib
which can be requested from the Department of Biostatistics, M. D. Anderson Cancer
Center. (cpp.zip)

Data: The supplemental files include the Medfly dataset. The original data contain
1,203,646 observations (with duplicates), and the current data contain 19,072 observa-
tions (with a replication weight that can be used to extract to the original data). (fly.txt)
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