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Functional and Structural Methods With Mixed
Measurement Error and Misclassification

in Covariates
Grace Y. YI, Yanyuan MA, Donna SPIEGELMAN, and Raymond J. CARROLL

Covariate measurement imprecision or errors arise frequently in many areas. It is well known that ignoring such errors can substantially
degrade the quality of inference or even yield erroneous results. Although in practice both covariates subject to measurement error and
covariates subject to misclassification can occur, research attention in the literature has mainly focused on addressing either one of these
problems separately. To fill this gap, we develop estimation and inference methods that accommodate both characteristics simultaneously.
Specifically, we consider measurement error and misclassification in generalized linear models under the scenario that an external validation
study is available, and systematically develop a number of effective functional and structural methods. Our methods can be applied to
different situations to meet various objectives.

KEY WORDS: External validation study; Functional measurement error modeling; Generalized linear models; Likelihood method; Regres-
sion calibration; Semiparametric regression; Simulation extrapolation algorithm; Structural measurement error modeling.

1. INTRODUCTION

Mismeasurement in variables arises ubiquitously in practice,
and it has long been a concern in various fields including clinical
and epidemiological studies. In nutrition studies, for instance,
food frequency questionnaires are commonly used to measure
diet, and it is known that this instrument involves a large de-
gree of variation and measurement error (e.g., Rosner, Willett,
and Spiegelman 1989). Measurement error may occur for dif-
ferent reasons. Sometimes variables may be difficult to observe
precisely due to physical location or cost. Sometimes they are
impossible to measure accurately due to their nature. For ex-
ample, the level of exposure to radiation cannot be measured
accurately (e.g., Pierce et al. 1992). In other situations, a vari-
able may represent the average of a certain quantity over time,
and any practical way of measuring such a variable necessarily
incurs error.

Variables are often classified into two different categories
leading to measurement error in continuous variables and mis-
classification of discrete variables. It is known that ignoring
mismeasurement of variables often leads to biased results. For
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example, in the simple linear regression model where a covari-
ate is subject to classical additive error, the estimate of the slope
can be attenuated toward zero if the error in the covariate is
ignored. The effect of mismeasurement in a covariate can be
complex, generally depending on the form of the error model
and the relationship between the response and the covariates
as well as the distribution of the covariates. There is an enor-
mous literature on this subject (e.g., Stefanski and Carroll 1987;
Carroll and Wand 1990; Nakamura 1990; Rosner, Spiegelman,
and Willett 1990; Rosner, Spiegelman, and Willett 1992; Wang
and Davidian 1996; Wang et al. 1998; Lin and Carroll 2000;
Huang and Wang 2001; Zucker and Spiegelman 2004; Liang
and Wang 2005; Spiegelman, Zhao, and Kim 2005; Hall and
Ma 2007; Sugar, Wang, and Prentice 2007; Yi 2008; Zucker and
Spiegelman 2008; Liang 2009; Yi, Liu, and Wu 2011; Yi, Ma,
and Carroll 2012). Textbook treatments of measurement error
in regression can be found in Fuller (1987), Gustafson (2004),
Carroll et al. (2006), and Buonaccorsi (2010).

Although there has been extensive attention on either covari-
ate measurement error (e.g., Carroll et al. 2006; Buonaccorsi
2010) or covariate misclassification (e.g., Akazawa, Kinukawa,
and Nakamura 1998; Gustafson 2004; Buonaccorsi, Laake, and
Veierod 2005; Wang et al. 2008; Dalen et al. 2009; Buonac-
corsi 2010 and the references therein), relatively little work has
been published addressing both characteristics simultaneously.
The only work we are aware of is Spiegelman, Rosner, and
Logan (2000), where both continuous and discrete covariates
are allowed to be subject to error or misclassification. However,
this work was restricted to a binary outcome, using logistic
regression and maximum likelihood to obtain estimates and in-
ference. More discussion and a generalization of their work
to allow for misspecification of the model describing the rela-
tionship between the true and observed covariates are given in
Section 3.3.1.
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Our goal is to develop a rich class of methods to handle data
with both covariate measurement error and misclassification un-
der general model frameworks. For convenience, we embed our
approach within the framework of the generalized linear model,
a class of models that are widely applied in practice. Regarding
the measurement error and misclassification processes, we con-
sider the scenario that an external validation study is available.
We develop a number of estimation methods and inference tools
which apply under a wide range of circumstances. Our investiga-
tion covers both functional and structural modeling strategies for
the measurement error and misclassification processes. In par-
ticular, our likelihood method differs from that of Spiegelman,
Rosner, and Logan (2000) in several aspects which are discussed
in Section 3.4.

Our article contains the following sections. In Section 2, we
describe the models for the data with mismeasured continuous
covariates or misclassified discrete covariates, and in Section 3,
we develop methods to correct bias induced from mismeasured
or misclassified covariates. Asymptotic theory is described in
Section 4. In Section 5, we further propose two methods that
are approximate but easy to implement to partially correct for
bias due to measurement error and misclassification. To assess
the performance of our methods, we conduct simulation studies
and present an empirical data analysis in Section 6. Concluding
remarks are given in Section 7.

2. NOTATION AND MODEL SETUP

2.1 Response Model

For subject i let Yi be the response variable. Let Wi be the
vector of covariates that are precisely measured, Xi be the vec-
tor of error-prone covariates, and Zi be a scalar binary covari-
ate subject to misclassification. Extensions to multiple binary
covariates subject to misclassification are straightforward but
involve more complex notation.

We are interested in the relationship between the response
variable Yi and the true covariates (Xi , Zi, Wi). In particular,
we link the response to the covariates using a parametric model
f (yi |xi , zi , wi ; β) where f is a specified function and β is a
vector of unknown parameters. The primary objective here is
to conduct estimation and inference about the parameters in β.
To clearly demonstrate our proposed methods, here we consider
a concrete model form: the generalized linear model. To be
specific, assume that Yi has the probability density or mass
function from the exponential family

f (yi) = exp[{yiθ − b(θ )}/d(φ) + c(yi, φ)],

where b(·), c(·, ·), and d(·) are known functions, θ is a canon-
ical parameter, and φ is a dispersion parameter. The mean and
variance of Yi are b′(θ ) and d(φ)b′′(θ ), respectively (McCullagh
and Nelder 1989).

Let μi = E(Yi |Xi , Zi, Wi) and vi = var(Yi |Xi , Zi, Wi) de-
note the conditional mean and variance of Yi , given covari-
ates, respectively. It is customary to set μi = g−1{b′(θ )} and
vi = h−1[g−1{b′(θ )}] for some functions g and h, together with
a regression model for b′(θ ). More specifically, we consider the
regression model

g(μi) = XT
i βx + Ziβz + WT

i βw, (1)

where g(·) is a known monotone function, and β =
(βT

x , βz,β
T
w)T is the vector of regression parameters. An in-

tercept may be included in βw by including 1 in the covariate
vector Wi . Further, assume vi = h−1(μi, φ), where h(·, ·) is a
known function and φ is the dispersion or scale parameter that is
known or may be estimated. For instance, for binary data there
is no φ and vi = μi(1 − μi).

2.2 Measurement Error and Misclassification Processes

Let X∗
i and Z∗

i be the observed measurements of Xi and Zi ,
respectively. Suppose that the data come from a main study
and an external validation study. In the main study, there are
no measurements of the error-prone covariates Xi and Zi but
measurements on other variables are available, while the exter-
nal validation study has measurements on covariates only. That
is, the available data from the main and the validation studies
are {(yi, x∗

i , z
∗
i , wi) : i ∈ M} and {(x∗

i , z
∗
i , xi , zi, wi) : i ∈ V},

respectively, where M and V contain n and m subjects, respec-
tively. Here we assume that the subjects in those two studies are
not the same, that is,M andV do not overlap, and further assume
that given Wi , the conditional distribution of (Xi , Zi, X∗

i , Z
∗
i )

for i ∈ V is the same as that of (Xi , Zi, X∗
i , Z

∗
i ) for i ∈ M so that

the information carried by the validation sample V can be trans-
ported to the main study M when carrying out inferences. This
assumption is similar to but different from the transportability
assumption made by Spiegelman, Rosner, and Logan (2000),
who assumed that the conditional distribution of (Xi , Zi) given
(X∗

i , Z
∗
i , Wi) is the same in both the main and the validation

studies. The feasibility of a transportability assumption is ba-
sically justified by the nature of individual study designs. Our
assumption is typically reasonable for scenarios where both
main and external validation studies are carried out to the same
population using the same data collection procedures.

Let pi = pr(Z∗
i = 0|Xi , Zi = 1, Wi) and qi = pr(Z∗

i =
1|Xi , Zi = 0, Wi) be the misclassification probabilities that
may depend on the true covariates. Regression models for binary
data can be employed to model the misclassification probabili-
ties. Typically, we consider logistic regression models, bearing
in mind that other parametric modeling can be employed for
individual problems,

logit(pi) = α01 + αT
x1Xi + αT

w1Wi , and

logit(qi) = α00 + αT
x0Xi + αT

w0Wi , (2)

where α = (α01,α
T
x1,α

T
w1, α00,α

T
x0,α

T
w0)T is the vector of re-

gression parameters.
For the measurement error process, it is often reasonable to

assume that f (x∗
i |z∗

i , xi , zi , wi) = f (x∗
i |xi , zi, wi). That is, the

X∗
i surrogate measurement is independent of surrogate Z∗

i , given
the true covariates {Xi , Zi, Wi}. A parametric model may then
be employed to specify f (x∗

i |xi , zi, wi). Various options can be
found in Carroll et al. (2006) for this purpose. As an example,
we consider that Xi and X∗

i follow a regression model. That is,
given (Xi , Zi, Wi),

X∗
i = �xXi + γ zZi + �wWi + ei , (3)

where the error terms ei are mean zero normal variables and
are independent of other variables, �x and �w are conforming
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matrices, and γ z is a vector of parameters. We write the vector
formed by the elements of �x , �w as γ x and γ w, respectively.

Different specification of the coefficient vectors or matrices
features various measurement error models. For instance, set-
ting �w and �x to be a zero and unit matrices respectively and
γ z to be a zero vector in (3) gives a classical additive model
(Carroll et al. 2006); nonzero vector γ z distinguishes different
measurement error models corresponding to the two subpopu-
lations categorized by Zi = 0 or Zi = 1. Again, measurement
error models do not have to be restricted to the regression model
(3); any parametric modeling of the measurement error process
can be handled by our proposed methods.

3. METHODOLOGY

3.1 Likelihood Function

We assume conditional independence between the response
variable Yi and the surrogate measurements (X∗

i , Z
∗
i ), given

the true covariates (Xi , Zi, Wi). That is, measurement er-
ror and misclassification are nondifferential in the sense
that f (x∗

i , z
∗
i |yi, xi , zi, wi) = f (x∗

i , z
∗
i |xi , zi, wi), or equiva-

lently, f (yi |xi , zi , x∗
i , z

∗
i , wi) = f (yi |xi , zi, wi). Estimation of

the model parameters relies on the factorization

f
(
yi, xi , zi, x∗

i , z
∗
i

∣∣wi

)
= f (yi |xi , zi, wi)f

(
x∗

i , z
∗
i

∣∣xi , zi, wi

)
f (xi , zi |wi), (4)

where the last term f (xi , zi |wi) is a nuisance function.
The factorization (4) allows us to model one type of vari-
ables at a time. Specifically, the first term f (yi |xi , zi, wi)
is determined by the response model (1), and the middle
term f (x∗

i , z
∗
i |xi , zi, wi) is determined by the measurement

error and misclassification models (3) and (2) using that
f (x∗

i , z
∗
i |xi , zi, wi) = f (x∗

i |z∗
i , xi , zi, wi)f (z∗

i |xi , zi, wi) =
f (x∗

i |xi , zi, wi)f (z∗
i |xi , zi, wi). Estimation of the associated

parameters α and γ can be carried out based on the validation
data {(xi , zi , wi , x∗

i , z
∗
i ) : i ∈ V}. The last term f (xi , zi |wi)

features the probability distribution of the true covariate
processes; and specification or nonspecification of this quantity
leaves us room to take different estimation approaches.

3.2 Pseudolikelihood Method

Because measurements of the response variable are only
available for the main study, one might attempt to estimate β

using the observed likelihood contributed by the subjects in the
main study, which is immediate from the factorization (4):

Li =
∫ ∫

f (yi |xi , zi, wi)f (x∗
i , z

∗
i |xi , zi, wi)

× f (xi , zi |wi)dη(xi)dη(zi), (5)

where dη(·) represents the dominating measure which is ei-
ther Lebesgue or counting measure for continuous or discrete
random variable. This method requires modeling the covariate
distribution f (xi , zi |wi), which can be restrictive sometimes
and will be relaxed in Section 3.3. Let δ be the vector of
parameters governing the covariate process f (xi , zi |wi), and
ϑ = (γ T,αT, δT)T, and θ = (βT,ϑT)T. Then under regularity
conditions including that θ is identifiable, maximizing

∏
i∈M Li

with respect to θ yields a consistent estimator of θ .

This approach is conceptually easy to implement. However,
it overlooks the available measurements from the validation
dataset, and furthermore, using the main study data alone would
usually lead to nonidentifiability issues for the model parame-
ters. To overcome these limitations, we propose a pseudolikeli-
hood method for estimation of θ , where the validation data serve
as the basis for modeling and estimation pertaining to the true
covariate process f (xi , zi |wi). In principle, f (xi , zi |wi) can be
factorized as either the product of f (xi |zi, wi) and f (zi |wi) or
the product of f (zi |xi , wi) and f (xi |wi). To be consistent with
our model setup in Section 2, here we break the covariate dis-
tribution f (xi , zi |wi) into two parts, f (xi |zi, wi) and f (zi |wi),
and use the validation data {(xi , zi, wi , x∗

i , z∗
i ) : i ∈ V} to pro-

ceed with modeling and estimation procedures. Define

Li,cov = f (xi , zi, x∗
i , z

∗
i |wi)

= f (x∗
i |xi , zi , wi)f (z∗

i |xi , zi, wi)f (xi , zi |wi),

and Si,cov(ϑ) = ∂log(Li,cov)/∂ϑ .
Estimation of θ can proceed by maximizing

∏
i∈M Li ·∏

i∈V Li,cov with respect to θ , or by jointly solving

(∑
i∈V Si,cov(ϑ) +∑

i∈M ∂log(Li)/∂ϑ∑
i∈M Si(β,ϑ)

)
= 0, (6)

where Si(β,ϑ) = ∂log(Li)/∂β. Alternatively, one can use a
pseudolikelihood algorithm. Specifically, we first use the vali-
dation study to solve

∑
i∈V Si,cov(ϑ) = 0 for an estimator of ϑ ,

say, ϑ̂ . Then, replacing ϑ with the estimate ϑ̂ and then solving∑
i∈M Si(β, ϑ̂) = 0 results in an estimator, denoted by β̂, of

β. Since Si,cov(ϑ) is free of the parameter β for i ∈ V , under
regularity conditions, this pseudolikelihood procedure leads to
the same estimator as that obtained by jointly solving

{∑
i∈VST

i,cov(ϑ),
∑

i∈MST
i (β,ϑ)

}T = 0. (7)

The joint method based on (6) is statistically more efficient
while the pseudolikelihood procedure based on (7) is compu-
tationally easier to implement (Gong and Samaniego 1981). In
the sequel, our discussion is focused on the pseudolikelihood
procedure; modifications for accommodating the joint method
are straightforward.

3.3 Estimating Function Method

3.3.1 Basic Theory. We now explore a semipara-
metric approach to protect against possible model mis-
specification of f (xi , zi |wi). Let Sβ(yi, xi , zi, wi) =
∂log{f (yi |xi , zi, wi ; β)}/∂β be the score function deter-
mined by the response model (1). If Xi and Zi were observed
precisely, β could be directly obtained by solving the sample
version of E{Sβ(Yi, Xi , Zi, Wi ; β)} = 0. Since Xi and Zi

are not observed and only the surrogates X∗
i and Z∗

i are
available, we have to rely on the “observed” score function
Uβ(Yi, X∗

i , Z
∗
i , Wi) = E(X,Z)|(Y,X∗,Z∗,W ){Sβ(Yi, Xi , Zi, Wi)},

where the expectation E(X,Z)|(Y,X∗,Z∗,W ) is evaluated with respect
to the joint distribution of Xi and Zi , given (Yi, X∗

i , Z
∗
i , Wi).
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The joint probability density function f (xi , zi |yi, x∗
i , z

∗
i , wi) is

f (yi |xi , zi , wi)f (x∗
i |xi , zi, wi)f (z∗

i |xi , zi, wi)f (xi , zi |wi)∫
f (yi |c, t,wi)f (x∗

i |c, t,wi)f (z∗
i |c, t,wi)f (c, t |wi)dη(c)dη(t)

,

(8)

where f (yi |xi , zi, wi) is determined by the response model (1),
and f (x∗

i |xi , zi, wi) and f (z∗
i |xi , zi, wi) are determined by the

measurement error model (3) and misclassification model (2),
respectively.

We now consider the functional modeling strategy that leaves
f (xi , zi |wi) unspecified. Our strategy consists of proposing
a possibly misspecified model of the density function of Xi

and Zi , denoted f ∗(xi , zi |wi ; δ
∗), and use it as a working

model. We let f ∗(xi , zi |yi, x∗
i , z

∗
i , wi) denote the correspond-

ing working density function obtained from (8) except for re-
placing the true density f (xi , zi |wi) with the working density
f ∗(xi , zi |wi ; δ

∗). Similarly, we use E∗
(X,Z)|(Y,X∗,Z∗,W ) to denote

the expectation evaluated with respect to the joint working den-
sity f ∗(xi , zi |yi, x∗

i , z
∗
i , wi). Define

U∗
β

(
Yi, X∗

i , Z
∗
i , Wi

) = E∗
(X,Z)|(Y,X∗,Z∗,W ){Sβ(Yi, Xi , Zi, Wi)}

(9)

as the working version of Uβ(Yi, X∗
i , Z

∗
i , Wi) under the working

density f ∗(xi , zi |yi, x∗
i , z

∗
i , wi).

To find an unbiased estimating function for the β parame-
ter, we use a projection method. The following discussion is
similar in spirit to that of Tsiatis and Ma (2004), while the de-
velopment will be more complex due to the involvement of two
additional processes. These two processes are required to fea-
ture a true discrete covariate Zi and its misclassified value Z∗

i .
We assume that the working density f ∗(xi , zi |wi ; δ

∗) has the
same support as that of the true density function f (xi , zi |wi).
Suppose there exists a function a(Xi , Zi, Wi) that satisfies the
identity

E(Y,X∗,Z∗)|(X,Z,W )
[
E∗

(X,Z)|(Y,X∗,Z∗,W ){a(Xi , Zi, Wi)}
]

= E(Y,X∗,Z∗)|(X,Z,W )
{
U∗

β

(
Yi, X∗

i , Z
∗
i , Wi

)}
,

(10)

where the expectation E(Y,X∗,Z∗)|(X,Z,W ) is taken with respect to
the joint density function f (yi, x∗

i , z
∗
i |xi , zi, wi) that is deter-

mined by models (1), (2) and (3). Then an estimating function
for β is given by

U∗(Yi, X∗
i , Z

∗
i , Wi

) = U∗
β

(
Yi, X∗

i , Z
∗
i , Wi

)
−E∗

(X,Z)|(Y,X∗,Z∗,W ){a(Xi , Zi, Wi)}.
(11)

By definition of a(Xi , Zi, Wi), it is readily seen that
this estimation function is unbiased. That is, E(Y,X∗,Z∗,W )

{U∗(Yi, X∗
i , Z

∗
i , Wi)} = 0. Therefore, under regularity condi-

tions, a consistent estimate of β can be obtained from solving∑
i∈M U∗(yi, x∗

i , z
∗
i , wi) = 0.

3.3.2 Projections and the Robust Two-Step Method. The
idea behind this method can be intuitively explained using the
concept of “space” and “projection.” If we think of an unbi-
ased estimating function as a vector that is orthogonal to the
tangent space spanned from the true model f (yi, x∗

i , z
∗
i , wi)

(called “the true tangent space”), then there are several ways

to find an unbiased estimating function. One way is to di-
rectly project the true score function Sβ(Yi, X∗

i , Z
∗
i , Wi) to

the true tangent space and find the orthogonal residual vec-
tor. This approach usually requires the complete knowledge
of the true distributions of the relevant variables. An alterna-
tive approach is to perform the projection by two steps us-
ing a working distribution as an intermediate stage. In the first
step, we calculate the latent variable working score function
S∗

β(Yi, Xi , Zi, Wi) based on the working model f ∗(xi , zi |wi),
and subsequently construct the observed data working vector
U∗

β(Yi, X∗
i , Z

∗
i , Wi) from the working density f ∗(xi , zi |wi) to-

gether with models (1), (2), and (3). In the second step, we
further calculate the projection of the working score vector
U∗

β(Yi, X∗
i , Z

∗
i , Wi) to the nuisance tangent space, which has the

form E∗
(X,Z)|(Y,X∗,Z∗,W ){a(Xi , Zi, Wi)}. The difference between

the working score vector U∗
β(Yi, X∗

i , Z
∗
i , Wi) and its projection

to the working tangent space turns out to be orthogonal to the
true tangent space in this class of models. That is, the estimating
function U∗(Yi, X∗

i , Z
∗
i , Wi) is orthogonal to the true tangent

space. When the working density f ∗(xi , zi |wi ; δ
∗) coincides

with the true density function f (xi , zi |wi), the difference vector
U∗(Yi, X∗

i , Z
∗
i , Wi) coincides with the vector U(Yi, X∗

i , Z
∗
i , Wi)

which is obtained from the direct projection approach, and hence
this estimating function U∗(Yi, X∗

i , Z
∗
i , Wi) becomes semipara-

metric efficient (Tsiatis and Ma 2004). If Yi is binary, semi-
parametric efficient estimating functions are also Fisher effi-
cient; for epidemiological and clinical applications, this will
often be the case. The appeal of the indirect projection ap-
proach lies in the relaxation of the knowledge of the true dis-
tribution f (yi, xi , zi, x∗

i , z
∗
i , wi). The only additional work is in

solving (10), which, under many popular models, has a closed
form solution, see Ma and Tsiatis (2006) and Ma and Ronchetti
(2011).

We comment that our discussion here is suitable for the sit-
uation when models (1), (2), and (3) are correct, while the
conditional distribution f (xi , zi |wi) can be misspecified. Re-
gardless of the correctness of a working model f ∗(xi , zi | wi)
for the covariate process, consistency of the resulting estima-
tors for the response parameters is always guaranteed (pro-
vided standard regularity conditions); if the f ∗(xi , zi | wi) is
correct, we can further ensure efficiency of the resultant estima-
tors.

Now we apply this projection method to handle estimation of
the β parameter for our problem with a main study and a valida-
tion study. The notation is similar to that in Section 3.2 except
for replacing the true density f (xi , zi) with a working density
f ∗(xi , zi ; δ

∗). Let L∗
i,cov denote the counterpart of Li,cov in (6)

with the true density f (xi , zi) replaced by the working den-
sity f ∗(xi , zi ; δ

∗), ϑ∗ = (αT, γ T, δ∗T)T, θ∗ = (βT,ϑ∗T)T, and
S∗

i,cov(ϑ∗) = ∂log(L∗
i,cov)/∂ϑ∗. Let U∗(β,ϑ∗; Yi, X∗

i , Z
∗
i , Wi)

be the estimating function determined by (11), where the func-
tion a(Xi , Zi, Wi) is the solution to the Equation (10) which
is calculated using L∗

i,cov and (8), and U∗
β(Yi, X∗

i , Z
∗
i , Wi) is

determined by (9). Then estimation of β can be carried out
using a two-stage estimation algorithm. In Stage 1, solving∑

i∈V S∗
i,cov(ϑ∗) = 0 leads to an estimator of ϑ∗, say, ϑ̂

∗
; in

Stage 2, replace ϑ∗ with the estimate ϑ̂
∗

and then solve∑
i∈M U∗(β, ϑ̂

∗
; yi, x∗

i , z
∗
i , wi) = 0 for an estimator, β̂, of β.
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3.4 Robustness and Discussion for a Different Likelihood

A different but related modeling approach was taken by
Spiegelman, Rosner, and Logan (2000). We start from the
joint likelihood of (Yi, Xi , Zi, X∗

i , Z
∗
i ) given Wi , while Spiegel-

man, Rosner, and Logan (2000) started from the joint like-
lihood of (Yi, Xi , Zi) given (X∗

i , Z
∗
i , Wi). Spiegelman, Ros-

ner, and Logan (2000) specified the density of (Xi , Zi) given
(X∗

i , Z
∗
i , Wi), which, referring to Section 3.3, we write here as

f (xi , zi |X∗
i , Z

∗
i , Wi ,ϑ). They then based estimation of β on the

distribution of Yi given (X∗
i , Z

∗
i , Wi). As suggested in the fol-

lowing theorem, our method results in a more efficient estimator
for β than the method of Spiegelman, Rosner, and Logan (2000)
does. A proof is sketched in Appendix A.1.

Theorem 1. Let β̂ joint be the estimator of β obtained from the
joint likelihood of (Yi, Xi , Zi, X∗

i , Z
∗
i ) given Wi , and β̂cond be

the estimator of β obtained from using the conditional likelihood
(Yi, Xi , Zi) given (X∗

i , Z
∗
i , Wi). Then β̂ joint is asymptotically

more efficient than β̂cond.

We note that the approach of Spiegelman, Rosner, and Logan
(2000) is sensitive to misspecification of f (xi , zi |x∗

i , z
∗
i , wi ; ϑ).

However, it is straightforward to develop a two-stage approach
similar to that in Section 3.3 that allows consistent estimation
of β even if f (xi , zi |x∗

i , z
∗
i , wi ; ϑ) is misspecified. Only minor

changes are needed in the development in Section 3.3. Start
with a working density f ∗(xi , zi |x∗

i , z
∗
i , wi ; ϑ

∗). The working
density function of (Xi , Zi) given (Yi, X∗

i , Z
∗
i , Wi) is now not

(8) but rather is

f (yi |xi , zi,β)f ∗(xi , zi |x∗
i , z

∗
i , wi ; ϑ

∗)∫
f (yi |c, zi,β)f ∗(c, t |x∗

i , z
∗
i , wi ,ϑ)dη(c)dη(t)

. (12)

Everything now is exactly the same as starting at (9), except
expectations in the working model are based upon (12) rather
than (8). The estimating function for β is still at (11) but using
the working likelihood function (12), and then the two-step
method discussed in Section 3.3.2 can be applied.

A major advantage of modeling f (x∗
i , z

∗
i |xi , zi , wi) in our ap-

proach is that this distribution is more likely to be transportable
than is f (xi , zi |x∗

i , z
∗
i , wi), and the distribution f (x∗

i , z
∗
i , wi) can

be estimated in the main study. As in Spiegelman, Rosner, and
Logan (2000), we can allow for a study in which the proba-
bility of selection into the validation component depends on
(Yi, X∗

i , Z
∗
i , Wi). Our pseudolikelihood method would follow

exactly the same paradigm, while estimating function approach
and the methods discussed in Section 5 would use weighting
based on the probability of selection into the validation sample.

4. ASYMPTOTIC RESULTS

In this section we establish the asymptotic results for the
estimators resulted from the likelihood and estimating function
methods. The proofs of the following results are sketched in the
Appendix.

Theorem 2. Assume that ρ = limn→∞(n/m) is a positive
constant. When the model f (xi , zi | wi ; δ) is correct, then the
pseudolikelihood estimator β̂ obtained from (7) satisfies

n1/2
(
β̂ − β

) d−→ Normal (0,�) as n → ∞,

where � = A−1B(A−1)T,

A = E

{
∂Si(β,ϑ)

∂βT

}
,

B = var{Si(β,ϑ)} + ρC var{Si,cov(ϑ)}CT, and

C = E

{
∂Si(β,ϑ)

∂ϑT

}[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

.

Theorem 3. Assume that ρ = limn→∞(n/m) is a positive
constant and the first equation of (7) is used to obtain ϑ̂ . Let
β̂ be the estimator obtained from solving

∑
i∈M U∗

i (β, ϑ̂) = 0,
where U∗

i (β, ϑ̂) ≡ U∗(yi, x∗
i , z

∗
i , wi ; β, ϑ̂). Then regardless of

whether the model f (xi , zi | wi ; δ) is correct or misspecified,
the estimator β̂ satisfies

n1/2(β̂ − β)
d−→ Normal (0,�) as n → ∞,

where � = A−1B(A−1)T,

A = E

{
∂U∗

i (β,ϑ)

∂βT

}
,

B = var{U∗
i (β,ϑ)} + ρC var{Si,cov(ϑ)}CT, and

C = E

{
∂U∗

i (β,ϑ)

∂(γ T, α)

} (
Ipxp, 0pxq

) [
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

.

Here p is the dimension of (γ T,αT), q is the dimension of
δ, Ipxp is the p × p identity matrix, and 0pxq is the p × q zero
matrix. Notation ϑ = (γ T,αT, δT)T is the true parameter value
if the model f (xi , zi | wi ; δ) is correct, and is the parameter that
minimizes the Kullback–Leibler distance between the proposed
model family and the true distribution that generated the data if
the model is misspecified.

It is clear that while the likelihood method in Theorem 2
requires the model f (xi , zi | wi ; δ) to be correct to yield a
consistent estimator for β, the estimating function method in
Theorem 3 always yields consistent estimator for β whether
f (xi , zi | wi ; δ) is correct or not. We note that the C matrix in
Theorems 2–3 reflects the variability induced from estimation
of nuisance parameters ϑ using the validation dataset.

5. APPROXIMATE METHODS

5.1 Augmented Simulation-Extrapolation

If Xi and Zi were precisely measured, inference for the pa-
rameters can be based on the likelihood function using the main
study dataM: L(β) = ∏n

i=1 Li(β), where Li(β) is a probability
density or mass function from the exponential family together
with the regression model (1). Equivalently, under regularity
conditions, the estimator is the root of the score functions

S(β) = ∂log{L(β)}/∂β. (A)

In the presence of measurement error or misclassification,
L(β) is not computable because (Xi , Zi) are unobserved. An
intuitive method is to directly replace (Xi , Zi) in L(β) with the
surrogate (X∗

i , Z
∗
i ). This method would, as shown in the context

of measurement error alone, generally produce biased results. To
correct induced biases, either completely or partially, one might
be tempted to use existing methods that are developed to ac-
commodate continuous or discrete mismeasured covariates. For
example, it is appealing to develop a simulation-based method
by combining the simulation-extrapolation (SIMEX) method for
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continuous mismeasured covariates (Cook and Stefanski 1994)
and the MC-SIMEX for misclassification (Küchenhoff, Mwalili,
and Lesaffre 2006).

To be specific, we consider the error model at (3), where ei

follows a normal distribution Normal(0,�e) with the covari-
ance matrix �e, and is independent of the true covariates and
the response. Referring to the misclassification model (2), de-
fine α1 = (α01,α

T
x1,α

T
w1)T and α2 = (α00,α

T
x0,α

T
w0)T, and let

(̂α1, α̂2) be their estimates computed using the validation data,
so that the true and estimated misclassification probabilities are
{pi(α1), qi(α2)} and {pi (̂α1), qi (̂α2)}, respectively. Also let �̂e

be the estimate of �e obtained from a linear regression analysis
of model (3) in the validation data.

Following the simulation steps of Cook and Stefanski (1994)
and Küchenhoff, Mwalili, and Lesaffre (2006), one may cre-
ate artificial surrogate measurements for Xi and Zi , and then
apply these measurements with other observed data to fit a
model to portray the patterns of different error degrees on es-
timation; finally an estimator is obtained through extrapolat-

ing a regression model fitted to these patterns. This method
can be quite time-consuming due to the intensive simulations
required.

Alternatively, we propose an augmented simulation-
extrapolation method. This procedure capitalizes on the unique
feature associated with discrete variables, and is thus prefer-
able. The idea works as follows. Using the discrete feature of
Zi , we first construct unbiased estimating functions to correct
misclassification effects; in the second step we apply the SIMEX
algorithm to these functions to further correct for measurement
error effects induced in X∗

i .
We write the score functions in (A) as S(β; Yi, Xi , Zi, Wi)

by explicitly spelling out its dependence on the parameter as
well as the data (Yi , Xi , Zi , Wi). Also explicitly accounting for
the dependence of the misclassification probabilities on their
parameters, define

S∗(β; Yi, Xi , Z
∗
i , Wi ,α1,α2)

= (1 − pi − qi)
−1[(1 − Z∗

i

){S(β; Yi, Xi , Zi = 0, Wi)

Figure 1. Boxplots of the biases of the seven estimators for β0, βz, βx , and βw in Simulation 1. The first three estimators are respectively
based on pseudolikelihood (1), estimating function (2), regression calibration (3), each assuming a uniform distribution model for X; the fourth,
fifth, and sixth estimators are respectively obtained from the pseudolikelihood (4), estimating function (5), regression calibration (6) methods
each assuming a normal distribution model for X; the seventh estimator is a SIMEX estimator (7).
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× (1 − pi) − S(β; Yi, Xi , Zi = 1, Wi)qi}
−Z∗

i {S(β; Yi, Xi , Zi = 0, Wi)pi

− S(β; Yi, Xi , Zi = 1, Wi)(1 − qi)}
]
.

It can be shown that EZ∗|Z{S∗(β; Yi, Xi , Z
∗
i , Wi ,α1,α2)} =

S(β; Yi, Xi , Zi, Wi), where the conditional expectation is eval-
uated with respect to the conditional probability mass func-
tion pr(Z∗

i |Yi, Xi , Zi, Wi), which equals Pr(Z∗
i |Xi , Zi, Wi) un-

der the assumptions in Section 2.2. That is, if Xi were
not subject to measurement error, then estimating functions
S∗(β; Yi, Xi , Z

∗
i , Wi ,α1,α2) can be used directly to produce

a consistent estimator for the β parameter, because they are
unbiased and computable.

Now we describe the augmented simulation-extrapolation
method in detail. There are three basic steps:

1. Simulation Step:
Given B (say, B = 200) and a sequence of M spec-
ified values {λ1, λ2, . . . , λM} with λ1 = 0 (say, taken
from [0, 1]), we artificially generate surrogates for X∗

i

by adding additional noise from the measurement er-
ror and misclassification models. That is, we perform
the following steps. Given b = 1, 2, . . . , B, for each
λ = λ1, λ2, . . . , λM , generate eib from Normal(0, �̂e) and
set X∗

ib(λ) = X∗
i + √

λeib.
2. Estimation Step:

Replace Xi in the unbiased estimating functions
S∗(β; Yi, Xi , Z

∗
i , Wi ,α1,α2) with X∗

ib(λ), and solve
S∗{β; Yi, X∗

ib(λ), Z∗
i , Wi , α̂1, α̂2} = 0 to obtain an estima-

tor β̂b(λ). Define β̂(λ) = B−1 ∑B
b=1 β̂b(λ).

3. Extrapolation Step:
For each component of β̂(λ) fit a regression model to
each of the sequences {(λ, β̂r (λ)), λ = λ1, λ2, . . . , λM

and extrapolate it to λ = −1, where β̂r (λ) denotes the
rth component of β̂(λ). Let β̂r denote the correspond-
ing predicted values. Then β̂asimex = (β̂1, β̂2, . . . , β̂pc

)T

is called the augmented-SIMEX estimator of β, where
pc = dim(β).

The asymptotic theory for the augmented SIMEX estimator
β̂asimex is given in Appendix A.4. Standard errors for β̂asimex can
be obtained using this theory, or by bootstrapping.

5.2 Augmented Regression Calibration

Parallel to the augmented simulation-extrapolation above, we
propose an augmented regression calibration (RC) method. By
analogy with the augmented SIMEX method, we first correct
for misclassification effects by using the unbiased estimating
functions S∗(β; Yi, Xi , Z

∗
i , Wi); then use standard regression

calibration method to adjust for measurement error involved
in S∗(β; Yi, Xi , Z

∗
i , Wi). That is, replace Xi in the unbiased

estimating functions S∗(β; Yi, Xi , Z
∗
i , Wi) with its conditional

mean E(Xi |X∗
i , Z

∗
i , Wi), and then solve

S∗{β; Yi, E(Xi |X∗
i , Z

∗
i , Wi), Z

∗
i , Wi} = 0

to obtain an augmented-RC estimator of β, denoted by β̂arc.
To implement this method, we need to estimate the con-

ditional mean E(Xi |X∗
i , Z

∗
i , Wi), and this is done by apply-

ing standard regression procedures to the validation data in V .
Like the usual RC method, with linear regression or log-linear

Table 1. Results of Simulation 1 in Section 6.1 based on 1000
datasets, m = 500, n = 1000, and X is normal

β0 βz βx βw β0 βz βx βw

True 0.1 −1.0 0.7 0.5 0.1 −1.0 0.7 0.5

Maximum pseudolikelihood

Uniform Normal

est 0.101 −1.012 0.707 0.511 0.049 −1.019 0.818 0.516
sd 0.184 0.303 0.060 0.170 0.184 0.305 0.073 0.172
ŝd 0.183 0.299 0.060 0.166 0.184 0.300 0.073 0.168
95%CI 95.2% 94.8% 95.7% 95.4% 94.1% 94.9% 67.3% 95.4%

Estimating function

Uniform Normal

est 0.107 −1.027 0.709 0.511 0.107 −1.027 0.709 0.511
sd 0.194 0.313 0.064 0.176 0.194 0.314 0.066 0.176
ŝd 0.185 0.300 0.063 0.174 0.185 0.300 0.063 0.174
95%CI 93.8% 94.5% 95.6% 95.8% 93.8% 94.4% 95.2% 95.9%

Regression calibration

Uniform Normal

est 0.088 −0.936 0.666 0.472 0.039 −0.930 0.759 0.472
sd 0.170 0.277 0.050 0.157 0.168 0.274 0.058 0.157
ŝd 0.169 0.273 0.050 0.153 0.167 0.270 0.057 0.153
95%CI 95.2% 93.4% 88.3% 94.9% 93.2% 93.3% 84.4% 94.8%

Simulation extrapolation

est 0.103 −0.970 0.665 0.495 0.103 −0.970 0.665 0.495
sd 0.178 0.287 0.055 0.165 0.178 0.287 0.055 0.165

mean regression models, augmented-RC estimators are con-
sistent; with logistic regression, the augmented-RC estimators
would incur some degree of bias, although the magnitude is
typically small (Spiegelman, Rosner, and Logan 2000). Finally,
the sandwich method can be employed to calculate the variance
estimates for the augmented-RC estimator.

6. EMPIRICAL STUDIES

6.1 Simulation Studies

We performed extensive simulations to investigate the per-
formance of the proposed methods, including the pseudolikeli-
hood method based on (7) and the estimating function method
under both correct and misspecified latent variable distribution
models. For comparison, we include the two approximate meth-
ods, augmented regression calibration and augmented SIMEX,
where augmented regression calibration is also studied under
both correct and misspecified latent variable distribution mod-
els. The validation sample size is set as m = 500 and the main
study size is taken as n = 1000. One thousand simulations are
run for each parameter configuration.

The true covariates Xi were independently generated from
the uniform distribution UNIF[−3.0, 4.0], and the discrete
variables Zi and Wi were independently simulated from a
Bernoulli distribution with success probability 0.5. We gen-
erated X∗

i from the model X∗
i = Xi + ei , where ei is a centered

normal random error with standard deviation half of that of Xi ,
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Figure 2. Boxplots of the biases of the seven estimators for β0, βz, βx , and βw in Simulation 2. The first three estimators are respectively
based on pseudolikelihood (1), estimating function (2), regression calibration (3), each assuming a uniform distribution model for X; the fourth,
fifth, and sixth estimators are respectively obtained from the pseudolikelihood (4), estimating function (5), regression calibration (6) methods
each assuming a normal distribution model for X; the seventh estimator is a SIMEX estimator (7).

and we generated Z∗
i from the Bernoulli distribution with the

probability of misclassification 0.2 under both Zi = 0 and Zi =
1. These procedures were repeated m times to generate a valida-
tion sample {(Xi, Zi,X

∗
i , Z

∗
i ,Wi) : i = 1, . . . , m}. To generate

the data for the main study, we used the procedures above to gen-
erate n sets of covariates {(Xi, Zi,X

∗
i , Z

∗
i ,Wi) : i = 1, . . . , n},

and then for each simulated true covariates (Xi, Zi,Wi), we
generated the response Yi from the logistic regression model

logit{pr(Yi=1 |Xi, Zi,Wi)} = β0+βzZi+βxXi+βwWi, (13)

with the true parameter values set as β = (β0, βz, βx, βw)T =
(0.1,−1.0, 0.7, 0.5)T, i = 1, . . . , n. We then discarded
(Xi, Zi), i = 1, . . . , n. Thus, the simulated data included a main
study data {(Yi,X

∗
i , Z

∗
i ,Wi) : i = 1, . . . , n} and a separate val-

idation sample {(Xi, Zi,Wi,X
∗
i , Z

∗
i ) : i = 1, . . . , m}.

The validation data were used to fit the true model f (x∗, z∗ |
x, z,w) to estimate the parameters α and γ . In particular, the
additive error model and the measurements of Xi’s and X∗

i ’s

from the validation sample are used to estimate the measurement
error variance.

The results of the seven different methods are reported in
Figure 1 and Table 1, where the estimated standard errors
(ŝd) were calculated using the results in Theorem 2 for the
pseudolikelihood estimators and those in Theorem 3 for the
semiparametric estimators, with all the associated quantities
evaluated at the estimated parameter values. The results for
the regression calibration estimators were obtained from using
Theorem 2 with Xi replaced by E(Xi |X∗

i ). From these results,
it is clear that when the latent variable distribution model is
correctly specified, the pseudolikelihood method has the best
performance in terms of both estimation bias and variability.
However, as soon as this model was misspecified (here we mis-
specified the uniform distribution as normal), the pseudolike-
lihood method showed severe bias. In contrast, the estimating
function method retained a small bias regardless of model mis-
specification, and inference was quite precise judging from the
close match between the sample and estimated standard devi-
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Table 2. Results of Simulation 2 in Section 6.1 based on 1000
datasets, m = 500, n = 1000, and X is uniform

β0 βz βx βw β0 βz βx βw

True 0.1 −1.0 0.7 0.5 0.1 −1.0 0.7 0.5

Maximum pseudolikelihood

Uniform Normal

est 0.231 −1.008 0.433 0.500 0.100 −1.034 0.721 0.514
sd 0.158 0.256 0.061 0.146 0.166 0.265 0.113 0.151
ŝd 0.161 0.257 0.060 0.146 0.167 0.266 0.109 0.150
95%CI 89.6% 96.0% 1.8% 94.7% 95.8% 96.1% 95.3% 94.5%

Estimating function

Uniform Normal

est 0.104 −1.049 0.723 0.513 0.104 −1.049 0.724 0.514
sd 0.177 0.284 0.122 0.166 0.178 0.284 0.129 0.167
ŝd 0.170 0.271 0.118 0.161 0.170 0.272 0.118 0.161
95%CI 94.5% 95.9% 95.7% 94.8% 94.1% 95.7% 93.9% 94.6%

Regression calibration

Uniform Normal

est 0.221 −0.968 0.419 0.480 0.093 −0.967 0.675 0.481
sd 0.152 0.244 0.055 0.140 0.156 0.244 0.094 0.140
ŝd 0.155 0.245 0.054 0.140 0.156 0.245 0.088 0.140
95%CI 90.2% 95.5% 0% 94.1% 95.9% 95.5% 91.6% 94.2%

Simulation extrapolation

est 0.191 −0.992 0.500 0.492 0.191 −0.992 0.500 0.492
sd 0.157 0.252 0.068 0.145 0.157 0.252 0.068 0.145

ations and the 95% confidence interval coverage rate and its
nominal value. The two approximate methods, augmented re-
gression calibration and augmented SIMEX, both reduced the
estimation bias somewhat, but did not fully produce a con-
sistent estimator as reflected from the nontrivial finite sample
biases.

Our second simulation is similar to the first one, except that
we now generated the latent variable from a normal distribu-
tion, and we increased the measurement error in Xi so that the
standard deviation of ei is about 90% of that of Xi . All other
aspects of the data generation procedure remain unchanged. The
corresponding results are given in Figure 2 and Table 2. As it
can be clearly seen, similar conclusions can be drawn as in the
first simulation.

To investigate how the performance of the proposed methods
is affected by the validation sample size, we repeated simu-
lations 1 and 2 but changed the sizes n and m with the vali-
dation sample size m taken as one tenth of the main study size
n = 2000. This ratio of m to n reflects the feature of the motivat-
ing data analyzed in Section 6.2. The simulation results, respec-
tively called simulations 3 and 4, are summarized in Figures 3–4
and Tables 3–4. The performance of the seven methods demon-
strated the same patterns as observed previously. As expected,
the results of inference are less precise mainly due to the smaller
sample size of the validation study.

Based on the theoretical results as well as numerical perfor-
mances, we hence recommend the estimating function method

Table 3. Results of Simulation 3 in Section 6.1 based on 1000
datasets, m = 200, n = 2000, and X is normal

β0 βz βx βw β0 βz βx βw

true 0.1 −1.0 0.7 0.5 0.1 −1.0 0.7 0.5

Maximum pseudolikelihood

Uniform Normal

est 0.101 −1.016 0.705 0.504 0.078 −1.017 0.753 0.505
sd 0.116 0.162 0.036 0.114 0.117 0.162 0.040 0.114
ŝd 0.112 0.160 0.037 0.114 0.112 0.160 0.041 0.114
95%CI 94.6% 95.6% 94.7% 94.2% 93.7% 95.6% 77.9% 94.2%

Estimating function

Uniform Normal

est 0.105 −1.022 0.704 0.504 0.105 −1.022 0.704 0.504
sd 0.118 0.163 0.037 0.115 0.119 0.163 0.038 0.115
ŝd 0.107 0.149 0.036 0.114 0.107 0.149 0.036 0.114
95%CI 92.9% 93.3% 94.6% 94.5% 92.9% 93.2% 93.8% 94.5%

Regression calibration

Uniform Normal

est 0.097 −0.985 0.686 0.488 0.074 −0.983 0.730 0.488
sd 0.113 0.157 0.033 0.110 0.113 0.156 0.036 0.110
ŝd 0.108 0.154 0.034 0.110 0.108 0.153 0.036 0.110
95%CI 94.6% 94.2% 93.3% 94.7% 93.5% 94.2% 87.2% 94.9%

Simulation extrapolation

est 0.101 −1.011 0.701 0.502 0.101 −1.011 0.701 0.502
sd 0.116 0.160 0.036 0.114 0.116 0.160 0.036 0.114

as the estimation and inference tool when both measurement
error and misclassification exist in the covariates. If there is
sufficient validation data to verify that a conjectured model
for the latent variable distribution fits the data, then maxi-
mum pseudolikelihood and regression calibration are also good
alternatives.

In our simulation studies, we used the true parameter val-
ues as starting values for all the methods and reported the
convergence values accepted by the default optimization pro-
cedure as point estimates. In addition, we experimented using
the true parameter values plus a small random perturbation as
starting values, and the final results were similar. This inves-
tigation pertains to the potential issue of local minimizers or
multiple roots, as discussed in Section 7. Empirically, choosing
sensible starting values may be helpful in real data analysis. For
example, an estimate from a quick (and possibly approximate)
method, such as the SIMEX or regression calibration approach,
may serve as a good starting value.

6.2 Data Analysis

In this section, we illustrate our methods by analyzing data
from the Women’s Interview Study of Health (WISH) study
(Brinton et al. 1995; Potischman et al. 1999). This was a case-
control study in which the outcome variable Yi is the indicator
that a women (indexed by i) has breast cancer. Age and calories
coming from protein and fat are potential risk factors for breast
cancer. We let Wi be age. Our continuous variable Xi is the
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Figure 3. Boxplots of the biases of the seven estimators for β0, βz, βx , and βw in Simulation 3. The first three estimators are respectively
based on pseudolikelihood (1), estimating function (2), regression calibration (3), each assuming a uniform distribution model for X; the fourth,
fifth, and sixth estimators are respectively obtained from the pseudolikelihood (4), estimating function (5), regression calibration (6) methods
each assuming a normal distribution model for X; the seventh is a SIMEX estimator (7).

logarithm of the percentage of calories coming from protein,
and the discrete variable is whether the percentage of calories
coming from fat exceeds 30. The surrogates X∗

i and Z∗
i were

measured by a food frequency questionnaire, and have both bias
and substantial measurement error.

The main study consisted of 1904 women for whom
(Yi,Wi,X

∗
i , Z

∗
i ) were measured. There was also a validation

study with measurements (Xi, Zi,X
∗
i , Z

∗
i ,Wi) for 180 subjects.

These data consist of six 24-hr recalls completed one month
apart, along with six days of dietary diaries from two sets of
three-day diaries. We treat the first dietary recall as an unbiased
measure of a person’s true intake. As Nusser et al. (1996, p.
1442) pointed out, “it is well established that the characteristics
of responses in a repeated survey are a function of the time in
sample at which a responded is observed.” In response to this,
they centered and scaled their data so that each day had the
same mean and standard deviation as the first dietary recall,
although unlike us, they did this in the transformed scale, and
then back-transformed. The resulting 12 days of measurements

were then averaged to get our definition of the true percentage
of calories coming from protein and fat, and thus Xi and Zi . For
numerical stability, by subtraction and division we standardized
each component of Wi , Xi , and X∗

i so that they had mean zero
and variance one in the validation study. Of course, the same
subtraction and division was then used in the main study. Such
standardization has absolutely no impact on issues of statistical
significance.

We considered the logistic regression model

logit{pr(Yi = 1 | Xi, Zi,Wi)} = β0 + βzZi + βxXi + βwWi.

In our illustration, for the misclassification and measurement
error processes, we assumed that pr(Z∗

i = z∗
i |Xi, Zi,Wi) =

pr(Z∗
i = z∗

i |Zi) and f (x∗
i |xi, zi, wi) = f (x∗

i |xi). The first
assumption was reasonable based on a logistic regression of
Z∗

i on Zi,Xi,Wi , where the coefficients of Xi,Wi were both
nonsignificant based on the validation data.

Similarly, the second assumption was also reasonable
since a linear regression of X∗

i on Xi, Zi,Wi yielded
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Figure 4. Boxplots of the biases of the seven estimators for β0, βz, βx , and βw in Simulation 4. The first three estimators are respectively
based on pseudolikelihood (1), estimating function (2), regression calibration (3), each assuming a uniform distribution model for X; the fourth,
fifth, and sixth estimators are respectively obtained from the pseudolikelihood (4), estimating function (5), regression calibration (6) methods
each assuming a normal distribution model for X; the seventh estimator is a SIMEX estimator (7).

nonsignificant coefficients for Zi and Wi . We denoted the mis-
classification probabilities pi = pr(Z∗

i = 0|Zi = 1) and qi =
pr(Z∗

i = 1|Zi = 0), see (2). In the validation data, we es-
timated that pr(Zi = 1) ≈ 0.80, pr(Z∗

i = 1) ≈ 0.83. In addi-
tion, we estimated that pr(Zi = 1|Z∗

i = 1) ≈ 0.85, pr(Zi =
0|Z∗

i = 0) ≈ 0.48, pr(Z∗
i = 1|Zi = 1) ≈ 0.89 and pr(Z∗

i =
0|Zi = 0) ≈ 0.41, all reflecting considerable misclassification.
In terms of the measurement error process, we assumed a
linear additive error model X∗

i = κ1 + κ2Xi + ei , where we
estimated κ̂1 = 0.00 and κ̂2 = 0.44 based on the validation
data. We assumed ei to be normal with mean zero, vari-
ance σ 2

e , and independent of Xi . From the validation data, we
estimated (κ1, κ2, σe) = (0.00, 0.44, 0.90), reflecting consider-
able bias and measurement error in the FFQ for protein. The
Kolmogorov–Smirnov test for normality based on this assump-
tion yielded a p-value 0.976, which supports the normal error
assumption. For the pseudolikelihood method, we further as-
sumed that Xi followed a standard normal distribution; this
assumption was also supported by the Kolmogorov–Smirnov
test with a p-value 0.968. To assess the impact of possible

misspecification of this distribution, we also considered a case
that the Xi’s were assumed to follow a uniform distribution,
even though this distributional assumption was not supported
by the Kolmogorov–Smirnov test (the p-value is less than
0.0001).

We compared five methods. The two “naive” methods ignore
the existence of measurement error and treat X∗

i as the same
as Xi . One of the two naive methods takes into account the
misclassification of Z∗

i , while the other even ignores the dif-
ference between Z∗

i and Zi . Both naive estimators are carried
out by performing pseudolikelihood estimation. To correct for
both measurement error and misclassification effects, we ap-
ply our methods: the pseudolikelihood and estimating equation
methods described in Section 3, and the augmented SIMEX
and augmented RC methods discussed in Section 5. The anal-
ysis results are reported in Table 5 and are also summarized as
follows.

• There were very strong corrections for measurement error.
If we considered the analysis that ignored measurement
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Table 4. Results of Simulation 4 in Section 6.1 based on 1000 datasets, m = 200, n = 2000, and X is
uniform

β0 βz βx βw β0 βz βx βw

True 0.1 −1.0 0.7 0.5 0.1 −1.0 0.7 0.5

Maximum pseudolikelihood

Uniform Normal

est 0.163 −1.003 0.570 0.504 0.095 −1.008 0.708 0.507
sd 0.124 0.207 0.049 0.102 0.125 0.208 0.065 0.103
ŝd 0.124 0.204 0.047 0.103 0.125 0.206 0.062 0.103
95%CI 0.944% 0.950% 0.228% 0.957% 0.946% 0.951% 0.947% 0.955%

Estimating function

Uniform Normal

est 0.105 −1.021 0.704 0.507 0.104 −1.021 0.704 0.507
sd 0.140 0.218 0.065 0.108 0.140 0.219 0.069 0.108
ŝd 0.115 0.180 0.061 0.108 0.115 0.180 0.061 0.108
95%CI 0.905% 0.916% 0.937% 0.955% 0.905% 0.916% 0.924% 0.955%

Regression calibration

Uniform Normal

est 0.158 −0.979 0.557 0.492 0.092 −0.979 0.688 0.492
sd 0.121 0.201 0.046 0.100 0.122 0.200 0.060 0.100
ŝd 0.122 0.199 0.044 0.100 0.121 0.198 0.055 0.100
95%CI 0.946% 0.936% 0.122% 0.958% 0.944% 0.935% 0.908% 0.958%

Simulation extrapolation

est 0.117 −0.998 0.656 0.502 0.117 −0.998 0.656 0.502
sd 0.123 0.205 0.057 0.102 0.123 0.205 0.057 0.102

error entirely, we found (β̂z, β̂x) = (−0.20,−0.11). How-
ever, the estimating function results under either a normal
or a uniform distribution for X were about (−0.57, −0.58).

• The effect on the pseudolikelihood estimator of differently
specified distributions of (Xi, Zi) given Wi was striking. It
is seen that assuming normality yielded β̂x = −0.59 with
standard error 0.329, while assuming a uniform distribution
yields β̂x = −0.24 with standard error 0.127. Although
it was not clear from what exact conditional distribution
(Xi, Zi) given Wi the data come, the Kolmogorov–Smirnov
test provided support for the normal distribution (with p-
value 0.9679) but not a uniform distribution (with p-value
smaller than 0.0001). Figure 5 displays the corresponding
QQ plots.

• The estimating function approach yielded almost identical
estimates for βx under either assumed normality or uni-
formity for Xi . However, incorrectly assuming uniformity
increased the standard error estimate for βx from 0.40 to
0.44.

Finally, we point out that the analyses we conducted here may
appear not to accommodate the case-control study design. To be
specific, the data we analyze were collected using a retrospec-
tive sampling strategy for case-control studies, but the model
we use to fit the data was prospective. This discrepancy would,
in general, make the analysis results invalid. However, under
the logistic regression model, it is well known that except for

the intercept in the model, the case-control sampling design can
be ignored. Indeed, fitting the data prospectively is equivalent
to fitting the correct logistic model retrospectively, but with a
different intercept. This equivalence was established by Pren-
tice and Pyke (1979) for the case without covariate error, and
discussed by Carroll, Gail, and Lubin (1993) for settings in the
presence of error in covariates.

7. DISCUSSION

In regression analysis, we often encounter covariates that
are subject to both measurement error and misclassification. It
is necessary to address biases induced by mismeasurement to
carry out valid inferences. In this article, we developed a num-
ber of functional and structural methods to handle data with a
mix of measurement error and misclassification. Our methods
can be applied to meet different objectives. The pseudolikeli-
hood method enjoys the efficiency property while the estimat-
ing function approach is attractive because of its robustness to
model misspecification. The augmented SIMEX and augmented
regression calibration methods are easy to implement, although
they just partially correct for measurement error effects.

We note that like most estimation methods, iterative numeri-
cal algorithms, such as the Newton–Raphson or Fisher scoring
schemes, are often needed to obtain estimators when imple-
menting the proposed methods. In general, local maximizers or
multiple roots may arise when implementing likelihood-based
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Table 5. Analysis of the WISH Study

βz βx βw βz βx βw

Maximum pseudolikelihood

Normal Uniform

est −0.586 −0.589 0.251 −0.575 −0.236 0.244
ŝd 0.476 0.329 0.077 0.458 0.127 0.074

Estimating function

Normal Uniform

est −0.571 −0.576 0.245 −0.572 −0.568 0.240
ŝd 0.218 0.399 0.076 0.254 0.440 0.077

Regression calibration

Normal Uniform

est −0.556 −0.564 0.239 −0.560 −0.231 0.239
ŝd 0.442 0.279 0.072 0.443 0.117 0.072

Naive (treat x∗ as x) naive (treat x∗, z∗ as x, z)
est −0.555 −0.105 0.239 −0.195 −0.105 0.237
ŝd 0.442 0.052 0.072 0.148 0.051 0.072

Simulation extrapolation

est −0.633 −0.184 0.240 −0.633 −0.184 0.240

NOTE: Estimates (est) and estimated standard deviations (ŝd) are reported for pseudo-
likelihood methods, estimating function methods, regression calibration methods, based
on uniform (uniform) and normal (normal) latent variable distribution models. Naive and
SIMEX results are also included. Here (βz, βx , βw) are the coefficients for Z, X, and W,
respectively.

methods or estimating equations approaches. While evaluation
of the likelihood function at local maximizers allows us to iden-
tify the global maximizer, choosing a suitable estimator from
multiple roots of estimating equations may not be straightfor-
ward. When multiple roots occur with using the proposed es-
timating equations, one may follow the criteria by Heyde and
Morton (1998) to discriminate the consistent estimator from
multiple roots of estimating equations. More discussion on deal-

ing with multiple roots of estimating equations can be found in
Hanfelt and Liang (1995) and Heyde (1997, sec. 13.2 and 13.3).

In this article, we consider the main study/external validation
study design. We can readily modify the proposed methods to
accommodate other settings as well, such as a validation sample
that is either internal or external, as discussed by Guo and Little
(2011).

In contrast to our methods, Wang et al. (2008) explored the
use of expected estimating equations to handle data with mea-
surement error and misclassification. Instead of assuming the
availability of a validation sample, Wang et al. (2008) investi-
gated the situation with repeated surrogate measurements taken
for associated response or covariate variables. The methods de-
veloped by Wang et al. (2008) emphasize the evaluation of
conditional expectations of relevant quantities, and this requires
specification of a distributional assumption for the true covari-
ates, but our methods provide tools which apply to both settings
where distributions of the true covariates are known as well
as situations where distributions of the true covariates are left
unspecified.

Measurement error or misclassification is ubiquitous in prac-
tice, and most available work deals with one of the two fea-
tures separately but not both simultaneously. In this article,
we directed our attention to the common problem that mea-
surement error and misclassification exist concurrently in the
data analysis. We developed a rich class of methods to han-
dle data with both covariate measurement error and misclas-
sification under general model frameworks. Our investigation
covers both functional and structural modeling strategies for
measurement error and misclassification processes. Our meth-
ods can be applied to different situations to meet various
objectives.

APPENDIX

A.1 Efficiency Comparison of the Two Likelihood Methods

Note that the observed data from the validation and main stud-
ies are {(Xi , Zi, X∗

i , Z
∗
i , Wi) : i ∈ V} and {(Yi, X∗

i , Z
∗
i , Wi) : i ∈ M},
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Figure 5. QQ plot: The left one is against normal quantiles, and the right one is against uniform quantiles.
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respectively. We compute the likelihood of the observed data given the
Wi as follows:

Ljoint(β, ϑ) =
∏
i∈V

f (xi , zi , x∗
i , z

∗
i | wi ; ϑ)

∏
j∈M

f (yj , x∗
j , z

∗
j | wj ; β, ϑ).

(A.1)

On the other hand, Spiegelman, Rosner, and Logan (2000) computed
the likelihood function for the data of the validation and main studies by
conditioning on (X∗

i , Z
∗
i , Wi). Specifically, the likelihood of (Xi , Zi)

conditional on (X∗
i , Z

∗
i , Wi) is

f (xi , zi | x∗
i , z

∗
i , wi ; ϑ)

= f (x∗
i , z

∗
i , xi , zi | wi ; ϑ)∫ ∫

f (x∗
i , z

∗
i | s, t, wi ; α, γ )f (s, t | wi ; δ)dη(s)dη(t)

,

and the likelihood of Yi given (X∗
i , Z

∗
i , Wi) is

f (yi | x∗
i , z

∗
i , wi ; β,ϑ)

= f (yi, x∗
i , z

∗
i | wi ; β, ϑ)∫ ∫

f (x∗
i , z

∗
i | s, t, wi ; α, γ )f (s, t | wi ; δ)dη(s)dη(t)

.

Thus, the observed data likelihood given the (X∗
i , Z

∗
i , Wi) is

Lcond(θ) =
∏
i∈V

f (xi , zi | x∗
i , z

∗
i , wi ; ϑ)

∏
j∈M

f (yj | x∗
j , z

∗
j , wj ; β, ϑ)

= Ljoint(β, ϑ)/M(ϑ), (A.2)

where

M(ϑ)

=
∏
i∈V

∫ ∫
f (x∗

i , z
∗
i | s, t, wi ; α, γ )f (s, t | wi ; δ)dη(s)dη(t)

×
∏
j∈M

∫ ∫
f (x∗

j , z
∗
j | s, t, wj ; α, γ )f (s, t | wj ; δ)dη(s)dη(t),

which is the likelihood of the (X∗
i , Z

∗
i ) given the Wi for all the data of

the validation and main studies.
Let θ̂ joint = (β̂

T
joint, ϑ̂

T
joint)

T and θ̂ cond = (β̂
T
cond, ϑ̂

T
cond)T be the estima-

tors of θ that are obtained by maximizing (A.1) and (A.2), respec-
tively. By likelihood theory, as n → ∞,

√
n(̂θ cond − θ ) has a nor-

mal distribution with mean zero and covariance matrix J−1
cond, where

Jcond = limn→∞ n−1E{−∂2log(Lcond)/∂θ∂θT}. After some algebra, the
inverse of the asymptotic covariance matrix of

√
n(β̂cond − β) is[

asyvar
{√

n
(
β̂cond − β

)}]−1
= J cond

ββ − J cond
βϑ

(
J cond

ϑϑ

)−1(
J cond

βϑ

)T
,

(A.3)

where

J cond
ββ = lim

n→∞
n−1E

{
− ∂2log(Lcond)/∂β∂βT

}
,

J cond
βϑ = lim

n→∞
n−1E

{
− ∂2log(Lcond)/∂β∂ϑT

}
,

and

J cond
ϑϑ = lim

n→∞
n−1E

{
− ∂2log(Lcond)/∂ϑ∂ϑT

}
.

By analogy and the relationship (A.2), the inverse of the asymptotic
covariance matrix of

√
n(β̂ joint − β) is given by[

asyvar
(√

n
(
β̂ joint − β

)}]−1

= J cond
ββ − J cond

βϑ

(
J cond

ϑϑ + Jϑϑ

)−1(
J cond

βϑ

)T
, (A.4)

where Jϑϑ = limn→∞ n−1E{−∂2logM(ϑ)/∂ϑ∂ϑT}. Comparing (A.3)
and (A.4) implies that β̂joint is more efficient than β̂cond.

A.2 Sketched Proof of Theorem 2

Assume we have m observations in the validation dataset and n
observations in the main dataset. Applying the Taylor series expansion
to (7), we obtain

0 = m−1/2
∑
i∈V

Si,cov(ϑ̂) = m−1/2
∑
i∈V

Si,cov(ϑ)

+E

{
∂Si,cov(ϑ)

∂ϑT

}
m1/2(ϑ̂ − ϑ) + op(1).

or

m1/2(ϑ̂ − ϑ) = −
[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ) + op(1).

We also have

0 = n−1/2
∑
i∈M

Si(β̂, ϑ̂)

= n−1/2
∑
i∈M

Si(β,ϑ) + E

{
∂Si(β, ϑ)

∂ϑT

}
n1/2(ϑ̂ − ϑ)

+E

{
∂Si(β, ϑ)

∂βT

}
n1/2(β̂ − β) + op(1)

= n−1/2
∑
i∈M

Si(β,ϑ) + E

{
∂Si(β, ϑ)

∂βT

}
n1/2(β̂ − β)

−E

{
∂Si(β, ϑ)

∂ϑT

}√
n/m

[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2

×
∑
i∈V

Si,cov(ϑ) + op(1 +
√

n/m).

This yields the desired results using the central limit theorem.

A.3 Sketched Proof of Theorem 3

Using the result in White (1982) and the proof of Theorem 2, we
have

m1/2(ϑ̂ − ϑ)

= −
[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ) + op(1),

where ϑ is the true parameter value if the model is correct and is the
parameter that minimizes the Kullback–Leibler distance between the
proposed model family and the true distribution that generated the data
if the model is incorrect. Since the dimension of (γ T, α)T as p, we have

m1/2

{(
γ̂

α̂

)
−
(

γ

α

)}
= − (Ipxp, 0pxq

) [
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

× m−1/2
∑
i∈V

Si,cov(ϑ) + op(1).

Using the estimating equation, we have

0 = n−1/2
∑
i∈M

U∗
i (β̂, ϑ̂)

= n−1/2
∑
i∈M

U∗
i (β, ϑ) + E

{
∂U∗

i (β, ϑ)

∂βT

}
n1/2(β̂ − β)

+E

{
∂U∗

i (β, ϑ)

∂ϑT

}
n1/2(ϑ̂ − ϑ) + op(1)

= n−1/2
∑
i∈M

U∗
i (β, ϑ) + E

{
∂U∗

i (β, ϑ)

∂βT

}
n1/2(β̂ − β)

+ E

{
∂U∗

i (β, γ , α, δ)

∂δT

}
n1/2(̂δ − δ)

+E

{
∂U∗

i (β, γ , α, δ)

∂(γ T, αT)

}
n1/2

{(
γ̂

α̂

)
−
(

γ

α

)}
+ op(1).
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The construction of U∗
i ensures

E

{
∂U∗

i (β, γ ,α, δ)

∂δT

}
= 0

because U∗ is in the space orthogonal to the nuisance tangent space
spanned by the score functions with respect to the parameters involved
in the model fX,Z|W(x, z | w). Thus, we have

0 = n−1/2
∑
i∈M

U∗
i (β, ϑ) + E

{
∂U∗

i (β, ϑ)

∂βT

}
n1/2(β̂ − β)

+E

{
∂U∗

i (β, γ , α, δ)

∂(γ T,αT)

}
n1/2

{(
γ̂

α̂

)
−
(

γ

α

)}
+ op(1)

= n−1/2
∑
i∈M

U∗
i (β, ϑ) + E

{
∂U∗

i (β, ϑ)

∂βT

}
n1/2(β̂ − β)

−(n/m)1/2E

{
∂U∗

i (β, γ , α, δ)

∂(γ T, αT)

} (
Ipxp, 0pxq

) [
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

× m−1/2
∑
i∈V

Si,cov(ϑ) + op(1 +
√

n/m),

completing the argument.

A.4 Asymptotic Theory for Augmented SIMEX

Let vec(�e) be the vector of unique elements of a matrix �e and
denote the symmetric square root of �e as gssr{vec(�e)}.

DefineXi = (1, XT
i , WT

i )T, and recall that α1 = (α01, α
T
x1, α

T
w1)T and

α2 = (α00,α
T
x0, α

T
w0)T. Define H (1)(x) = H (x){1 − H (x)}, the deriva-

tive of H (x) = exp(x)/{1 + exp(x)}, and Ck = E{XiX T
i H (1)(X T

i αk)}
for k = 1, 2. Then it is readily seen that for k = 1, 2,

n1/2(̂α1 − α1)

= (n/m)1/2C−1
1 m−1/2

∑
i∈V

{
Z∗

i − 1 − H (X T
i α1)

}+ op(1); (A.5)

n1/2(̂α2 − α2)

= (n/m)1/2C−1
2 m−1/2

∑
i∈V

{
Z∗

i − H (X T
i α2)

}+ op(1). (A.6)

For the error model (3), we use linear regression in the validation data
to estimate {�x, γ z, �w}, and let {�̂x, γ̂ z, �̂w} denote the resulting es-
timate. Remembering that ei = X∗

i − �xXi − γ zZi − �wWi , we write
êi = X∗

i − �̂xXi − γ̂ zZi − �̂wWi . Then we estimate �e by

�̂e = (m − pc)
−1
∑
i∈V

êîeT
i ,

where pc is the dimension of (Xi , Zi, Wi). Because the residuals are
uncorrelated with the predictors, it is obvious that

n1/2{vec(�̂e) − vec(�e)}
= (n/m)1/2m−1/2

∑
i∈V

{vec(eieT
i ) − vec(�e)} + op(1). (A.7)

The limit (A.7) does not involve the estimated regression parameters
in model (3).

It is convenient to rewrite the Augmented SIMEX procedure as
follows. Generate eib∗ ∼ Normal(0, I). Then β̂b(λ) is the solution to

0 = n−1/2∑n

i=1,i∈MS∗[β̂b(λ), Yi, X∗
i

+
√

λgssr{vec(�̂e)}eib∗, Z∗
i , Wi ; α̂1, α̂2].

It is clear that β̂b(λ) = βb(λ) + op(1), where βb(λ) is the solution to

0 = E
(

S∗
[
βb(λ), Yi, X∗

i +
√

λgssr{vec(�e)}eib∗, Z∗
i , Wi ; α1,α2

])
.

Define

Uib(λ) = S∗[βb(λ), Yi, X∗
i +

√
λgssr{vec(�e)}eib∗, Z∗

i , Wi ; α1, α2],

and also define

Fβ (λ) = −E
(
∂Uib(λ)/∂βT) ;

F�(λ) = E
(
∂Uib(λ)/∂vecT(�e)

)
;

Fα,1(λ) = E
(
∂Uib(λ)/∂αT

1

)
;

Fα,2(λ) = E
(
∂Uib(λ)/∂αT

2

)
.

Then, by standard estimating equation calculations, we see that

n1/2Fβ (λ)
{
β̂b(λ) − βb(λ)

}
= n−1/2∑

i∈MUib(λ) + F�(λ)n1/2{vec(�̂e) − vec(�e)}
+Fα,1(λ)n1/2(̂α1 − α1) + Fα,2(λ)n1/2(̂α2 − α2) + op(1).

Using (A.5)–(A.7), define

Vib(λ) = F�(λ){vec(eieT
i ) − vec(�e)}

+Fα,1(λ)C−1
1

{
Z∗

i − 1 − H (X T
i α1)

}
+Fα,2(λ)C−1

2

{
Z∗

i − H (X T
i α2)

}
.

Then we have that

n1/2{β̂b(λ) − βb(λ)} = F−1
β (λ)n−1/2∑

i∈MUib(λ)

+(n/m)1/2F−1
β (λ)m−1/2∑

i∈VVib(λ)

+op(1). (A.8)

If we define Ũi(λ) = F−1
β (λ)B−1

∑B

b=1 Uib(λ), Ṽi(λ) = F−1
β (λ)

B−1
∑B

b=1 Vib(λ), and β(λ) = B−1
∑B

b=1 βb(λ), we have shown that

n1/2{β̂(λ) − β(λ)}
= n−1/2∑

i∈MŨi(λ) + (n/m)1/2m−1/2∑
i∈V Ṽi(λ)

+op(1). (A.9)

Suppose there is a known function gasimex(·), which is explicit
in the case of polynomial extrapolation, such that β̂asimex =
gasimex{β̂(λ1), . . . , β̂(λM )}. Let

gj,asimex = ∂gasimex{β(λ1), . . . , β(λM )}/∂βT(λj ).

Then, by the delta-method,

n1/2(β̂asimex − βasimex) = ∑M

j=1 gj,asimexn
1/2{β̂(λj ) − β(λj )} + op(1),

where βasimex = {βT(λ1), . . . ,βT(λM )}T.
Define

Gi = ∑M

j=1 gj,asimexŨi(λj ); Hi = ∑M

j=1 gj,asimexṼi(λj ).

Using (A.9), this means that

n1/2(β̂asimex − βasimex)

= n−1/2∑
i∈MGi + (n/m)1/2m−1/2∑

i∈VHi + op(1). (A.10)

By the Central Limit Theorem, (A.10) converges in distribution to
Normal(0, �asimex) as n → ∞, where �asimex = cov(Gi) + ρcov(Hi),
and ρ = limn→∞(n/m). The limiting covariance matrix �asimex can be
estimated by replacing all population terms by their sample versions to
form Ĝi and Ĥi .

[Received January 2013. Revised April 2014.]
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