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ABSTRACT

Prediction precision is arguably the most relevant criterion of a model in practice and is often
a sought after property. A common difficulty with covariates measured with errors is the impossi-
bility of performing prediction evaluation on the data even if a model is completely given without
any unknown parameters. We bypass this inherent difficulty by using special properties on mo-
ment relations in linear regression models with measurement errors. The end product is a model
selection procedure that achieves the same optimality properties that are achieved in classical lin-
ear regression models without covariate measurement error. Asymptotically, the procedure selects
the model with the minimum prediction error in general, and selects the smallest correct model if
the regression relation is indeed linear. Our model selection procedure is useful in prediction when
future covariates without measurement error become available, e.g., due to improved technology
or better management and design of data collection procedures.

Some Key Words: Errors in covariates, Loss efficiency, Measurement error, Model selection, Se-
lection consistency.
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1 Introduction

Model selection is a much studied problem in the regression context. Familiar methods such as

AIC and BIC have long existed and are well studied; see for example Shao (1997). However,

when covariates are subject to measurement error, relatively little work has been conducted to

study how to perform model selection. In fact, the only literature we are aware of are in terms of

variable selection in partially linear models (Liang and Li, 2009) and in generalized partially linear

measurement error models (Ma and Li, 2010). A tuning parameter is required in these methods

and its effect is well studied in Zhang et al. (2010). Model selection in these papers is performed

simultaneously with parameter estimation, and is achieved through shrinking small coefficients

towards zero. As such, a critical requirement of these methods is sparsity, which implies that the

true model is indeed included in the set of candidate models under consideration, and the true

model is sufficiently simple. Here, we make an important distinction between the true model and

a correct model. The true model refers to the smallest correct model, i.e. the correct model with

the smallest dimension among all possible models under consideration. Of course, the true model

may not be included in the set of candidate models for selection. As a result, it is unclear what

these methods will yield if all the models under consideration are misspecified.

In this work, we systematically study the issue of model selection in the context of linear mea-

surement error models. We evaluate the goodness-of-fit of a candidate model using its prediction

error, which is arguably the most relevant criterion in practice (Efron, 2004). Here, by prediction,

we imply predicting the response based on the chosen linear model and the error free covariates.

A common perception in the measurement error model framework is that for prediction purposes,

it is not necessary to account for measurement error. But this is only true in the situation that the

measurement error structures used in the data analysis and used in prediction are exactly the same.

In this case, a sensible thing to do in the prediction context is to simply use the observed data

(Carroll et al., 2006). However, as soon as the measurement error structure changes, for example

when the measurement error variance decreases in the data used for prediction, this shortcut no
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longer applies: an example in nonparametric regression is Carroll et al. (2009). In our problem

studied in Section 3.4, in a small data set, the true covariates are available. Thus, studying the

true underneath modeling and estimation between the response variable and the true covariates of

original interest is highly relevant.

To this end, although prediction error is usually unobtainable in measurement error models,

we are able to bypass this difficulty and estimate the cumulative effect of the prediction errors

using linear measurement error model properties. Model complexity is evaluated via a degrees of

freedom calculation, which is of course nonstandard because of measurement errors. Finally, we

study the effect of the various sizes of the model complexity penalties and derive the properties

of the model selection procedure, both when the candidate model set contains some correctly

specified models and when it does not contain any correctly specified model.

2 Main Methodology and Theoretical Results

2.1 Models and notation

We now formally describe the problem we work on and the related notation. Consider a data

generation process

Yi = µi + εi (1)

for i = 1, . . . , n. Here Yi is a univariate response variable, µi is the mean of Yi, and εi is an

error term with mean zero and variance σ2. Write Y = (Y1, . . . , Yn)T, µ = (µ1, . . . , µn)T, and

ε = (ε1, . . . , εn)T. Let Xi be a p-dimensional covariate vector used to predict µi. However, some

or all components of Xi are measured with error. Thus, instead of observing Xi, we observe a

p-dimensional random variable Wi, where Wi = Xi + Ui, and Ui is a mean zero normal random

vector with variance-covariance matrix Σ. We allow some components of Ui to be identically

zero, therefore these components of Xi are precisely measured. This also allows us to include

the constant 1 in Xi. Without loss of generality, we assume that the first p∗ components of Xi
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are subject to errors, while the remaining p − p∗ components are error free. Thus, the lower

p− p∗ subvector of Ui is zero, and Σ is zero except for its upper-left p∗ × p∗ submatrix. We also

assume that the measurement error vector Ui is independent of εi, and (Ui, εi) are independent

and identically distributed for i = 1, . . . , n, and independent of Xi. Since Xi is independent of

(Ui, εi) for i = 1, . . . , n, we can treat Xi’s as nonrandom covariate vectors.

Assume that we have Sn candidate models for µi. In the sth candidate model, µi is modeled

by µi = XT
(s),iβ(s), where X(s),i is a p(s)-dimensional sub-vector of Xi, and β(s) is its coefficient

vector. Instead of observing X(s),i, we observe a random variable W(s),i, where W(s),i = X(s),i +

U(s),i, and U(s),i is a sub-vector of Ui with mean zero and variance-covariance matrix Σ(s). Let

U(s) = (U(s),1, . . . ,U(s),n)T, X(s) = (X(s),1, . . . ,X(s),n)T and W(s) = (W(s),1, . . . ,W(s),n)T.

2.2 Parameter estimation and degrees of freedom

In the sth candidate model, following Carroll et al. (2006), β(s) can be estimated from

β̂(s) = (WT
(s)W(s) − nΣ(s))

−1WT
(s)Y.

Subsequently, the corresponding estimator of the regression mean function µ is

µ̂(s) = (µ̂(s),1, . . . , µ̂(s),n)T = X(s)β̂(s).

The number of degrees of freedom is an important element in statistical analysis as a measure of

the complexity of different models. The research literature on the construction of the degrees of

freedom is large, see Hastie and Tibshirani (1990), Efron (2004), Zou et al. (2007), Mukherjee

et al. (2015) and the references therein, in which definitions and unbiased estimators of degrees

of freedom under different settings are one of the primary theoretical results. Following Efron

(2004), we define the degrees of freedom of the sth model as df(s) = σ−2cov(µ̂T
(s),Y

T). It is easy

to check that without measurement error, df(s) = p(s). When some covariates are contaminated

with measurement errors, we suggest to estimate df(s) using

d̂f (s) = p(s) +
t(s),2 + (t(s),1 − p(s) − 1)t(s),1

n
, (2)
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where t(s),k = tr(Hk
(s)) for any positive integer k, H(s) = W(s)G(s), G(s) = Λ(s)W

T
(s), and

Λ(s) = (WT
(s)W(s) − nΣ(s))

−1.

Theorem 1. For any s ∈ {1, . . . , Sn}, E(d̂f (s)) = df(s).

Theorem 1 indicates that d̂f (s) is an unbiased estimator of df(s). Note that d̂f (s) contains the ma-

trix Σ(s), which will be replaced by its estimate Σ̂(s) if needed. Theorem 1 is proved in Appendix

A.1.

Remark 1. The unbiasedness properties in this subsection is mainly on the basis on Stein Lemma

(i.e., our Lemma 1). Although, this technique has also been used in other literature such as Zou

et al. (2007) and Liang et al. (2008), our derivation is non-trivial because in our paper the lemma

takes effect because of the normal measurement errors while in other literature it takes effect

because of the normal model error The estimated degree of freedom will form an important part of

the model selection criteria, as is demonstrated below.

2.3 Model selection criteria

To study model selection and establish selection criteria, we first define L(s) = ‖µ̂(s) − µ‖2 as the

squared loss of µ̂(s), and let the risk beR(s) = E(L(s)). Our goal is to select a “best” model, in that

it remains as parsimonious as possible, while minimizing the loss. To facilitate the minimization

procedure, we further characterize R(s). We first note that the risk can be decomposed as

R(s) = E(L(s)) = E‖µ̂(s) − µ‖2 = E‖µ̂(s) −Y + ε‖2

= E‖µ̂(s) −Y‖2 + E‖ε‖2 + 2E{(µ̂(s) −Y)Tε}.

Obviously, E‖ε‖2 = nσ2, while the third component above can be calculated as

2E{(µ̂(s) −Y)Tε} = 2E(µ̂T
(s)ε)− 2E(YTε)

= 2E[{µ̂(s) − E(µ̂(s))}T(Y − µ)] + 2E(µ̂(s))
TE(ε)− 2E(YTε)

= 2cov(µ̂T
(s),Y

T)− 2nσ2.
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This leads to the alternative expression of the risk

R(s) = E‖µ̂(s) −Y‖2 + 2σ2df(s) − nσ2, (3)

Here nσ2 does not change with the model choice, while in Section 2.2, we have shown that d̂f (s)

is an unbiased estimator of df(s). So ‖µ̂(s) −Y‖2 + 2σ2d̂f (s) is an unbiased estimator of R(s) plus

a constant. However, µ̂(s) depends on the unobservable X(s), hence we need to further develop

an unbiased estimator of R(s) which depends on W(s) instead of X(s). To do this, we first define

a(s) = t(s),1 − p(s) and

B(s) = n−2{2na(s) + a2
(s) − a(s) + t(s),2 − t(s),1}YTY

+n−22{n(1− a(s) − t(s),1)− a2
(s) + a(s)(3− t(s),1)− 2t(s),2 + 3t(s),1 − 4}YTH(s)Y

+n−2{n(2t(s),1 − 4) + a2
(s) + a(s)(2t(s),1 − 9)− 7t(s),1 + 3t(s),2 + 28}YTH2

(s)Y

+n−22(n+ 2a(s) + t(s),1 − 16)YTH3
(s)Y + n−212YTH4

(s)Y.

We then have the following result.

Theorem 2. For any s ∈ {1, . . . , Sn},

E‖µ̂(s) −Y‖2 = E{YT(In −H(s))Y +B(s)}, (4)

where In is the n× n identity matrix.

Theorem 2 is proved in the supplementary material. From Theorems 1 and 2, combined with

the results in (3), we know that

YT(In −H(s))Y +B(s) + 2σ2d̂f (s) (5)

is an unbiased estimator of the risk R(s) up to a constant. Let Σ̂ and σ̂2 be the estimators of Σ and

σ2, and let B̃(s), Λ̃(s), G̃(s), H̃(s) and d̃f (s) be the corresponding quantities with Σ substituted by

Σ̂. We then propose to approximate the risk R(s), up to a constant, using

C2(s) = YT(In − H̃(s))Y + B̃(s) + 2σ̂2d̃f (s).

5



Based on the above analysis, we define a general model selection criterion

Cλ(s) = YT(In − H̃(s))Y + B̃(s) + λnσ̂
2d̃f (s),

where λn is a tuning parameter. Our method is motivated by the unbiased estimator in (5) of the

risk, so we term the method the UBER information criterion (UBERIC). We write the correspond-

ing selected model as the ŝth
λ model, where

ŝλ = argmins∈{1,...,Sn}Cλ(s).

In the following, we derive the asymptotic properties of ŝλ.

Remark 2. In the measurement error literature, the estimate Σ̂ can be obtained by two strategies:

one is through using duplicate measurements corresponding to each Xi; the other is through intro-

ducing instrumental variables. For instance, if we have duplicate measurements Wi,j = Xi + Ui,j

for j = 1, . . . , Ji and i = 1, . . . , n, then we can estimate Σ by

Σ̂ =

∑n
i=1

∑Ji
j=1(Wi,j − W̄i)(Wi,j − W̄i)

T∑n
i=1(Ji − 1)

, (6)

where W̄i = J−1
i

∑Ji
j=1 Wi,j . By using the full model, i.e., the model containing all covariates Xi

and following Carroll et al. (2006), we estimate σ2 as σ̂2 = {‖Y−Wβ̂full‖2−nβ̂
T

fullΣ̂β̂full}/(n−

p), where W = (W1, . . . ,Wn)T and β̂full = (WTW − nΣ̂)−1WTY.

2.4 Asymptotic loss efficiency and selection consistency

We name the sth candidate model (s ∈ {1, . . . , Sn}) as a correct model if indeed β(s) satisfies that

µ = X(s)β(s). Let SCn be the set of correct candidate models, SIn be the set of incorrect candidate

models, and P̃(s) = X(s)G̃(s). Write the estimator of µ as µ̃(s) = P̃(s)Y and the estimated squared

estimation loss as L̃(s) = ‖µ̃(s) − µ‖2. Let P̆(s) = X(s)(X
T
(s)X(s))

−1XT
(s), L̆(s) = ‖P̆(s)Y − µ‖2,

and R̆(s) = E(L̆(s)), the squared estimation risk without measurement error.
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We first discuss two conditions, which play important roles in terms of the asymptotic prop-

erties of the UBERIC model selection procedure in Section 2.3. All the limiting properties in the

conditions and throughout the text hold when n→∞.

Condition (C.1). n1/2p2/mins∈SIn R̆(s) = o(1).

Condition (C.2). λnp/mins∈SIn R̆(s) = o(1).

Both Conditions (C.1) and (C.2) require the incorrect models to have sufficiently large risk.

More specifically, Condition (C.1) implies that the minimum squared estimation risk of an incor-

rect candidate model increases faster than the rate n1/2p2. Based on Section S2.2 of Flynn et al.

(2013), we know that typically mins∈SIn R̆(s) has order n, so Condition (C.1) is satisfied when

p = o(n1/4). Similarly, Condition (C.2) requires the risk to increase faster than λnp, which is

typically satisfied as long as λnp = o(n). Compared with the model selection procedures with-

out involving covariate measurement errors studied in (Li, 1987) and (Shao, 1997), where it is

only required that mins∈SIn R̆(s) → ∞, Conditions (C.1) and (C.2) are more specific and slightly

stronger. This is the price we pay for handling the measurement errors. Intuitively, the presence of

measurement errors blurs the assessment of the risk. Hence, only when the risks of the incorrect

models are sufficiently worse than those of the correct ones, we can tell the incorrect models apart

from the correct ones.

In addition to Conditions (C.1) and (C.2), we also need some more technical conditions, which

are all quite mild. Denote by λmax(M) and λmin(M) the maximum and minimum singular values

for a matrix M, respectively.

Condition (C.3). There are constants 0 < c1 ≤ c2 <∞ such that

c1 < n−1λmin(XTX) ≤ n−1λmax(XTX) < c2 and λmax(Σ) < c2.

Condition (C.4). ‖Σ̂−Σ‖ = Op(n
−1/2p) where ‖ · ‖ is the Frobenius norm, and σ̂2 = Op(1).

Condition (C.5). ‖µ‖ = O(n1/2).
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Condition (C.6). p2/n = o(1).

Remark 3. In Condition (C.3), X is assumed to be nonrandom. If it is random, we need the first

set of inequalities to hold in probability, i.e., these inequalities hold with probability approaching

one as n→∞.

Remark 4. The two assumptions in Condition (C.4) are quite mild. The first assumption requires

that the estimator Σ̂ is root-n consistent. If p is fixed, the estimator in (6) satisfies this require-

ment(Carroll et al., 2006). The second assumption requires that σ̂2 is bounded in probability; it

does not even require consistency of σ̂2.

Theorem 3. Assume that Conditions (C.1)-(C.6) hold.

(1) (Asymptotic Loss Efficiency) If SCn is empty, then ŝλ is asymptotically loss efficient, i.e.,

L̃ŝλ

mins∈{1,...,Sn} L̃(s)

→ 1

in probability.

(2) (Selection Consistency) If SCn is not empty and λn/(n1/2p)→∞, then model ŝλ is consistent,

i.e. the probability that ŝλ is correct and has the smallest dimension goes to 1.

Theorem 3 is proved in Appendix A.2.

Remark 5. Theorem 3 establishes two properties of the model selection procedure: when none of

the candidate models is correct, the selection procedure finds a model that minimizes the loss; when

at least one correct model is included in the candidate models, the selection procedure finds the

most concise correct model. For the first property to hold, the requirement of the tuning parameter

λn is simply what is described in Condition (C.2). We can easily see that when λn = 2, i.e. for

AIC, the method is asymptotically loss efficient given the other conditions listed. This finding

agrees with that in the linear regression model case without measurement error. However, for the

second property to hold, we need λn/(n1/2p) → ∞. This obviously eliminates BIC, which sets

λn = log(n). This finding indicates that the common choice of λn = log(n) may not lead to a
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consistent selection criterion for measurement error models and thus new tuning parameters are

needed to achieve selection consistency.

Remark 6. After a model is selected, we can proceed to perform coefficient estimation under the

model. In the case when the candidate models include the true model (the smallest correct model),

the selection consistency property ensures that when the sample size is large, the estimation will

essentially be performed under the true model. If Lindeberg’s condition is satisfied, then the esti-

mator of coefficients has the usual consistency, root-n convergence rate and asymptotically normal

distribution as if the true model is given. This indicates that the model selection procedure does

not incur additional cost for the subsequent estimation procedure, in other words, for large sam-

ples, performing estimation following the model selection procedure is the same as performing

estimation in the given true model. This is usually known as the oracle property.

Remark 7. Because we typically consider the case that the candidate model set contains all the

2p − 1 possible linear models formed by the p available variables, the candidate model set either

contains the true model, or it does not contain any correct model at all. However, if the candidate

model set does not contain all possible linear models, then an interesting situation is when the

true model is not included but some other correct models are included. For example, if the true

model contains only two variables, say X1 and X2, but the candidate set only contains models

with at least three variables, then the true model is not included in the candidate model set but any

model with X1 and X2 in it is a correct model. For this scenario, our results indicate that a correct

model with the smallest dimension will be selected because of the selection consistency property.

However, if there are multiple correct models with the same smallest dimension, our theory only

ensures that one of them will be selected with probability approaching one. It is unclear which one

among these multiple models will be selected. Intuitively, this is because one cannot tell which

one of these correct models, all with the same dimension, is the best. Indeed it is challenging to

define the best model in this situation. Even for linear models without errors in covariates, we are

not aware of any results in this situation.
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Remark 8. In the proof of Theorem 3, it is also shown that d̂f (s) = p(s) + op(1) regardless of

whether Σ(s) is replaced by its estimate Σ̂(s) or not. Assuming the second term of d̂f (s) defined

in (2) is uniformly integrable, then we further have df(s) = E(d̂f (s)) = p(s) + o(1) and thus

d̂f (s) − df(s) = op(1), i.e., d̂f (s) is a consistent estimator df(s).

2.5 Discussion on existence of interactions

A referee asked an interesting question about the applicability of UBERIC when there exists in-

teraction terms in the model, i.e., some of the components in Xi, Ui or Wi are in fact products of

other components. We now discuss the three cases.

In case one, some of the components in Xi are products of other components, for example,

Xi1 = Xi2Xi3. Because we do not put any distributional assumption on Xi, as long as Wi still

satisfies Wi = Xi + Ui, where Ui is normal, UBERIC can be applied without any modification.

In case two, some of the components in Ui are products of other components, for example,

Ui1 = Ui2Ui3. This implies that Ui1, Ui2 and Ui3 cannot be all normal random variables. Unfor-

tunately, the results in Theorems 1 and 2 heavily rely on the normality assumption of the mea-

surement error distribution, hence the unbiasedness results will not be valid anymore. However,

the results in Theorem 3 still hold, and thus UNERIC can still be applied which will still yield

the desired properties. Specifically, there are two different scenarios. The first scenario is when

E(Ui) = 0. In this scenario, we can still compute the error variance matrix Σ and simply ignore

the interaction in UNERIC. If a correct model is included in the candidate model set, UNERIC

will still be consistent in the sense that it will select the correct model with the smallest dimen-

sion. The second scenario is when E(Ui) 6= 0. In this case, we can view Wi = X̃i + Ũi, where

X̃i = Xi + E(Ui) and Ũi = Ui − E(Ui). Using UNERIC as it is in this scenario will yield an

optimal model X̃Tβ, which leads to the optimal model XT
i β + E(Ui)

Tβ in the original setting.

Third, some of the components in Wi are products of other components, for example, Wi1 =

Wi2Wi3. This implies Wi1 = (Xi2 + Ui2)(Xi3 + Ui3) = Xi2Xi3 + Xi2Ui3 + Xi3Ui2 + Ui2Ui3 =

Xi1 + Ui1, where Xi1 = Xi2Xi3 and UI1 = Xi2Ui3 + Xi3Ui2 + Ui2Ui3. This unfortunately leads

10



to the dependence between Ui1 and Xi1, which violates the model assumption, hence none of the

results will not apply although UNERIC can be implemented.

In measurement error models, the procedure and the subsequent statistical properties can be

very different for different error distributions, hence it is not a surprise that UNERIC does not

always have the established properties. Linear models with independent normal error provides a

starting point for the literature in terms of estimation of measurement error models in general, and

it also serves as a starting point for model selection in these models. Much more investigation

remains to be carried out in the general measurement error model context.

3 Numerical experiments

3.1 Overview

We now perform numerical experiments to demonstrate the finite sample performance of UBERIC.

We consider model selection by minimizing Cλ(s) with λn = 2 and λn = log(n)pn1/2. The former

corresponds to the unbiased estimator of R(s) shown in (5), which is a finite sample size property,

so it is expected that it has good performance when the sample size is small. The latter is motivated

by the condition λn/(n1/2p)→∞ in Theorem 3, which is a large sample property, so it is expected

that it has good performance when the sample size is large. For comparison, we include the naive

AIC and BIC methods ignoring the measurement errors. These are labeled as AIC0 and BIC0.

Specifically, AIC0 and BIC0 minimize nlog{n−1‖W(s)(W
T
(s)W(s))

−1WT
(s)Y −Y‖2}+ 2p(s) and

nlog{n−1‖W(s)(W
T
(s)W(s))

−1WT
(s)Y −Y‖2}+ log(n)p(s) respectively.

To handle covariate measurement errors in model selection, Liang and Li (2009) and Wang

et al. (2012) proposed AIC1 and BIC1 through minimizing ‖W(s)β̂(s) −Y‖2 − nβ̂
T

(s)Σ̂(s)β̂(s) +

2σ̂2p(s) and ‖W(s)β̂(s)−Y‖2− nβ̂
T

(s)Σ̂(s)β̂(s) + log(n)σ̂2p(s) respectively. We include both AIC1

and BIC1 in our numerical experiment. We also include the penalized least squares variable selec-

tion procedure proposed by Liang and Li (2009) for comparison, where the SCAD penalty (Fan
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and Li, 2001) is implemented. The regularization parameter in the penalized function is chosen

respectively by generalized cross-validation (GCV) and BIC of Wang et al. (2007); the latter is

supported by Liang and Li (2009).

We consider two simulation examples. In the first example, the candidate model set does not

contain any correct model, thus we evaluate the performance of the competing methods through

comparing their squared losses L̃ŝλ = ‖µ̃ŝλ
− µ‖2. In the second example, the candidate model

set includes some correct models. Thus, we evaluate the performance of the competing methods

through inspecting the frequency of selecting the smallest correct model.

3.2 Example I

We generated data from model (1) with µi = XT
i β + νi and normal additive errors. Here νi ∼

Normal(0.2, 0.52), and is independent of Xi. We set n = 25, 50, 100 and 200, p = [6n1/5/5] + 2,

and generated Xi = (Xi,1, . . . , Xi,p)
T from a normal distribution with mean 0 and covariance

σ2
x0.5

|j1−j2| between Xi,j1 and Xi,j2 , j1, j2 = 1, . . . , p. We set σ = 0.5 and 1, Σ = ρIp, ρ = 0.5,

and β = (2, 1.5, 0, . . . , 0)T to generate Ui,Wi and Yi. The variance σ2
x is chosen such that the

reliability ratio, defined by τ = σ2
x/(σ

2
x + ρ) (Carroll et al., 2006) varies in (0.85, 0.95). The

candidate model set consists of all the linear models that are submodels of XT
i β, thus there are a

total of Sn = 2p − 1 candidate models. However, because νi is excluded from all the candidate

models, none of these models is correct. We conducted 500 replicates, and provide the means of

L̃ŝλ/mins∈{1,...,Sn} L̃(s) in Table 1.

We see that in general, UBERIC outperforms the naive methods and the existing methods, in

that the best relative loss is typically achieved by a procedure based on it. In addition, when the

sample size is small, the choice λ = 2 is often the winner, while as the sample size increases, the

choice of λ = log(n)pn1/2 catches up and leads the performance among all methods. In addition,

when sample sizes increase, the best relative loss approaches 1.

To further check the performance of d̂f (s) in estimating df (s), we present the box plot of the

difference d̂f (s) − df (s) in Figure 1, for s = 2p−1. Here, d̂f (s) is computed using the average of
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tr(X(s)G(s)) from 500 replications. It is seen that all the differences are reasonably close to zero,

and when n or τ increases, the differences become closer to zero. This performance indicates that

d̂f (s) estimates df (s) quite well. Box plots with other s values show similar patterns.

3.3 Example II

We repeat the same experiment as in Example I, except that νi is now excluded from µi when

generating the data. Thus, among the 2p − 1 candidate models, the 2p−2 submodels that contain

the first two covariates are correct models, and the submodel with only the first two variables is the

smallest correct model. Table 2 shows the frequency in selecting the smallest correct model from

500 replicates. It is clear that UBERIC with λ = log(n)pn1/2 has the best performance, and the

frequency of selecting the smallest correct model is very close to 1 when sample sizes becomes

large (n = 100, 200). Figure 2 shows the box plot of difference d̂f (s)−df (s) with s = 2p−1. Similar

to the finding in Example I, d̂f (s) also estimates df (s) well.

In the above two examples, the optimization involved in UBERIC is performed in a brute-force

way, which is feasible for small p. To facilitate the computation when p is large, we can combine

UBERIC and the penalized least squares (PLS) variable selection procedure proposed by Liang

and Li (2009), which yields desirable results. Please see the supplementary document for further

descriptions.

3.4 Empirical data example

For illustration, we applied our model selection procedure to a data set from the Women’s Inter-

view Study of Health (WISH) (Brinton et al., 1995; Potischman et al., 1999). This study was

designed as a case-control study and consists of middle aged women who developed breast cancer

as well as who did not. To avoid the fact that case-control studies are not random samples from a

single population and are thus a case biased sampling, we make a rare disease approximation and

analyzed the subset of data formed by 1209 women who did not develop breast cancer (controls),

13



because with rare disease, the controls are quite representative of the entire population.

For the main study , the study collected the measurements of daily intakes of protein (W1),

fat (W2) and carbohydrate (W3). These measurements are based on a food frequency question-

naire, hence contains substantial measurement errors. To better understand the mechanism of the

measurement error associated with the food frequency questionnaire, the study also collected a

validation data set based on a subset of the main study. In the subset, daily intakes were measured

by 24-hour recalls as well as dietary records, and these results were combined to provide “true”

measurements of protein, fat and carbohydrate intakes; see, for example, Nusser et al. (1996),

Spiegelman et al. (2001), and Yi et al. (2015). The validation study consists of 178 observations.

Based on these two studies, we obtain the measurement error variance-covariance matrix associ-

ated with (W1,W2,W3)T. Finally, age (W4) and smoking status (discrete variable with 3 levels,

generated two discrete covariates W5 and W6) were also included as covariates without measure-

ment errors. We take body mass index (BMI) as the response variable. Thus, we have a total of six

covariates and 26 − 1 = 63 candidate linear regression models.

Table 3 contains the models selected by different methods. For example, UBERIC method

with λn = 2 selects the model with the second and fifth covariates. It is clear that all methods

consider fat intake as an important factor that is highly relevant with BMI, while UBERIC with

λn = log(n)pn1/2 selects the most parsimonious model. Taking advantage of the validation data,

we further evaluated the performance of these methods using the prediction error, and Figure 3

shows clearly that our methods based on UBERIC have the smallest squared prediction errors

among all competing methods.

4 Concluding remarks

In the linear measurement error model context, we have developed a model selection criterion

based on minimizing prediction errors, despite the fact that individual predictions are not com-

putable. With probability approaching one, the procedure selects the most parsimonious model
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among all the correct models if there are correct models included in the candidate models, and

achieves the minimum prediction error if no correct model is included.

One interesting question is how to generalize the procedure to the case where p > n. This

will be impossible if all p covariates contain error because the error variability will dominate the

risk. However, if the number of covariates with measurement errors is much smaller than n, it

may be possible to identify the best model. Of course, possibly solving this problem will involve

additional assumptions and techniques that can be nontrivial.

It will also be interesting yet challenging to generalize the above procedure to more complex

models in the measurement error context. Much work is needed in the model selection area in

measurement error models and we hope this work can be a starting point in this research domain.
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Appendix: Proofs

A.1 Proof of Theorem 1

To prove Theorem 1, we first establish the following two lemmas. The first lemma is the Lemma

1 in Stein (1981). We list it here for completeness and skip the proof. The proof of Lemma 2 is in

the supplementary materials.
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Lemma 1. (Stein, 1981): Let a be a Normal(0, 1) random variable and g(a) : R → R be an

indefinite integral of the Lebesgue measurable function ġ(a), essentially the derivative of g(a).

Suppose also that E|ġ(a)| <∞. Then E{ġ(a)} = E{ag(a)}.

Lemma 2. Let M1 and M2 be n× p(s) matrices, M3 be an n× n matrix, and M4 be a p(s) × p(s)

matrix, consisting of functions of Ŭ(s), where Ŭ(s) is a n by p(s) matrix consisting of independent

standard normal random variables. The following equations hold,

Etr(M1Ŭ
T
(s)) = Etr(DMT

1 ), (7)

tr{(M1 ⊗MT
2 )Kp(s)n} = tr{Knp(s)(M

T
2 ⊗M1)} = tr(M1M

T
2 ), (8)

tr[{M4dŬT
(s)M3}/dŬT

(s)] = tr(M3)tr(M4), (9)

tr[{MT
1 dŬ(s)M

T
2 }/dŬT

(s)] = tr(MT
1 M2), (10)

tr[{tr(M1dŬT
(s)M3)MT

2 }/dŬT
(s)] = tr(M3M1M

T
2 ), (11)

where Knp(s) and Kp(s)n are the np(s) × np(s) commutation matrices (Magnus and Neudecker,

1979).

Proof of Theorem 1:

Here we adopt the matrix differential theory in Magnus and Neudecker (2007), and denote dM as

the differential of M with respect to ŬT
(s), where M is a matrix of differentiable functions of ŬT

(s).

Denote the Jacobian matrix of M at ŬT
(s) as

DM =
dM

dŬT
(s)

=
∂vecM

∂(vecŬT
(s))

T
. (12)

For simplicity, we use M

ŬT
(s)

or M/ŬT
(s) to denote the matrix [(vecM)i/{(vecŬT

(s))
T}j]. This helps

present matrix differentiation. For example, MdŬT
(s)/dŬT

(s) is the Jacobian matrix of MŬT
(s) at

ŬT
(s) with M treated as a constant matrix although it can be a matrix of functions of ŬT

(s), i.e.,

(MdŬT
(s))/dŬT

(s) = {In ⊗Mvec(ŬT
(s))}/dŬT

(s) = In ⊗M. Equipped with Lemmas 1 and 2, we

now provide the proof of Theorem 1.
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Let Ŭ(s) = U(s)Σ
−1/2
(s) , an n by p(s) matrix consisting of independent standard normal random

variables. For the case that some covariates are error free, Σ
−1/2
(s) is defined as a matrix with its

upper-left submatrix being the nonzero upper-left submatrix of Σ(s) to the power of −1/2 and

other elements being 0. Then,

σ−2cov(µ̂T
(s),Y

T)

= σ−2E[{µ̂(s) − E(µ̂(s))}T(Y − µ)] = σ−2E(µ̂T
(s)ε) = σ−2E{εTX(s)G(s)(µ + ε)}

= E{tr(X(s)G(s))} = E{tr(W(s)G(s) −U(s)G(s))}

= E{tr(H(s))− tr(U(s)G(s))} = E{tr(H(s))− tr(GT
(s)Σ

1/2
(s) ŬT)}

= E[tr(H(s))− tr{D(Σ
1/2
(s) G(s))}], (13)

where the last equation is from (7) of Lemma 2. Note that

d(Σ
1/2
(s) G(s)) = Σ

1/2
(s) {Λ(s)dWT

(s) + dΛ(s)W
T
(s)}

= Σ
1/2
(s) {Λ(s)Σ

1/2
(s) dŬT −Λ(s)d(WT

(s)W(s))G(s)}

= Σ
1/2
(s) {Λ(s)Σ

1/2
(s) dŬT −Λ(s)Σ

1/2
(s) dŬTH(s) −G(s)dŬΣ

1/2
(s) G(s)}

= Σ
1/2
(s) Λ(s)Σ

1/2
(s) dŬT −Σ

1/2
(s) Λ(s)Σ

1/2
(s) dŬTH(s) −Σ

1/2
(s) G(s)dŬΣ

1/2
(s) G(s).

So from (9) and (10) of Lemma 2 we have

tr{D(Σ
1/2
(s) G(s))} = tr{d(Σ

1/2
(s) G(s))/dŬT

(s)}

= tr(Σ1/2
(s) Λ(s)Σ

1/2
(s) )tr(In)− tr(Σ1/2

(s) Λ(s)Σ
1/2
(s) )tr(H(s))− tr(GT

(s)Σ(s)G(s))

= ntr(Σ(s)Λ(s))− tr(H(s))tr(Σ(s)Λ(s))− tr(GT
(s)Σ(s)G(s)). (14)

Note further that

nΣ(s)Λ(s) = {WT
(s)W(s) − (WT

(s)W(s) − nΣ(s))}Λ(s) = WT
(s)W(s)Λ(s) − Ip(s) (15)

and

nGT
(s)Σ(s)G(s) = W(s)Λ(s){WT

(s)W(s) − (WT
(s)W(s) − nΣ(s))}Λ(s)W

T
(s)
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= H2
(s) −H(s). (16)

This leads to

tr(Σ(s)Λ(s)) =
tr(WT

(s)W(s)Λ(s) − Ip(s))

n
=
t(s),1 − p(s)

n
(17)

and

tr(GT
(s)Σ(s)G(s)) =

H2
(s) −H(s)

n
=
t(s),2 − t(s),1

n
. (18)

The proof is completed by combining the results in (13), (14), (17) and (18).

A.2 Proof of Theorem 3

We use these results frequently in the proofs. For two matrices M1 and M2 that are comfortable

for multiplication,

‖M1M2‖ = tr1/2(MT
2 MT

1 M1M2) ≤ λmax(M1)tr1/2(MT
2 M2) = λmax(M1)‖M2‖. (19)

Furthermore, if M1 and M2 are square matrices and M2 ≥ 0, then

tr(M1M2) = tr(M1/2
2 M1M

1/2
2 ) ≤ λmax(M1)tr(M2). (20)

From Markov’s inequality and Conditions (C.3) and (C.5), we have

P

(
‖UT

(s)Y‖√
np

> M

)
≤
E‖UT

(s)Y‖2

npM2
=
E(YTU(s)U

T
(s)Y)

npM2
=

(nσ2 + ‖µ‖2)tr(Σ(s))

npM2
→ 0,

as M →∞. So ‖UT
(s)Y‖ = Op{(np)1/2} uniformly in s. Similarly, under Conditions (C.3), (C.5)

and (C.6), ‖WTW‖ = Op(np), ‖UTX‖ = Op(n
1/2p), ‖WTX‖ = Op(np), µTε = Op(n

1/2),

‖Y‖2 = Op(n), ‖ε̂(s)‖2 = Op(n), ‖UT
(s)U(s) − nΣ(s)‖ = Op(n

1/2p), and

‖WT
(s)Y‖ ≤‖XT

(s)µ‖+ ‖XT
(s)ε‖+ ‖UT

(s)Y‖

≤λmax(X(s))‖Y‖+ ‖UT
(s)Y‖ = Op(n) +Op{(np)1/2} = Op(n).
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From Condition (C.3), and Theorems 3.21 and 4.21 of Schott (2005), uniformly in s,

λmax(WT
(s)W(s))

= λmax(XT
(s)X(s) + UT

(s)X(s) + XT
(s)U(s) + UT

(s)U(s))

≤ λmax(XT
(s)X(s)) + λmax(nΣ(s)) + λmax(UT

(s)X(s) + XT
(s)U(s) + UT

(s)U(s) − nΣ(s))

≤ 2nc2 + 2‖XT
(s)U(s)‖+ ‖UT

(s)U(s) − nΣ(s)‖

= 2nc2 +Op(n
1/2p),

and λmin(WT
(s)W(s))

= λmin(XT
(s)X(s) + UT

(s)X(s) + XT
(s)U(s) + UT

(s)U(s))

≥ λmin(XT
(s)X(s)) + λmin(nΣ(s)) + λmin(UT

(s)X(s) + XT
(s)U(s) + UT

(s)U(s) − nΣ(s))

≥ 2nc1 − 2‖XT
(s)U(s)‖ − ‖UT

(s)U(s) − nΣ(s)‖

= 2nc1 +Op(n
1/2p).

So under Conditions (C.3) and (C.6),

2c1 + op(1) <
λmin(WT

(s)W)

n
≤
λmax(WT

(s)W)

n
< 2c2 + op(1). (21)

Similarly, it can be shown that under Conditions (C.3), (C.4) and (C.6),

c1 + op(1) <
λmin(WT

(s)W(s) − nΣ̂(s))

n
≤
λmax(WT

(s)W(s) − nΣ̂(s))

n
< c2 + op(1),

which implies

λmax{(WT
(s)W(s) − nΣ̂(s))

−1} = Op

(
n−1
)
. (22)

From (19), (21) and (22), we obtain that uniformly in s,

‖(XT
(s)X(s))

−1 − (WT
(s)W(s) − nΣ̂(s))

−1‖

=‖(XT
(s)X(s))

−1(WT
(s)W(s) − nΣ̂(s) −XT

(s)X(s))(W
T
(s)W(s) − nΣ̂(s))

−1‖

=‖(XT
(s)X(s))

−1(UT
(s)U(s) − nΣ̂(s) −XT

(s)U(s) −UT
(s)X(s))(W

T
(s)W(s) − nΣ̂(s))

−1‖
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=O(1/n)Op(n
1/2p)Op(1/n) = Op(p/n

3/2). (23)

With Condition (C.3), using (19), (22) and (23) we have

‖{P̃(s) − P̆(s)}Y‖

≤ ‖X(s){(XT
(s)X(s))

−1 − (WT
(s)W(s) − nΣ̂(s))

−1}XT
(s)Y‖+ ‖X(s)(W

T
(s)W(s) − nΣ̂(s))

−1UT
(s)Y‖

= O(n1/2)Op(p/n
3/2)Op(n) +O(n1/2)Op(n

−1)Op(n
1/2p1/2)

= Op(p)

and

‖{P̃(s) + P̆(s)}Y‖ ≤ ‖X(s)(W
T
(s)W(s) − nΣ̂(s))

−1WT
(s)Y‖+ ‖X(s)(X

T
(s)X(s))

−1XT
(s)Y‖

= O(n1/2)Op(n
−1)Op(n) = Op(n

1/2).

So

|L̃(s) − L̆(s)| = |‖P̃(s)Y‖2 − ‖P̆(s)Y‖2 − 2µT{P̃(s) − P̆(s)}Y|

≤ |YT{P̃(s) − P̆(s)}T{P̃(s) + P̆(s)}Y|+ 2|µT{P̃(s) − P̆(s)}Y|

≤ ‖{P̃(s) − P̆(s)}Y‖‖(P̃(s) + P̆(s))Y‖+ 2‖{P̃(s) − P̆(s)}Y‖‖µ‖

= Op(n
1/2p). (24)

From (21) and (22), we obtain that uniformly in s,

λmax(H̃(s)) =λmax{W(s)(W
T
(s)W(s) − nΣ̂(s))

−1WT
(s)}

≤|λmax{(WT
(s)W(s) − nΣ̂(s))

−1}|λmax(W(s)W
T
(s)) = Op(1). (25)

From (20) and (25), we have

t̃(s),k = tr(H̃k
(s)) ≤ λmax(H̃k

(s))tr(Ip(s)) = p(s)λ
k
max(H̃(s)) = Op(p(s)) (26)

and

YTH̃k
(s)Y ≤ λkmax(H̃(s))‖Y‖2 = Op(n),
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so

B̃(s) = Op(p(s)) and d̃f (s) = p(s) +Op(p
2
(s)/n). (27)

Now we use the above results to consider the term YT(In − H̃(s))Y for SIn and SCn separately.

For SIn, it follows from (19) and (23) that

YT(In − H̃(s))Y

=YTY −YTW(s)(X
T
(s)X(s))

−1WT
(s)Y

−YTW(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}WT
(s)Y

≤YTY −YTW(s)(X
T
(s)X(s))

−1WT
(s)Y +Op(np

1/2)Op(p/n
3/2)Op(np

1/2)

=YTY −YTX(s)(X
T
(s)X(s))

−1XT
(s)Y +Op(n

1/2p2)

=‖Y − P̆(s)Y‖2 +Op(n
1/2p2)

=‖ε‖2 + L̆(s) + 2εT(µ− P̆(s)Y) +Op(n
1/2p2)

=‖ε‖2 + L̆(s) +Op(n
1/2p2). (28)

For SCn , it follows from (19), (20) and (23) that

YT(In − H̃(s))Y

=YTY −YTW(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}WT
(s)Y

−YTW(s)(X
T
(s)X(s))

−1WT
(s)Y

=YTY −YTX(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}XT
(s)Y

−YTX(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}UT
(s)Y

−YTU(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}WT
(s)Y

−YTX(s)(X
T
(s)X(s))

−1XT
(s)Y − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y −YTU(s)(X

T
(s)X(s))

−1UT
(s)Y

=YTY + YTX(s)(W
T
(s)W(s) − nΣ̂(s))

−1{WT
(s)W(s) − nΣ̂(s) −XT

(s)X(s)}(XT
(s)X(s))

−1XT
(s)Y

−Op(n)Op(p/n
3/2)Op{(np)1/2} −Op{(np)1/2}Op(p/n

3/2)Op(n)

−YTX(s)(X
T
(s)X(s))

−1XT
(s)Y − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y +Op(n)Op{(np)1/2}Op{(np)1/2}
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=YTY + YTX(s)(X
T
(s)X(s))

−1{WT
(s)W(s) − nΣ̂(s) −XT

(s)X(s)}(XT
(s)X(s))

−1XT
(s)Y

+ YTX(s){(WT
(s)W(s) − nΣ̂(s))

−1 − (XT
(s)X(s))

−1}{WT
(s)W(s) − nΣ̂(s) −XT

(s)X(s)}

× (XT
(s)X(s))

−1XT
(s)Y

−YTX(s)(X
T
(s)X(s))

−1XT
(s)Y − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y +Op(p

2)

=YTY + YTX(s)(X
T
(s)X(s))

−1{WT
(s)W(s) − nΣ̂(s) −XT

(s)X(s)}(XT
(s)X(s))

−1XT
(s)Y

+Op(n)Op(p/n
3/2)Op{(n)1/2p}Op(n

−1)Op(n)

−YTX(s)(X
T
(s)X(s))

−1XT
(s)Y − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y +Op(p

2)

=YTY + YTX(s)(X
T
(s)X(s))

−1(XT
(s)U(s) + UT

(s)X(s) + UT
(s)U(s) − nΣ̂(s))(X

T
(s)X(s))

−1XT
(s)Y

−YTX(s)(X
T
(s)X(s))

−1XT
(s)Y − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y +Op(p

2)

=YTY −YTX(s)(X
T
(s)X(s))

−1XT
(s)Y + 2YTX(s)(X

T
(s)X(s))

−1XT
(s)U(s)(X

T
(s)X(s))

−1XT
(s)Y

+ βT
(s)(U

T
(s)U(s) − nΣ̂(s))β(s) − 2YTX(s)(X

T
(s)X(s))

−1UT
(s)Y +Op(p

2)

=‖{In − P̆(s)}Y‖2 + 2εTX(s)(X
T
(s)X(s))

−1XT
(s)U(s)β(s) + 2µTX(s)(X

T
(s)X(s))

−1XT
(s)U(s)β(s)

+ βT
(s)(U

T
(s)U(s) − nΣ̂(s))β(s) − 2βT

(s)U
T
(s)µ− 2β(s)U

T
(s)ε +Op(p

2)

=‖{In − P̆(s)}Y‖2 + βT
(s)(U

T
(s)U(s) − nΣ̂(s))β(s) − 2βT

(s)U
T
(s)ε +Op(p

2)

=‖ε‖2 − εTP(s)ε + βT
(s)(U

T
(s)U(s) − nΣ̂(s))β(s) − 2βT

(s)U
T
(s)ε +Op(p

2)

=‖ε‖2 +Op(n
1/2p). (29)

Note that Condition (C.1) implies

max
s∈SIn

n1/2p2

L̆(s)

= op(1). (30)

From (24), (27), (28) and (30), we have

Cλ(s)− ‖ε‖2 = L̆(s) + op(L̆(s)) + λnσ̂
2d̃f (s) uniformly for SIn. (31)

By using (27) and Conditions (C.4) and (C.2) we have

max
s∈SIn

λnσ̂
2d̃f (s)

L̆(s)

= op(1),
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and thus

Cλ(s)− ‖ε‖2 = L̆(s) + op(L̆(s)) uniformly for SIn. (32)

Condition (C.1) and (24) imply that L̃(s)/L̆(s) → 1 in probability, which, together with (32),

indicate that the criterion is asymptotic optimal if SCn is empty.

If SCn is not empty, then from (27) and (29) we have

Cλ(s)− ‖ε‖2 = Op(n
1/2p) + λnσ̂

2d̃f (s) uniformly for SCn . (33)

If λn/(n1/2p)→∞, then from (27) and Conditions (C.4) and (C.6), (33) can be written as

Cλ(s)− ‖ε‖2 = λnσ̂
2{p(s) + oP (1)} uniformly for SCn . (34)

So the criterion picks the smallest model among correct models. Furthermore, by using (33), (34)

and Condition (C.2) we have

maxSC{Cλ(s)− ‖ε‖2}
minSI{Cλ(s)− ‖ε‖2}

= op(1). (35)

Thus the probability of selecting the correct model with the smallest dimension goes to one.
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Table 1: Simulation results of Example I in Section 3.2: relative loss. Methods compared are

UBERIC with λn = 2 and λn = log(n)pn1/2, AIC0, BIC0, AIC1, BIC1, SCAD-BIC, and SCAD-

GCV. The best results are in bold face.

λn = SCAD- SCAD-
n σ τ λn = 2 log(n)pn1/2 AIC0 BIC0 AIC1 BIC1 BIC GCV

25 0.5 0.85 1.390 4.094 5.668 5.612 1.753 1.674 5.218 5.108
0.95 1.412 1.450 1.709 1.661 1.510 1.431 1.820 1.707

1 0.85 1.511 5.321 4.676 4.598 1.743 1.666 5.542 5.319
0.95 1.465 1.774 1.782 1.705 1.530 1.424 1.720 1.619

50 0.5 0.85 1.350 2.899 2.021 1.966 1.866 1.791 3.130 2.787
0.95 1.356 1.069 1.564 1.513 1.510 1.391 1.788 1.378

1 0.85 1.496 4.971 2.236 2.155 1.839 1.731 2.711 2.549
0.95 1.446 1.068 1.693 1.600 1.562 1.418 2.049 1.406

100 0.5 0.85 1.261 1.512 1.471 1.441 1.952 1.879 2.084 1.851
0.95 1.192 1.015 1.323 1.285 1.466 1.362 1.703 1.299

1 0.85 1.348 3.417 1.602 1.538 1.864 1.787 2.163 1.847
0.95 1.235 1.008 1.378 1.322 1.455 1.348 2.193 1.645

200 0.5 0.85 1.161 1.006 1.249 1.233 1.978 1.925 2.129 1.926
0.95 1.111 1.006 1.180 1.163 1.425 1.357 1.596 1.554

1 0.85 1.205 1.553 1.308 1.269 1.930 1.866 2.198 1.937
0.95 1.139 1.003 1.215 1.174 1.427 1.345 2.176 1.692
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Table 2: Simulation results of Example II in Section 3.3: frequency in selecting the smallest correct

model. Methods compared are UBERIC with λn = 2 and λn = log(n)pn1/2, AIC0, BIC0, AIC1,

BIC1, SCAD-BIC, and SCAD-GCV. The best results are in bold face.

λn = SCAD- SCAD-
n σ τ λn = 2 log(n)pn1/2 AIC0 BIC0 AIC1 BIC1 BIC GCV

25 0.5 0.85 0.772 0.576 0.646 0.832 0.216 0.330 0.628 0.620
0.95 0.756 0.976 0.710 0.862 0.272 0.362 0.754 0.716

1 0.85 0.758 0.468 0.670 0.818 0.268 0.354 0.614 0.606
0.95 0.744 0.960 0.704 0.862 0.290 0.404 0.778 0.736

50 0.5 0.85 0.646 0.832 0.492 0.794 0.080 0.190 0.782 0.754
0.95 0.608 0.974 0.552 0.834 0.104 0.206 0.758 0.662

1 0.85 0.606 0.696 0.480 0.802 0.092 0.194 0.774 0.754
0.95 0.560 0.990 0.542 0.842 0.132 0.270 0.742 0.654

100 0.5 0.85 0.584 0.962 0.416 0.772 0.042 0.154 0.920 0.872
0.95 0.590 0.982 0.508 0.852 0.086 0.206 0.870 0.788

1 0.85 0.602 0.872 0.434 0.786 0.082 0.246 0.906 0.858
0.95 0.614 0.998 0.540 0.880 0.134 0.320 0.860 0.794

200 0.5 0.85 0.548 0.984 0.274 0.718 0.046 0.166 0.974 0.920
0.95 0.598 0.996 0.450 0.874 0.066 0.210 0.958 0.916

1 0.85 0.544 0.982 0.304 0.752 0.088 0.292 0.960 0.918
0.95 0.584 1.000 0.484 0.878 0.146 0.370 0.946 0.888

Table 3: Analysis of WISH data. Selected models by UBERIC with λn = 2 and λn = log(n)pn1/2,

AIC0, BIC0, AIC1, BIC1, SCAD-BIC, and SCAD-GCV.

λn = SCAD- SCAD-
Methods λn = 2 log(n)pn1/2 AIC0 BIC0 AIC1 BIC1 BIC GCV

Models (2,5) (2) (1,2,4) (2,4) (2,3,5) (2,3,5) (3) (3)
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Figure 1: Numerical Example I in Section 3.2. Boxplots of 500 differences d̂f (s) − df (s) with

s = 2p−1.
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Figure 2: Numerical Example II in Section 3.3. Boxplots of 500 differences d̂f (s) − df (s) with
s = 2p−1.
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Figure 3: Analysis of WISH data. Boxplots of 192 squared prediction errors. Methods compared
are UBERIC with λn = 2 and λn = log(n)pn1/2, AIC0, BIC0, AIC1, BIC1, SCAD-BIC, and
SCAD-GCV.
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