Chapter 8: Estimation

Goal of Statistical Inference: Use information in our sample data to make a conclusion about a population of interest.

- In particular, once we have chosen a distribution to be a model for our data, we want to estimate any unknown parameter(s) of that distribution.

Example 1: A company wishes to estimate the mean service time \(\mu \) for customers.

- The mean, \(\mu \), is the _______ ________ (or parameter of interest).

Example 2: A manufacturer wishes to estimate the standard deviation \(\sigma \) of the diameters of a part produced in a factory.

- Here, \(\sigma \) is the _______ ________ .

Two Types of Estimate

- A point estimate is a single number.

- An interval estimate is a range of possible values, such as:
- An estimator is a formula for calculating an estimate from data values in a sample.
- The estimate is the actual calculated value.

Judging the Quality of Point Estimators

- We traditionally evaluate estimators based on their values across repeated samples (of the same size) from the same population.
- Since an estimator is a function of the random sample values, it is itself a random variable.
- We want a point estimator to be ______ — to be at or near the target parameter value, on average.
- We also want our point estimator to be ______ — to be consistent in value across repeated samples.
- Good precision \equiv _____ variance.
8.2 Bias and Mean Squared Error of a Point Estimator

- Suppose our target parameter is denoted \(\theta \).
- Then let a point estimator of \(\theta \) be denoted by \(\hat{\theta} \).
- Since \(\hat{\theta} \) is a r.u., we can find \(E(\hat{\theta}) \) and \(\text{var}(\hat{\theta}) \).
- We say a point estimator \(\hat{\theta} \) is **unbiased** if:

 (if the average value of the estimator equals the target parameter)

- The **bias** of an estimator \(\hat{\theta} \) is:

- While being unbiased is good, unbiasedness alone does not make an estimator desirable.
- An estimator that is far less than \(\theta \) half the time and equally far above \(\theta \) the other half of the time is unbiased, but it is not a good estimator of \(\theta \).
- We also want our estimator to have low variance.
The Mean Squared Error (MSE) of an estimator measures a combination of bias and variance:

Note:

So the MSE of \(\hat{\theta} \) equals its variance plus the square of its bias.
Example 1: Let Y be a single observation from a binomial distribution with known n and unknown p. (That is, out of n "trials", Y is our observed number of "successes".) We wish to estimate the true success probability p.

- Let $\hat{p} = \frac{Y}{n}$. Then

- Another estimator of p could be $\hat{p}^* = \frac{Y+1}{n+2}$.

Note:

But note:

Exercise: For a given value of n, plot $\text{MSE}(\hat{p}) - \text{MSE}(\hat{p}^*)$ against p. See that for values of p near 0.5, then \hat{p}^* has lower MSE than \hat{p}.
8.3 Some Common Unbiased Estimators

Situation 1: \(Y_1, \ldots, Y_n \) iid with mean \(\mu \) and variance \(\sigma^2 \).

Then

Situation 2: If \(X_1, \ldots, X_n \) iid Bernoulli \((p)\) and \(Y = \sum_{i=1}^{n} X_i \),

then:

Situation 3:

Two indep. samples: \(Y_{11}, \ldots, Y_{1n_1} \) iid, mean \(\mu_1 \) and variance \(\sigma_1^2 \)

and \(Y_{21}, \ldots, Y_{2n_2} \) iid, mean \(\mu_2 \) and variance \(\sigma_2^2 \)

Then:

Note:

Situation 4:

Two indep. samples: \(X_{11}, \ldots, X_{1n_1} \) iid Bernoulli \((p_1)\),

let \(Y_1 = \sum_{i} X_{1i} \)

and \(X_{21}, \ldots, X_{2n_2} \) iid Bernoulli \((p_2)\),

let \(Y_2 = \sum_{i} X_{2i} \)

Then:

Note:
Situation 1 again: The sample variance
\[s^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1} \]
is an unbiased estimator of \(\sigma^2 \).
Proof:
Why not use \[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \]
to estimate \(\sigma^2 \)?

Note:

Interesting Fact: Although the sample variance \(S^2 \) is an unbiased estimator of \(\sigma^2 \), the sample standard deviation \(S = \sqrt{S^2} \) is a biased estimator of the population standard deviation \(\sigma \).