Let $E = |\hat{\theta} - \theta|$ be the error in estimation for an estimator $\hat{\theta}$ of θ.

Empirical Rule: Suppose $\hat{\theta}$ has an approximately normal sampling distribution with mean θ and variance $\sigma^2_{\hat{\theta}}$.

Then:

- These follow from basic normal probabilities.

Example 1: To estimate an unknown population mean μ, we take a random sample of size 49, and we calculate \overline{Y}. What is an approximate 95% bound on E?
Note: If $\hat{\theta}$ does not have an approximately normal sampling distribution, we can still get a conservative bound on \mathbb{E}.

Chebyshev's Inequality says:

for $k > 0$.

So if $k=2$, then
8.5 **Confidence Intervals**

- A **confidence interval** (or **interval estimator**) is an interval of numbers containing "reasonable values" for an unknown parameter (which we may generally label θ).

- We would like our interval estimator to:
 1. have a high probability of containing the true value of θ
 2. be relatively narrow (precise)

- A random interval $[\hat{\theta}_L, \hat{\theta}_U]$ is a $100(1-\alpha)\%$ CI for θ if:

 - The number $1-\alpha$ is called the **confidence coefficient**.
 - We often choose $1-\alpha$ to be large, like:

- We could also have **one-sided** CIs like $[\hat{\theta}_L, \infty)$ or $(-\infty, \hat{\theta}_U]$ where

 \[P(\hat{\theta}_L \leq \theta) = 1-\alpha \] or \[P(\theta \leq \hat{\theta}_U) = 1-\alpha. \]
Pivotal Method

- A useful method for deriving confidence intervals is to use a **pivotal quantity**:

- A pivotal quantity
 1. is a function of the sample data, the unknown target parameter, and **no other** unknown quantities.
 2. has a distribution that does not depend on the target parameter.

Example 1: We will randomly sample \(n = 1 \) observation from an exponential distribution with unknown mean \(\theta \). Find a formula for a 90% CI for \(\theta \).

If \(Y \sim \text{expon}(\theta) \), then \(f_Y(y) = \)

- It is easily shown that the density of \(U = \frac{Y}{\theta} \) is:

- Note \(U = \frac{Y}{\theta} \) is clearly a pivotal quantity.
- We need to find two numbers a and b such that:

Picture:

- One idea: Set

Then:

Solve for a and b:

So:

- We want to isolate θ in the middle:
Example 2: We sample n=1 observation from a $\text{Unif}(0, \Theta)$ distribution where Θ is unknown. Find a 95% lower confidence bound for Θ. $Y \sim \text{Unif}(0, \Theta)$. It can be shown that
\[
\frac{Y}{\Theta} \sim
\]

Hence $\frac{Y}{\Theta}$ is a pivotal quantity.

- We want some number a such that:

- If we observe $Y = 3.8$ from this uniform distribution, then our 95% lower confidence bound is:

- Hence we are 95% confident that Θ is
Example 3: Let X_1, \ldots, X_{10} be iid r.v.'s from an exponential distribution with unknown mean θ. Use the pivotal method to find a 95% CI for θ.
- Recall from Sec. 6.5: If $X_1, \ldots, X_n \text{iid expon}(\theta)$, then:

- Also from Sec. 6.5, if
Example 4: Let Y_1, \ldots, Y_n be iid Unif $(0, \theta)$. Use the pivotal method to find a 95% upper confidence bound for θ.

- Recall the maximum, $Y_{(n)}$, has cdf:

- Hence consider $U = F_u(u) = \ldots$

Example: If we have $n=10$, with the maximum $Y_{(n)} = 5.7$, we are 95% confident that θ is at most: