9.7 The Method of Maximum Likelihood

- Recall that the likelihood function is the joint pdf considered as a function of the parameter(s), given the observed data.

- Loosely speaking, the value of \(\theta \) that maximizes \(L(\theta | y) \) is the parameter value that is "most likely" to have produced the data we did observe.

- The maximum likelihood estimator (MLE) of a parameter \(\theta \) is:

Note: In MANY cases, it is easier to maximize \(\ln L(\theta) \) than to maximize \(L(\theta) \) itself.

- Since \(\ln(\cdot) \) is an increasing function, the \(\theta \)-value that maximizes \(\ln L(\theta) \) will also maximize \(L(\theta) \).
- So maximizing the log-likelihood \(\ln L(\theta) \) will yield the MLE.
- Often the MLE is found by:
 1. Writing out the (log) likelihood as a function of the parameter (say, \(\theta \)).
 2. Taking the derivative with respect to \(\theta \).
 3. Setting the derivative equal to 0 and solving for \(\hat{\theta} \).
 4. Checking that the 2nd derivative is _______ at \(\hat{\theta} \) to ensure the solution is a maximum.

Example 1: \(Y_1, \ldots, Y_n \overset{iid}{\sim} \text{Bernoulli}(p) \). Find the MLE of \(p \).
Example 2: Let $Y_1, \ldots, Y_n \overset{iid}{\sim} \text{Unif}(0, \theta)$. Find the MLE of θ.
MLE's with multiple parameters

- If we are using maximum likelihood to estimate several parameters, we must take partial derivatives of the (log) likelihood with respect to each parameter.
- We set each partial derivative to zero and solve the equations simultaneously.
- Example 3: \(y_1, \ldots, y_n \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \) where \(\mu \) and \(\sigma^2 \) are unknown. Find MLEs of \(\mu \) and \(\sigma^2 \).
 (Let's write \(\nu = \sigma^2 \) to make notation easier.)
Exercise: Let Y_1, \ldots, Y_n be iid with pdf

$$f_Y(y) = \begin{cases} \frac{1}{\theta} y^{\frac{1-\theta}{\theta}} & \text{for } 0 < y < 1 \\ 0 & \text{elsewhere}. \end{cases}$$

Find the MLE of θ.
\[L(\theta) = \]

\[\ln L(\theta) = \]
Properties of MLEs

- Note that if U is a sufficient statistic for θ, then:

 \Rightarrow Maximizing $L(\theta)$ with respect to θ is equivalent to maximizing $g(u,\theta)$ with respect to θ.

 \Rightarrow The MLE $\hat{\theta}$ will be a function of the sufficient statistic U.

- This tells us: If we find an MLE, and adjust it so it is unbiased, this adjusted estimator will (often) be the MVUE.

 Invariance Property

- We are often interested in estimating a function of a parameter.

- The invariance property of MLEs states that if $\hat{\theta}$ is a MLE of θ, and $g(\cdot)$ is any function, then:
Example 4: \(Y_1, \ldots, Y_n \overset{iid}{\sim} \text{Bernoulli}(p) \). Use ML to estimate \(\text{var} \left(\sum_{i=1}^{n} Y_i \right) \).

Note \(\sum_{i=1}^{n} Y_i \sim \)
- Exercise: Let $Y_1, \ldots, Y_n \sim \text{iid Pois}(\lambda)$. Show that the MLE $\hat{\lambda} = \bar{Y}$ and use the invariance property to estimate $P(Y=0) = e^{-\lambda}$ with ML.

Maximizing the Likelihood Numerically

- Sometimes it is too difficult to take derivatives of $L(\theta)$ or $\ln L(\theta)$.
- We can use software to find MLEs numerically.
- Example 5: $Y_1, \ldots, Y_{30} \sim \text{iid Gamma}(\alpha, \beta)$. Find MLEs of α and β, given the 30 data values. It can be shown that

- We cannot maximize this analytically, but using R, we can find MLEs numerically, given our sample data.