Chapter 2: Looking at Multivariate Data

- Multivariate data could be presented in tables, but graphical presentations are more effective at displaying patterns.

- We can see the patterns in one variable at a time using univariate graphics like histograms, stemplots, and boxplots.

- For multivariate data, graphics that allow us to look at several variables at once are more useful.

- The simplest such plot is the *scatterplot*.
Scatterplots and Beyond

- A simple 2-dimensional scatterplot is useful for visualizing the relationship between two variables.

- With $q > 2$ variables, we will need other plots (more later).

- For bivariate data, the scatterplot can be enhanced with:
 1. rug plots to show marginal distributions
 2. labeling points with abbreviations to identify interesting observations
 3. a regression line or curve overlain on the plot
The Convex Hull of a Data Set

- When examining a data set, we sometimes seek *robust* measures which ignore outliers.

- An example with one-variable data: The *trimmed mean*

- *Trimming*: Highest and lowest observations are trimmed off – the resulting data set may be more representative of the population.

- With multivariate data, we define the convex hull of the data set as the points on the edge of the smallest (convex) perimeter surrounding the data (see example)

- Trimming off these “outlying” observations on the convex hull may display the relationship between the variables better.

- Robust summary measurements (such as the correlation) can be obtained from this trimmed data set.

- Finding the convex hull can be done with the `chull` function in R.
The Chi-plot

- The *chi-plot* is a graphical method for judging whether two variables are independent, based on sample data.

- It is based on whether larger values of one variable tend to occur with larger (or smaller) values of the other variable (see pp. 24-25 for exact details).

- This plot can be done with the `chiplot` function from the text’s website.

- When the two variables are truly independent, the points in the chi-plot will fall within a central region.

- If the points fall outside this center region, this indicates the two variables may be related.
The Bivariate Boxplot

- The bivariate boxplot is an two-dimensional analogue of the familiar boxplot.
- Instead of “boxes,” it displays two ellipses centered at the same point (the bivariate center).
- The smaller ellipse contains the “central 50%” of the data and the wider ellipse contains all the data except the “outliers.”
- Two regression lines are displayed (the regression of Y on X and that of X on Y).
- The intersection of the regression lines is the bivariate center of the data.
- If the angle between the lines is highly acute, this indicates a strong correlation between the two variables.
- If the angle is almost a right angle, the correlation between the two variables is weak.
- This plot can be done with the bivbox function from the text’s website.
- Options exist to use robust measures of center, spread, and association when constructing the bivariate boxplot.
Bivariate Density Estimation

- Two-dimensional density estimates (based on sample data) can give a good picture of a bivariate distribution.

- This estimate can be obtained with the `bivden` function from the text’s website, and it can be plotted in R with the `persp` function (nice 3-D picture) or the `contour` function (on top of a scatterplot).
Plots to Display \(q > 2 \) Variables

- A *bubble plot* can show three variables on a regular 2-D plot.
- Two variables are plotted as usual on a scatterplot.
- Circular bubbles are drawn around each point, with the size of the bubble representing the value of a third variable for that observation.
- The bubbles can be added using the `symbols` functions in R.
- A *scatterplot matrix* is a \(q \times q \) array of individual 2-D scatterplots.
- This shows the relationship between *all possible pairs* of variables, but not any 3-way associations, for example.
- This can be done in R with the `pairs` function.
Three-Dimensional Scatterplots

• 3-D scatterplots can be drawn in R (using the `cloud` function in the `lattice` package, for example, but they are often not easy to interpret visually.

• Using “drop lines” may make such plots more interpretable.
Conditioning Plots

- These plots show scatterplots of two variables, conditional on the value of a third variable.
- These are separate scatterplots for different values of the third variable.
- These are especially useful if the third variable is a categorical (grouping) variable.
- This can be done in R with the `coplot` function or with the `xyplot` function in the `lattice` package.
Star Plots

• In a *star plot*, the magnitudes of q variables can be represented graphically for each observation.

• There are q points on the star, and the length of each point represents the value for that observation.

• It may be useful to scale or standardize the variables first.

• This can be done in \mathbb{R} with the *stars* function.

• Alternatively, the stars could be placed on a 2-D scatterplot, and (like with a bubble plot), stars having $q - 2$ points could be placed over each observation.
Chernoff Faces

• With Chernoff Faces, each multivariate observation is displayed with a face.

• We represent q variables using q specific characteristics of the face (eye size, mouth angle, nose size, etc.).

• For example, a wide mouth might correspond to a large value for the fifth variable, say.

• Can be done in R with the faces function, in the TeachingDemos package.
Profile Plots

- Profile plots are a simple way to display several multivariate observations graphically.
- They show connected line segments where the height at each joining point is the value of a variable for that observation.
- Another form of profile plot uses a series of bars to represent the variable values for each multivariate observation.
- These work best when there are relatively few observations (and variables) so that the plot looks “cleaner”.
- Plotting the different observations in different colors (or line types) helps distinguish the observations.
- Profile plots for the same data set can appear different visually when the variables are reordered (a possible weakness).
Andrews Plots

• These convert each data vector into a Fourier series, and the resulting curves are plotted together.

• For a data vector \((x_1, x_2, x_3, x_4, x_5, \ldots)\), the corresponding Fourier curve would be

\[
f(t) = \frac{x_1}{\sqrt{2}} + x_2 \sin(t) + x_3 \cos(t) + x_4 \sin(2t) + x_5 \cos(2t) + \cdots
\]

• The curves are plotted on the domain \(t \in (-\pi, \pi)\).

• Again, the order of the variables does affect the appearance of the plot.

• Advantage: The distances between curves in an Andrews plot reflect correctly the pairwise distances between observations.

• Disadvantage: The roles of the individual variables are not as apparent in Andrews plots as in the other types of plots.