Chapter 4: Factor Analysis

- In many studies, we may not be able to measure directly the variables of interest.
- We can merely collect data on other variables which may be related to the variables of interest.
- Goal of factor analysis (FA) is to relate the unobservable latent variables of interest to the observed manifest variables.
- The technique used to relate the latent variables (often called factors) to the manifest variables is similar to multiple regression.
- The estimation of the regression coefficients (called loadings in this context) is less straightforward, however.
A Factor Analysis Example: The Wechsler Adult Intelligence Study

- The Wechsler Adult Intelligence Scale (WAIS) series of tests measures participants’ scores in 11 different tests.

- The multivariate data set consisted of 13 variables: these 11 test scores, plus “age” and “years of education.”

- Based on the observed variables, we may want to identify certain underlying factors that cause the individuals to differ.

- Is there a “general intelligence” factor? Is there a “language ability” factor? Is there a “math ability” factor?

- Factor analysis can help us answer these questions.
Our Factor Analysis Model

- Our factor analysis model assumes that we can explain the correlations among the manifest variables through these variables’ relationships with the latent variables.

- The q manifest variables are denoted x_1, x_2, \hdots, x_q.

- The k latent variables, or factors, (where $k < q$) are denoted f_1, f_2, \hdots, f_k.

- We relate them via a series of regression equations:

\[
\begin{align*}
x_1 &= \lambda_{11} f_1 + \lambda_{12} f_2 + \cdots + \lambda_{1k} f_k + u_1 \\
x_2 &= \lambda_{21} f_1 + \lambda_{22} f_2 + \cdots + \lambda_{2k} f_k + u_2 \\
&\vdots \\
x_q &= \lambda_{q1} f_1 + \lambda_{q2} f_2 + \cdots + \lambda_{qk} f_k + u_q
\end{align*}
\]

- The λ_{ij} values (called loadings) show how much each manifest variable depends on the j-th factor.

- The loading values help in the interpretation of each factor.
Our Factor Analysis Model (continued)

• We can write the regression equations in matrix notation: $x = \Lambda f + u$, where

$$\Lambda = \begin{bmatrix}
\lambda_{11} & \cdots & \lambda_{1k} \\
\vdots & \ddots & \vdots \\
\lambda_{q1} & \cdots & \lambda_{qk}
\end{bmatrix}$$

and $f = (f_1, \ldots, f_k)'$, $u = (u_1, \ldots, u_q)'$.

• The model assumes u_1, \ldots, u_q are mutually independent and are independent of the f_1, \ldots, f_k.

• The factors are unobserved, so we may assume they have mean 0 and variance 1, and that they are uncorrelated with each other.
Partitioning the Variance of the Data Vectors

The *communality* h_i^2 is the variability in manifest variable x_i shared with the other variables (via the factors) and ψ_i is the specific variance, not shared with the other variables.
Covariance of the Data Vectors

Hence the population covariance matrix Σ for (x_1, x_2, \ldots, x_q) is $\Sigma = \Lambda\Lambda' + \Psi$, where $\Psi = \text{diag}(\psi_i)$.
Factor Analysis in Practice

• If this decomposition of the covariance matrix holds, then the k-factor model is correct.

• In practice, Σ is unknown and is estimated by S (or the sample correlation matrix R will be used).

• So we need to find estimates of Λ and Ψ so that the sample covariance matrix can be decomposed in this way: $S \approx \hat{\Lambda}\hat{\Lambda}^\prime + \hat{\Psi}$.

• In practice, we also don’t know the true value of k, the number of factors.
Methods of Estimating the Factor Analysis Model: Principal Factor Analysis

The Principal Factor Analysis approach to estimation relies on estimating the communalities.

- It uses the reduced covariance matrix $S^* = S - \hat{\Psi}$.
- The diagonal elements of S^* are $s_i^2 - \hat{\psi}_i = \hat{h}_i^2$, the (estimated) communality for the i-th variable.
- We could standardize the variables, which amounts to using the reduced correlation matrix $R^* = R - \hat{\Psi}$.
Estimating the Communalities

• To estimate the h_{i}^{2} values, we cannot use the factor loadings, since those have not been estimated yet.

• A more straightforward approach (when working with the correlation matrix) is one of the following:

 1. Initially let \hat{h}_{i}^{2} equal the R^{2} value of a regression of x_{i} against the other manifest variables. This is $1 - \frac{1}{r_{ii}}$, where r_{ii} is the i-th diagonal element of R^{-1}.

 2. Initially let \hat{h}_{i}^{2} equal the largest absolute correlation coefficient between x_{i} and any other manifest variable.

• In both of these approaches, a stronger association between x_{i} and the other variables will lead to a higher communality value \hat{h}_{i}^{2}.

• When working with the covariance matrix, we could base the communality estimates on the diagonal elements of S^{-1} rather than R^{-1}.
Using the Initial Communality Estimates

- Once we have our initial \hat{h}_i^2 values, we can calculate S^* (or R^*).

- We perform a principal components analysis on S^* (or R^*) and the first k eigenvectors contain the estimates of the first k factor loadings.

- These estimated loadings $\hat{\lambda}_{ij}$ can be used to obtain new communality estimates:

$$\hat{h}_i^2 = \sum_{j=1}^{k} \hat{\lambda}_{ij}^2$$

- We can re-form S^* (or R^*) with the revised communality estimates, and repeat the process until the communality estimates converge.

- This works well unless the communality estimate becomes larger than the manifest variable’s total variance, implying a negative specific variance, an impossibility.
Maximum Likelihood Factor Analysis

- Maximum likelihood (ML) is a general method of estimating parameters in a statistical model.

- Classical ML requires an assumption about the form of the distribution of the data.

- If we can assume we have multivariate normal data, we can motivate a maximum likelihood estimation of our k-factor model.

- Recall that the observed sample covariance matrix is S and, under the factor analysis model, the true covariance matrix is $\Sigma = \Lambda \Lambda' + \Psi$.

- The goodness-of-fit of the k-factor model can be judged by a “distance” measure F between the sample covariance matrix and the predicted covariance matrix under the model.
The Distance Measure and Maximum Likelihood

• Let \(F = \ln |\Lambda \Lambda' + \Psi| + \text{trace}(S[\Lambda \Lambda' + \Psi]^{-1}) - \ln |S| - q. \)

• This distance measure equals zero if \(S = \Lambda \Lambda' + \Psi. \)

• \(F \) is large when \(S \) is far from \(\Lambda \Lambda' + \Psi. \)

• We can calculate (for a given data set) the elements of \(\Lambda \) and \(\Psi \) that make \(F \) as small as possible.

• This implies we have estimates of the communalities \(h_1^2, \ldots, h_q^2 \) and the specific variances \(\psi_1, \ldots, \psi_q. \)

• Under the assumption of multivariate normality, the likelihood \(L = -0.5nF \) plus a function of the data.

• Hence minimizing \(F \) is equivalent to maximizing \(L. \)

• This method could also produce negative estimates for the specific variances.
Estimating the Number of Factors

- With factor analysis, the choice of the number of factors k is critical.

- If we use $k + 1$ factors, we will get different factors and loadings than if we use k factors.

- With too few factors, there will be too many high loadings.

- With too many factors, the loadings will be spread out too much over the factors, and the factors will be difficult to interpret.
Methods for Estimating the Number of Factors

- A subjective approach is to try various choices of k and pick the one that gives the most interpretable result — this is probably too subjective.

- Could use the *scree diagram* as in PCA, but the eigenvalues are not as directly interpretable in factor analysis.

- When using maximum likelihood, we can use a formal sequence of hypothesis tests to help determine k.

- We use the test statistic $U = n' \min(F)$, where $n' = n + 1 - (2q + 5)/6 - 2k/3$.

- If the k-factor model is appropriate, this test statistic has a large-sample χ^2 distribution with degrees of freedom $(q - k)^2/2 - (q + k)/2$.

- Typically we begin with a small value of k, and increase k by 1 sequentially.

- If at any stage, the U has a non-significant P-value, we choose that value of k.

- If at any stage the degrees of freedom go to zero, the factor analysis model may be inappropriate.