1. Define the matrix
 \[A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \]

 (a) Find two generalized inverses of \(A \).

 (b) Find a matrix which projects onto \(C(A) \).

 (c) Find a matrix which projects onto \(C(A)^\perp \), the orthogonal complement of \(C(A) \).

2. Show that if \(A^- \) is a generalized inverse of \(A \), then so is
 \[G = A^- AA^- + (I - A^- A)B_1 + B_2(I - AA^-), \]
 for any choices of \(B_1 \) and \(B_2 \) with conformable dimensions.

3. Let \(A_{n \times p}, b_{p \times 1}, c_{n \times 1} \), and suppose that the equations \(Ab = c \) are consistent. Let \(x_{n \times 1}, u_{p \times 1}, \) and \(X_{p \times n} \). Let \(A_1^- \) and \(A_2^- \) be two generalized inverses of \(A \). Let \(I \) denote the \(n \times n \) identity matrix.

 (a) Let \(b^* \) be a solution to \(Ab = c \). Show that \(b^* + uc'(A_1^-)'A' - I)x \) is also a solution.

 (b) Show that \(A_1^- + X(AA_2^- - I) \) is a generalized inverse of \(A \).

4. Suppose the system \(Ax = c \) is consistent and that \(G \) is a generalized inverse of \(A \).

 (a) What is a particular solution to the system? the general solution?

 (b) If \(A \) is symmetric, prove that \(\frac{1}{2}(G + G') \) is a generalized inverse of \(A \).

 (c) Prove that the generalized inverse in (b) is symmetric. This shows that there does exist a generalized inverse of \(A \), \(A \) symmetric, that is symmetric itself.

5. Suppose that \(A, B, \) and \(A + B \) are all idempotent. Prove that \(AB = 0 \) and \(BA = 0 \).

6. Let \(P \) be an \(n \times n \) orthogonal matrix and let \(A \) be an \(n \times n \) symmetric and idempotent matrix. Define \(D = P'AP \). Show that \(D \) is a perpendicular projection matrix.

7. Consider the linear model \(Y = X\beta + \epsilon \) with
 \[Y = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \quad \text{and} \quad X = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \]

 Note that \(r(X) = 3 \). Find \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \), two different solutions to the normal equations \(X'X\beta = X'Y \). With your solutions, show that \(X\hat{\beta}_1 = X\hat{\beta}_2 \in C(X) \). Also show that \(Y - X\hat{\beta}_1 = Y - X\hat{\beta}_2 \in N(X') \).
8. Let M_1 and M_2 be perpendicular projection matrices on \mathcal{R}^n. Prove that $M_1 + M_2$ is the perpendicular projection matrix onto $\mathcal{C}(M_1, M_2)$ if and only if $\mathcal{C}(M_1) \perp \mathcal{C}(M_2)$.

9. Let M be the perpendicular projection matrix onto $\mathcal{C}(X)$. Suppose that $a \in \mathcal{C}(X)$. Show that $(M - aa')'(M - aa') = M + (a'a - 2)aa'$.

10. Suppose that M_1 and M_2 are symmetric, that $\mathcal{C}(M_1) \perp \mathcal{C}(M_2)$, and that $M_1 + M_2$ is the perpendicular projection matrix. Prove that M_1 and M_2 are also perpendicular projection matrices.

11. Let M and M_0 be perpendicular projection matrices with $\mathcal{C}(M_0) \subset \mathcal{C}(M)$. Show that $M - M_0$ is a perpendicular projection matrix.

DEFINITION: Let \mathcal{V} denote an arbitrary vector space and let \mathcal{S} denote a subspace of \mathcal{V}. Define

$$\mathcal{S}_\perp = \{ y \in \mathcal{V} : y \perp \mathcal{S} \}.$$

The subspace \mathcal{S}_\perp is called the **orthogonal complement of \mathcal{S} with respect to \mathcal{V}**. If $\mathcal{V} = \mathcal{R}^n$, then $\mathcal{S}_\perp = \mathcal{S}^\perp$; in this situation, we call \mathcal{S}^\perp and \mathcal{S} simply “orthogonal complements” because it is understood that the larger vector space is \mathcal{R}^n. However, there is nothing to prevent \mathcal{V} from being a subspace of \mathcal{R}^n.

12. Let M and M_0 be perpendicular projection matrices with $\mathcal{C}(M_0) \subset \mathcal{C}(M)$. Show that $\mathcal{C}(M - M_0) = \mathcal{C}(M_0)^\perp_{\mathcal{C}(M)}$, the orthogonal complement of $\mathcal{C}(M_0)$ with respect to $\mathcal{C}(M)$.